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Abstract. After decades of study and significant data col-
lection of time-varying swash on sandy beaches, there is no
single deterministic prediction scheme for wave runup that
eliminates prediction error – even bespoke, locally tuned pre-
dictors present scatter when compared to observations. Scat-
ter in runup prediction is meaningful and can be used to cre-
ate probabilistic predictions of runup for a given wave cli-
mate and beach slope. This contribution demonstrates this
using a data-driven Gaussian process predictor; a probabilis-
tic machine-learning technique. The runup predictor is devel-
oped using 1 year of hourly wave runup data (8328 observa-
tions) collected by a fixed lidar at Narrabeen Beach, Sydney,
Australia. The Gaussian process predictor accurately predicts
hourly wave runup elevation when tested on unseen data with
a root-mean-squared error of 0.18 m and bias of 0.02 m. The
uncertainty estimates output from the probabilistic GP pre-
dictor are then used practically in a deterministic numerical
model of coastal dune erosion, which relies on a parame-
terization of wave runup, to generate ensemble predictions.
When applied to a dataset of dune erosion caused by a storm
event that impacted Narrabeen Beach in 2011, the ensem-
ble approach reproduced ∼ 85 % of the observed variability
in dune erosion along the 3.5 km beach and provided clear
uncertainty estimates around these predictions. This work
demonstrates how data-driven methods can be used with tra-
ditional deterministic models to develop ensemble predic-
tions that provide more information and greater forecasting
skill when compared to a single model using a deterministic
parameterization – an idea that could be applied more gener-
ally to other numerical models of geomorphic systems.

1 Introduction

Wave runup is important for characterizing the vulnerability
of beach and dune systems and coastal infrastructure to wave
action. Wave runup is typically defined as the time-varying
vertical elevation of wave action above ocean water levels
and is a combination of wave swash and wave setup (Hol-
man, 1986; Stockdon et al., 2006). Most parameterizations
of wave runup use deterministic equations that output a sin-
gle value for either the maximum runup elevation in a given
time period, Rmax, or the elevation exceeded by 2 % of runup
events in a given time period, R2, based on a given set of in-
put conditions. In the majority of runup formulae, these input
conditions are easily obtainable parameters such as signifi-
cant wave height, peak wave period, and beach slope (Atkin-
son et al., 2017; Holman, 1986; Hunt, 1959; Ruggiero et
al., 2001; Stockdon et al., 2006). However, wave dispersion
(Guza and Feddersen, 2012), wave spectrum (Van Oorschot
and d’Angremond, 1969), nearshore morphology (Cohn and
Ruggiero, 2016), bore–bore interaction (García-Medina et
al., 2017), tidal stage (Guedes et al., 2013), and a range
of other possible processes have been shown to influence
swash zone processes. Since typical wave runup parameter-
izations do not account for these more complex processes,
there is often significant scatter in runup predictions when
compared to observations (e.g., Atkinson et al., 2017; Stock-
don et al., 2006). Even flexible machine-learning approaches
based on extensive runup datasets or consensus-style “model
of models” do not resolve prediction scatter in runup datasets
(e.g., Atkinson et al., 2017; Passarella et al., 2018b; Power
et al., 2019). This suggests that the development of a per-
fect deterministic parameterization of wave runup, especially
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with only reduced, easily obtainable inputs (i.e., wave height,
wave period, and beach slope), is improbable.

The resulting inadequacies of a single deterministic pa-
rameterization of wave runup can cascade up through the
scales to cause error in any larger model that uses a runup
parameterization. It therefore makes sense to clearly incor-
porate prediction uncertainty into wave runup predictions. In
disciplines such as hydrology and meteorology, with a more
established tradition of forecasting, model uncertainty is of-
ten captured by using ensembles (e.g., Bauer et al., 2015;
Cloke and Pappenberger, 2009). The benefits of ensemble
modelling are typically superior skill and the explicit inclu-
sion of uncertainty in predictions by outputting a range of
possible model outcomes. Commonly used methods of gen-
erating ensembles include combining different models (Lim-
ber et al., 2018) or perturbing model parameters, initial con-
ditions, and/or input data (e.g., via Monte Carlo simulations;
e.g., Callaghan et al., 2013).

An alternative approach to quantify prediction uncertainty
is to incorporate scatter about a mean prediction into model
parameterizations. For example, wave runup predictions at
every time step could be modelled with a deterministic pa-
rameterization plus a noise component that captures the
scatter about the deterministic prediction caused by unre-
solved processes. If parameterizations are stochastic, or have
a stochastic component, repeated model runs (given identical
initial and forcing conditions) produce different model out-
puts – an ensemble – that represent a range of possible val-
ues the process could take. This is broadly analogous to the
method of stochastic parameterization used in the weather
forecasting community for sub-grid-scale processes and pa-
rameterizations (Berner et al., 2017). In these applications,
stochastic parameterization has been shown to produce bet-
ter predictions than traditional ensemble methods and is now
routinely used by many operational weather forecasting cen-
tres (Berner et al., 2017; Buchanan, 2018).

Stochastically varying a deterministic wave runup param-
eterization to form an ensemble still requires defining the
stochastic term – i.e., the stochastic element that should be
added to the predicted runup at each model time step. An al-
ternative to specifying a predefined distribution or a noise
term added to a parameterization is to learn and parame-
terize the variability in wave runup from observational data
using machine-learning techniques. Machine learning has
had a wide range of applications in coastal morphodynam-
ics research (Goldstein et al., 2019) and has shown specific
utility in understanding swash processes (Passarella et al.,
2018b; Power et al., 2019) as well as storm-driven erosion
(Beuzen et al., 2017, 2018; den Heijer et al., 2012; Goldstein
and Moore, 2016; Palmsten et al., 2014; Plant and Stock-
don, 2012). While many machine-learning algorithms and
applications are often used to optimize deterministic predic-
tions, a Gaussian process is a probabilistic machine-learning
technique that directly captures model uncertainty from data
(Rasmussen and Williams, 2006). Recent work has specif-

ically used Gaussian processes to model coastal processes
such as large-scale coastline erosion (Kupilik et al., 2018)
and estuarine hydrodynamics (Parker et al., 2019).

The work presented here is focused on using a Gaussian
process to build a data-driven probabilistic predictor of wave
runup that includes estimates of uncertainty. While quanti-
fying uncertainty in runup predictions from data is useful in
itself, the benefit of this methodology is in explicitly includ-
ing the uncertainty with the runup predictor in a larger model
that uses a runup parameterization, such as a coastal dune
erosion model. Dunes on sandy coastlines provide a natu-
ral barrier to storm erosion by absorbing the impact of inci-
dent waves and storm surge and helping to prevent or delay
flooding of coastal hinterland and infrastructure (Mull and
Ruggiero, 2014; Sallenger, 2000; Stockdon et al., 2007). The
accurate prediction of coastal dune erosion is therefore crit-
ical for characterizing the vulnerability of dune and beach
systems and coastal infrastructure to storm events. A vari-
ety of methods are available for modelling dune erosion,
including simple conceptual models relating hydrodynamic
forcing, antecedent morphology, and dune response (Sal-
lenger, 2000); empirical dune-impact models that relate time-
dependent dune erosion to the force of wave impact at the
dune (Erikson et al., 2007; Larson et al., 2004; Palmsten and
Holman, 2012); data-driven machine-learning models (Plant
and Stockdon, 2012); and more complex physics-based mod-
els (Roelvink et al., 2009). In this study, we focus on dune-
impact models, which are simple, commonly used models
that typically rely on a parameterization of wave runup to
model time-dependent dune erosion. As inadequacies in the
runup parameterization can jeopardize the success of model
results (Overbeck et al., 2017; Palmsten and Holman, 2012;
Splinter et al., 2018), it makes sense to use a runup predictor
that includes prediction uncertainty.

The overall aim of this work is to demonstrate how prob-
abilistic data-driven methods can be used with deterministic
models to develop ensemble predictions, an idea that could
be applied more generally to other numerical models of geo-
morphic systems. Section 2 first describes the Gaussian pro-
cess model theory. In Sect. 3 the Gaussian process runup pre-
dictor is developed. In Sect. 4 an example application of the
Gaussian process predictor of runup inside a morphodynamic
model of coastal dune erosion to build a hybrid model (Gold-
stein and Coco, 2015; Krasnopolsky and Fox-Rabinovitz,
2006) that can generate ensemble output is presented. A dis-
cussion of the results and technique is provided in Sect. 5
followed by conclusions in Sect. 6. The data and code used
to develop the Gaussian process runup predictor in this paper
are publicly available at https://github.com/TomasBeuzen/
BeuzenEtAl_2019_NHESS_GP_runup_model (Beuzen and
Goldstein, 2019).
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2 Gaussian processes

2.1 Gaussian process theory

Gaussian processes (GPs) are data-driven, non-parametric
models. A brief introduction to GPs is given here; for a more
detailed introduction the reader is referred to Rasmussen and
Williams (2006). There are two main approaches to deter-
mine a function that best parameterizes a process over an in-
put space: (1) select a class of functions to consider, e.g.,
polynomial functions, and best fit the functions to the data (a
parametric approach); or (2) consider all possible functions
that could fit the data, and assign higher weight to functions
that are more likely (a non-parametric approach) (Rasmussen
and Williams, 2006). In the first approach it is necessary to
decide on a class of functions to fit to the data – if all or parts
of the data are not well modelled by the selected functions,
then the predictions may be poor. In the second approach
there is an infinite set of possible functions that could fit a
dataset (imagine the number of paths that could be drawn be-
tween two points on a graph). A GP addresses the problem
of infinite possible functions by specifying a probability dis-
tribution over the space of possible functions that fit a given
dataset. Based on this distribution, the GP quantifies what
function most likely fits the underlying process generating
the data and gives confidence intervals for this estimate. Ad-
ditionally, random samples can also be drawn from the dis-
tribution to provide examples of what different functions that
fit the dataset might look like.

A GP is defined as a collection of random variables, any
finite set of which has a multivariate Gaussian distribution.
The random variables in a GP represent the value of the un-
derlying function that describes the data, f (x), at location x.
The typical workflow for a GP is to define a prior distribution
over the space of possible functions that fit the data, form a
posterior distribution by conditioning the prior on observed
input/output data pairs (“training data”), and to then use this
posterior distribution to predict unknown outputs at other in-
put values (“testing data”). The key to GP modelling is the
use of the multivariate Gaussian distribution, which has sim-
ple closed form solutions to the aforementioned conditioning
process, as described below.

Whereas a univariate Gaussian distribution is defined by
a mean and variance (i.e., (µ, σ 2)), a GP (a multivariate
Gaussian distribution) is completely defined by a mean func-
tion m(x) and covariance function k(x, x′) (also known as a
“kernel”), and it is typically denoted as

f (x)∼N(m(x),k(x,x′)), (1)

where x is an input vector of dimension D (x ∈ RD), and
f is the unknown function describing the data. Note that for
the remainder of this paper, a variable denoted in bold text
represents a vector. The mean function, m(x), describes the
expected mean value of the function describing the data at

location x, while the covariance function encodes the corre-
lation between the function values at locations in x.

These concepts of GP development are further described
using a hypothetical dataset of significant wave height (Hs)
versus wave runup (R2) shown in Fig. 1a. The first step of
GP modelling is to constrain the infinite set of functions
that could fit a dataset by defining a prior distribution over
the space of functions. This prior distribution encodes be-
lief about what the underlying function is expected to look
like (e.g., smooth/erratic, cyclic/random) before constrain-
ing the model with any observed training data. Typically it
is assumed that the mean function of the GP prior, m(x),
is 0 everywhere, to simplify notation and computation of the
model (Rasmussen and Williams, 2006). Note that this does
not limit the GP posterior to be a constant mean process. The
covariance function, k(x, x′), ultimately encodes what the
underlying functions look like because it controls how sim-
ilar the function value at one input point is to the function
value at other input points.

There are many different types of covariance functions or
kernels. One of the most common, and the one used in this
study, is the squared exponential covariance function:

k
(
xi,xj

)
= σ 2

f exp

[
−

D∑
d=1

1
2l2d

(
xd,i − xd,j

)2]
, (2)

where σf is the signal variance and l is known as the length
scale, both of which are hyperparameters in the model that
can be estimated from data (discussed further in Sect. 2.2).
Together the mean function and covariance function specify
a multivariate Gaussian distribution:

f (x)∼N(0,K), (3)

where f is the output of the prior distribution, the mean
function is assumed to be 0, and K is the covariance matrix
made by evaluating the covariance function at arbitrary input
points that lie within the domain being modelled (i.e., K(x,
x)i,j = k(xi , xj )). Random sample functions can be drawn
from this prior distribution as demonstrated in Fig. 1b.

The goal is to determine which of these functions actu-
ally fit the observed data points (training data) in Fig. 1a.
This can be achieved by forming a posterior distribution on
the function space by conditioning the prior with the train-
ing data. Roughly speaking, this operation is mathematically
equivalent to drawing an infinite number of random func-
tions from the multivariate Gaussian prior (Eq. 3) and then
rejecting those that do not agree with the training data. As
mentioned above, the multivariate Gaussian offers a simple,
closed form solution to this conditioning. Assuming that our
observed training data are noiseless (i.e., y exactly represents
the value of the underlying function f ) then we can condition
the prior distribution with the training data samples (x, y) to
define a posterior distribution of the function value (f ∗) at
arbitrary test inputs (x∗):

f ∗|y ∼N
(

K∗K−1y,K∗∗−K∗K−1KT
∗

)
, (4)
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Figure 1. (a) Five hypothetical random observations of significant wave height (Hs) and 2 % wave runup elevation (R2). (b) The Gaussian
process (GP) prior distribution. (c) The GP posterior distribution, formed by conditioning the prior distribution in (b) with the observed
data points in (a), assuming the observations are noise-free. (d) The GP posterior distribution conditioned on the observations with a noise
component.

where f ∗ is the output of the posterior distribution at the de-
sired test points x∗, y is the training data outputs at inputs x,
K∗ is the covariance matrix made by evaluating the covari-
ance function (Eq. 2) between the test inputs x∗ and training
inputs x (i.e., k(x∗, x)), K is the covariance matrix made
by evaluating the covariance function between training data
points x, and K∗∗ is the covariance matrix made by evalu-
ating the covariance function between test points x∗. Func-
tion values can be sampled from the posterior distribution as
shown in Fig. 1c. These samples represent random realiza-
tions of what the underlying function describing the training
data could look like.

As stated earlier, in Eq. (4) and Fig. 1c there is an assump-
tion that the training data are noiseless and represent the ex-
act value of the function at the specific point in input space.
In reality, there is error associated with observations of phys-
ical systems, such that

y = f (x)+ ε, (5)

where ε is assumed to be independent identically distributed
Gaussian noise with variance σ 2

n . This noise can be incorpo-
rated into the GP modelling framework through the use of a
white noise kernel that adds an element of Gaussian white
noise into the model:

k
(
xi,xj

)
= σ 2

n δij , (6)

where σ 2
n is the variance of the noise and δij is a Kronecker

delta which is 1 if i = j and 0 otherwise. The squared expo-
nential kernel and white noise kernel are closed under addi-
tion and product (Rasmussen and Williams, 2006), such that
they can simply be combined to form a custom kernel for use
in the GP:

k
(
xi,xj

)
= σ 2

f exp

{
−

D∑
d=1

1
2l2d

(
xd,i − xd,j

)2}
+ σ 2

n δij . (7)

The combination of kernels to model different signals
in a dataset (that vary over different spatial or temporal
timescales) is common in applications of GPs (Rasmussen
and Williams, 2006; Reggente et al., 2014; Roberts et al.,
2013). Samples drawn from the resultant noisy posterior dis-
tribution are shown in Fig. 1d, in which the GP can now be
seen to not fit the observed training data precisely.

2.2 Gaussian process kernel optimization

In Eq. (7) there are three hyperparameters: the signal vari-
ance (σf ), the length scale (l), and the noise variance (σn).
These hyperparameters are typically unknown but can be es-
timated and optimized based on the particular dataset. Here,
this optimization is performed by using the typical method-
ology of maximizing the log marginal likelihood of the ob-
served data y given the hyperparameters:

logp
(
y|x,σf , l,σn

)
. (8)
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The Python toolkit scikit-learn (Pedregosa et al., 2011) was
used to develop the GP described in this study. For the Reader
unfamiliar with the Python programming language, alter-
native programs for developing Gaussian processes include
Matlab (Rasmussen and Nickisch, 2010) and R (Dancik and
Dorman, 2008; MacDonald et al., 2015).

2.3 Training a Gaussian process model

It is standard practice in the development of data-driven
machine-learning models to divide the available dataset into
training, validation, and testing subsets. The training data are
used to fit model parameters. The validation data are used to
evaluate model performance, and the model hyperparameters
are usually varied until performance on the validation data is
optimized. Once the model is optimized, the remaining test
dataset is used to objectively evaluate its performance and
generalizability. A decision must be made about how to split
a dataset into training, validation, and testing subsets. There
are many different approaches to handle this splitting pro-
cess; for example, random selection, cross validation, strat-
ified sampling, or a number of other deterministic sampling
techniques (Camus et al., 2011). The exact technique used
to generate the data subsets often depends on the problem at
hand. Here, there were two constraints to be considered: first,
the computational expense of GPs scales by O(n3) (Ras-
mussen and Williams, 2006), so it is desirable to keep the
training set as small as possible without deteriorating model
performance; and, secondly, machine-learning models typi-
cally perform poorly with out-of-sample predictions (i.e., ex-
trapolation), so it is desirable to include in the training set the
data samples that capture the full range of variability in the
data. Based on these constraints, we used a maximum dis-
similarity algorithm (MDA) to divide the available data into
training, validation, and testing sets.

The MDA is a deterministic routine that iteratively adds
a data point to the training set based on how dissimilar it
is to the data already included in the training set. Camus et
al. (2011) provide a comprehensive introduction to the MDA
selection routine, and it has been previously used in machine-
learning studies (e.g., Goldstein et al., 2013). Briefly, to ini-
tialize the MDA routine, the data point with the maximum
sum of dissimilarity (defined by Euclidean distance) to all
other data points is selected as the first data point to be added
to the training dataset. Additional data points are included in
the training set through an iterative process whereby the next
data point added is the one with maximum dissimilarity to
those already in the training set – this process continues un-
til a user-defined training set size is reached. In this way the
MDA routine produces a set of training data that captures the
range of variability present in the full dataset. The data not
selected for the training set are equally and randomly split to
form the validation dataset and test dataset. While alternative
data-splitting routines are available, including simple random
sampling, stratified random sampling, self-organizing maps,

and k-means clustering (Camus et al., 2011), the MDA rou-
tine used in this study was found in preliminary testing (not
presented) to produce the best GP performance with the least
computational expense.

3 Development of a Gaussian process runup model

3.1 Runup data

In 2014, an extended-range lidar (light detection and rang-
ing) device (SICK LD-LRS 2110) was permanently installed
on the rooftop of a beachside building (44 m a.m.s.l. – above
mean sea level) at Narrabeen–Collaroy Beach (hereafter re-
ferred to simply as Narrabeen) on the southeast coast of
Australia (Fig. 2). Since 2014, this lidar has continuously
scanned a single cross-shore profile transect extending from
the base of the beachside building to a range of 130 m, captur-
ing the surface of the beach profile and incident wave swash
at a frequency of 5 Hz in both daylight and non-daylight
hours. Specific details of the lidar setup and functioning can
be found in Phillips et al. (2019).

Narrabeen Beach is a 3.6 km long embayed beach bounded
by rocky headlands. It is composed of fine to medium quartz
sand (D50 ≈ 0.3 mm), with a∼ 30 % carbonate fraction. Off-
shore, the coastline has a steep and narrow (20–70 km) con-
tinental shelf (Short and Trenaman, 1992). The region is mi-
crotidal and semidiurnal with a mean spring tidal range of
1.6 m and has a moderate to high energy deep water wave cli-
mate characterized by persistent long-period south-southeast
swell waves that is interrupted by storm events (significant
wave height> 3 m) typically 10–20 times per year (Short
and Trenaman, 1992). In the present study, approximately
1 year of the high-resolution wave runup lidar dataset avail-
able at Narrabeen is used to develop a data-driven parame-
terization of the 2 % exceedance of wave runup (R2). Data
used to develop this parameterization were at hourly resolu-
tion and include R2, the beach slope (β), offshore significant
wave height (Hs), and peak wave period (Tp). These data are
described below and have been commonly used to parame-
terize R2 in other empirical models of wave runup (e.g., Hol-
man, 1986; Hunt, 1959; Stockdon et al., 2006).

Individual wave runup elevation on the beach profile was
extracted on a wave-by-wave basis from the lidar dataset
(Fig. 2c) using a neural network runup detection tool devel-
oped by Simmons et al. (2019). Hourly R2 was calculated as
the 2 % exceedance value for a given hour of wave runup ob-
servations. β was calculated as the linear (best-fit) slope of
the beach profile over which 2 standard deviations of wave
runup values were observed during the hour. Hourly Hs and
Tp data were obtained from the Sydney Waverider buoy, sit-
uated 11 km offshore of Narrabeen in ∼ 80 m water depth.
Narrabeen is an embayed beach, where prominent rocky
headlands both attenuate and refract incident waves. To re-
move these effects in the wave data and to emulate an open
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Figure 2. (a) Narrabeen Beach, located on the southeast coast of Australia. (b) Conceptual figure of the fixed lidar setup. (c) A 5 min extract
of runup elevation extracted from the lidar data; individual runup maxima are marked with red circles.

coastline and generalize the parameterization ofR2 presented
in this study, offshore wave data were first transformed to
a nearshore equivalent (10 m water depth) using a precalcu-
lated lookup table generated with the SWAN spectral wave
model based on a 10 m resolution grid (Booij et al., 1999) and
then reverse shoaled back to deep water wave data. A total of
8328 hourly samples of R2, β, Hs, and Tp were extracted to
develop a parameterization of R2 in this study. Histograms of
these data are shown in Fig. 3.

3.2 Training data for the GP runup predictor

To determine the optimum training set size, kernel, and
model hyperparameters, a number of different user-defined
training set sizes were trialled using the MDA selection rou-
tine discussed in Sect. 2.3. The GP was trained using dif-
ferent amounts of data and hyperparameters were optimized
on the validation dataset only. It was found that a training
set size of only 5 % of the available dataset (training dataset:
416 of 8328 available samples; validation dataset: 3956 sam-
ples; testing dataset: 3956 samples) was required to develop
an optimum GP model. Training data sizes beyond this value
produced negligible changes in GP performance but consid-
erable increases in computational demand, similar to findings
of previous work (Goldstein and Coco, 2014; Tinoco et al.,
2015). Results presented below discuss the performance of

Figure 3. Histograms of the 8328 data samples extracted from the
Narrabeen lidar: (a) significant wave height (Hs); (b) peak wave
period (Tp); (c) beach slope (β); and (d) 2 % wave runup eleva-
tion (R2).
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Figure 4. Observed 2 % wave runup (R2) versus the R2 pre-
dicted by the Gaussian process model. The root-mean-squared er-
ror (RMSE) is 0.36 m, bias (B) is 0.02 m, and squared correla-
tion (r2) is 0.54.

the GP on the testing dataset which was not used in GP train-
ing or validation.

3.3 Runup predictor results

Results of the GP R2 predictor on the 3956 test samples are
shown in Fig. 4. This figure plots the mean GP predictions
against corresponding observations of R2. The mean GP pre-
diction performs well on the test data, with a root-mean-
squared error (RMSE) of 0.18 m and bias (B) of 0.02 m.
For comparison, the commonly used R2 parameterization of
Stockdon et al. (2006) tested on the same data has a RMSE
of 0.36 m and B of 0.21 m. Despite the relatively accurate
performance of the GP on this dataset, there remains signif-
icant scatter in the observed versus predicted R2 in Fig. 4.
This is consistent with recent work by Atkinson et al. (2017)
showing that commonly used predictors of R2 always result
in scatter.

As discussed in Sect. 1 scatter in runup predictions is
likely a result of unresolved processes in the model such as
wave dispersion, wave spectrum, nearshore morphology, or
a range of other possible processes. Regardless of the ori-
gin, here this scatter (uncertainty) is used to form ensemble
predictions. The GP developed here not only gives a mean
prediction as used in Fig. 4, but it specifies a multivariate
Gaussian distribution from which different random functions
that describe the data can be sampled. Random samples of
wave runup from the GP can capture uncertainty around the
mean runup prediction (as was demonstrated in the hypothet-
ical example in Fig. 1d). To assess how well the GP model
captures uncertainty, random samples are successively drawn
from the GP, and the number of R2 measurements captured
with each new draw are determined. Only 10 random sam-
ples drawn from the GP are required to capture 95 % of the

Figure 5. (a) Percent of observed runup values captured within
the range of ensemble predictions made by randomly sampling dif-
ferent runup values from the Gaussian process. Only 10 randomly
drawn models can form an ensemble that captures 95 % of the scat-
ter in observed R2 values. (b) An experiment showing how much
arbitrary error would need to be added to the mean GP runup pre-
diction in order to capture scatter in R2 observations. The mean
GP prediction would have to vary by 51 % in order to capture 95 %
of scatter in R2 observations.

scatter in R2 (Fig. 5a). This process of drawing random sam-
ples from the GP was repeated 100 times with results show-
ing that the above is true for any 10 random samples, with
an average capture percentage of 95.7 % and range of 94.9 %
to 96.1 % for 10 samples across the 100 trials. As a point
of contrast, Fig. 5b shows how much arbitrary error would
need to be added to the mean R2 prediction to capture scat-
ter about the mean to emulate the uncertainty captured by
the GP. It can be seen that the mean R2 prediction would
need to vary by ±51 % to capture 95 % of the scatter present
in the runup data. This demonstrates how random models of
runup drawn from the GP effectively capture uncertainty in
R2 predictions. These randomly drawn R2 models can be
used within a larger dune-impact model to produce an en-
semble of dune erosion predictions that includes uncertainty
in runup predictions, as demonstrated in Sect. 4.

4 Application of a Gaussian process runup predictor in
a coastal dune erosion model

4.1 Dune erosion model

We use the dune erosion model of Larson et al. (2004) as an
example of how the GP runup predictor can be used to create
an ensemble of dune erosion predictions, and we thus pro-
vide probabilistic outcomes with uncertainty bands needed
in coastal management. The dune erosion model is subse-
quently referred to as LEH04 and is defined as follows:

dV= 4Cs(R2− zb)
2
(
t

T

)
, (9)

where dV (m3 m−1) is the volumetric dune erosion per unit
width alongshore for a given time step t , zb (m) is the time-
varying dune toe elevation, T (s) is the wave period for that
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time step, R2 (m) is the 2 % runup exceedance for that time
step, and Cs is the transport coefficient. Note that the original
equation used a best-fit relationship to define the runup term,
R (see Eq. 36 in Larson et al., 2004), rather than R2. Subse-
quent modifications of the LEH04 model have been made to
adjust the collision frequency (i.e. the t/T term; e.g., Palm-
sten and Holman, 2012, and Splinter and Palmsten, 2012);
however, we retain the model presented in Eq. (9) for the
purpose of providing a simple illustrative example. At each
time step, dune volume is eroded in bulk, and the dune toe
is adjusted along a predefined slope (defined here as the lin-
ear slope between the pre- and post-storm dune toe) so that
erosion causes the dune toe to increase in elevation and re-
cede landward. Dune erosion and dune toe recession only
occurs when wave runup (R2) exceeds the dune toe (i.e.,
R2−zb > 0) and cannot progress vertically beyond the max-
imum runup elevation. When R2 does not exceed zb, dV= 0.
The GP R2 predictor described in Sect. 3 is used to stochasti-
cally parameterize wave runup in the LEH04 model and form
ensembles of dune erosion predictions. The model is applied
to new data not used to train the GP R2 predictor, using de-
tailed observations of dune erosion caused by a large coastal
storm event at Narrabeen Beach, southeast Australia in 2011.

4.2 June 2011 storm data

In June 2011 a large coastal storm event impacted the south-
east coast of Australia. This event resulted in variable along-
shore dune erosion at Narrabeen Beach, which was pre-
cisely captured by airborne lidar immediately pre-, during,
and post-storm by five surveys conducted approximately 24 h
apart. Cross-shore profiles were extracted from the lidar data
at 10 m alongshore intervals as described in detail in Splin-
ter et al. (2018), resulting in 351 individual profiles (Fig. 6).
The June 2011 storm lasted 120 h. Hourly wave data were
recorded by the Sydney Waverider buoy located in ∼ 80 m
water depth directly to the southeast of Narrabeen Beach.
As with the hourly wave data used to develop the GP model
of R2 (Sect. 3.1), hourly wave data for each of the 351 pro-
files for the June 2011 storm were obtained by first trans-
forming offshore wave data to the nearshore equivalent at
10 m water depth directly offshore of each profile using the
SWAN spectral wave model (Booij et al., 1999) and then
reverse shoaling back to equivalent deep water wave data,
to account for the effects of wave refraction and attenuation
caused by the distinctly curved Narrabeen embayment. The
tidal range during the storm event was measured in situ at
the Fort Denison tide gauge (located within Sydney Harbour
approximately 16 km south of Narrabeen) as 1.58 m (mean
spring tidal range at Narrabeen is 1.6 m). As can be seen in
Fig. 6 the wave conditions for the June 2011 storm lie within
the range of the training dataset used to develop the GP runup
predictor. The hydrodynamic time series and airborne lidar
observations of dune change are used to demonstrate how the
LEH04 model can be used with the GP predictor of runup to

Figure 6. June 2011 storm data. (a) Offshore Hs and Tp with ver-
tical dashed lines indicating the time of the lidar surveys, (b) mea-
sured (pre- vs. post-storm) dune erosion volumes for the 351 profile
transects extracted from lidar data, and (c) example pre- (blue) and
post-storm (red) profile cross sections showing dune toes (coloured
circles) and dune erosion volume (grey shading).

generate stochastic parameterizations and create probabilis-
tic model ensembles (Eq. 9).

For each of the 351 available profiles, the pre-, during,
and post-storm dune toe positions were defined as the lo-
cal maxima of curvature of the beach profile following the
method of Stockdon et al. (2007). Dune erosion at each pro-
file was then defined as the difference in subaerial beach vol-
ume landward of the pre-storm dune toe, as shown in Fig. 6c.
Of the 351 profiles, only 117 had storm-driven dune ero-
sion (Fig. 6b). For the example demonstration presented here,
only profiles for which the post-storm dune toe elevation was
at the same or higher elevation than the pre-storm dune toe
are considered, which is a basic assumption of the LEH04
model. Of the 117 profiles with storm erosion, 40 profiles
met these criteria. For each of these profiles, the linear slope
between the pre- and post-storm dune toe was used to project
the dune erosion calculated using the LEH04 model.

The LEH04 dune erosion model (Eq. 9) has a single tune-
able parameter, the transport coefficient Cs. There is ambi-
guity in the literature regarding the value of Cs. Larson et
al. (2004) developed an empirical equation to relate Cs to
wave height (Hrms) and grain size (D50) using experimen-
tal data. Values ranged from 1× 10−5 to 1× 10−1, and Lar-
son et al. (2004) used 1.7× 10−4 based on field data from
Birkemeier et al. (1988). Palmsten and Holman (2012) used
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LEH04 to model dune erosion observed in a large wave
tank experiment conducted at the O. H. Hinsdale Wave Re-
search Laboratory at Oregon State University. The model
was shown to accurately reproduce dune erosion when ap-
plied in hourly time steps using a Cs of 1.34× 10−3, based
on the empirical equation determined by Larson et al. (2004).
Mull and Ruggiero (2014) used values of 1.7× 10−4 and
1.34× 10−3 as lower and upper bounds of Cs to model dune
erosion caused by a large storm event on the Pacific North-
west Coast of the USA and the laboratory experiment used
by Palmsten and Holman (2012). For the dune erosion exper-
iment, the value of 1.7×10−4 was found to predict dune ero-
sion volumes closest to the observed erosion when applied
in a single time step, with an optimum value of 2.98× 10−4.
Splinter and Palmsten (2012) found a best-fit Cs of 4× 10−5

in an application to modelling dune erosion caused by a
large storm event that occurred on the Gold Coast, Australia.
Ranasinghe et al. (2012) found a Cs value of 1.5× 10−3 in
an application at Narrabeen Beach, Australia. It is noted that
Cs values in these studies are influenced by the time step
used in the model and the exact definition of wave runup, R,
used (Larson et al., 2004; Mull and Ruggiero, 2014; Palmsten
and Holman, 2012; Splinter and Palmsten, 2012). In practice,
Cs could be optimized to fit any particular dataset. However,
for predictive applications the optimum Cs value may not be
known in advance, since it is unclear if subsequent storms at
a given location will be well predicted using previously op-
timized Cs values. A key goal of this work is to determine
if using stochastic parameterizations to generate ensembles
that predict a range of dune erosion (based on uncertainty in
the runup parameterization) can still capture observed dune
erosion even if the optimum Cs value is not known in ad-
vance. As such, a Cs value of 1.5×10−3 is used in this exam-
ple application based on previous work at Narrabeen Beach
by Ranasinghe et al. (2012). Sensitivity of model results to
the choice of Cs is further discussed in Sect. 4.3.

An example at a single profile (profile 141, located approx-
imately half-way up the Narrabeen embayment as shown in
Fig. 6b) of time-varying ensemble dune erosion predictions
is provided in Fig. 7. It was previously shown in Fig. 5 that
only 10 random samples drawn from the GP R2 predictor
were required to capture 95 % of the scatter in the R2 data
used to develop and test the GP. However, it is trivial to
draw many more samples than this from the GP – for ex-
ample, drawing 10 000 samples takes less than 1 s on a stan-
dard desktop computer. Therefore, to explore a large range
of possible runup scenarios during the 120 h storm event,
10 000 different runup time series are drawn from the GP
and used to run LEH04 at hourly intervals, thus producing
10 000 model results of dune erosion. The effect of using
different ensemble sizes is explored in Sect. 4.3. Figure 7a
shows the time-varying distribution of the runup models
(blue) used to force LEH04 along with the time-varying pre-
diction distribution of dune toe elevations (grey) throughout
the 120 h storm event. To interpret model output probabilis-

tically, the mean of the ensemble is plotted, along with inter-
vals capturing 66 %, 90 %, and 99 % of the ensemble output.
These intervals are consistent with those used in IPCC for
climate change predictions (Mastrandrea et al., 2010), and,
in the context of the model results presented here, they repre-
sent varying levels of confidence in the model output. For ex-
ample, there is high confidence that the real dune erosion will
fall within the 66 % ensemble prediction range. Figure 7b
shows the time-varying predicted distribution of dune ero-
sion volumes from the 10 000 LEH04 runs. It can be seen
that while the mean value of the ensemble predictions de-
viates slightly from the observed dune erosion, the observed
erosion is still captured well within the 66 % envelope of pre-
dictions.

Pre- and post-storm dune erosion results for the 40 profiles
using 10 000 ensemble members and Cs of 1.5× 10−3 are
shown in Fig. 8. The squared correlation (r2) for the observed
and predicted dune erosion volumes is 0.85. Many of the pro-
files experienced only minor dune erosion (< 2.5 m3 m−1)
and can be seen to be well predicted by the mean of the en-
semble predictions. In contrast, the ensemble mean can be
seen to under-predict dune erosion at profiles where high ero-
sion volumes were observed (profiles 29–34 in Fig. 8), with
some profiles not even captured by the uncertainty of the en-
semble. However, the ensemble range of predictions for these
particular profiles also has a large spread, indicative of high
uncertainty in predictions and the potential for high erosion
to occur. It should be noted that the results presented in Fig. 8
are based on an assumed (i.e., non-optimized) Cs value of
1.5× 10−3. Better prediction of large erosion events could
potentially be achieved by increasing Cs or giving greater
weighting to these events during calibration, but at the cost of
over-predicting the smaller events. The exact effect of vary-
ing Cs is quantified in Sect. 4.3. Importantly, Fig. 8 demon-
strates that, even with a non-optimized Cs, uncertainty in the
GP predictions can provide useful information about the po-
tential for dune erosion, even if the mean dune erosion pre-
diction deviates from the observation – a key advantage of
the GP approach over a deterministic approach.

4.3 The effect of Cs and ensemble size on dune erosion

In Sect. 4.2, the application of the GP runup predictor within
the LEH04 model to produce an ensemble of dune erosion
predictions was based on 10 000 ensemble members and a
Cs value of 1.5×10−3. The sensitivity of results to the num-
ber of members in the ensemble and the value of the tunable
parameter Cs in Eq. (9) is presented in Fig. 9. The mean ab-
solute error (MAE) between the mean ensemble dune erosion
predictions and the observed dune erosion, averaged across
all 40 profiles, varies for R2 ensembles of 5, 10, 20, 100,
1000, and 10 000 members and Cs values ranging from 10−5

to 10−1 (Fig. 9). As can be seen in Fig. 9a and summarized
in Table 1, the lowest MAE for the differing ensemble sizes
is similar, ranging from 1.50 to 1.64 m3 m−1, suggesting that
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Figure 7. Example of LEH04 used with the Gaussian process R2 predictor to form an ensemble of dune erosion predictions. A total of
10 000 runup models are drawn from the Gaussian process and used to force the LEH04 model. (a) Total water level (measured water
level+R2; blue) and dune toe elevation (grey) for the 120 h storm event. The bold coloured line is the mean of the ensemble, and shaded
areas represent the regions captured by 66 %, 90 %, and 99 % of the ensemble predictions. An example of just the R2 prediction (no measured
water level) from the Gaussian process is shown in the magenta line. Pink dots denote the observed dune toe elevation throughout the storm
event. (b) The corresponding ensemble of dune erosion predictions.

Figure 8. Observed (pink dots) and predicted (black dots) dune ero-
sion volumes for the 40 modelled profiles, using 10 000 runup mod-
els drawn from the Gaussian process and used to force the LEH04
model. Note that the 40 profiles shown are not uniformly spaced
along the 3.5 km Narrabeen embayment. The black dots represent
the ensemble mean prediction for each profile, while the shaded ar-
eas represent the regions captured by 66 %, 90 %, and 99 % of the
ensemble predictions.

the number of ensemble members does not have a significant
impact on the resultant mean prediction. The lowest MAE
for the different ensemble sizes corresponds to Cs values be-
tween 2.8×10−3 (10 000 ensemble members) and 4.1×10−3

(5 ensemble members), which is reasonably consistent with

the value of 1.5× 10−3 previously reported by Ranasinghe
et al. (2012) for Narrabeen Beach and within the range of
Cs values presented in Larson et al. (2004).

The key utility to using a data-driven GP predictor to pro-
duce ensembles is that a range of predictions at every lo-
cation is provided as opposed to a single erosion volume.
The ensemble range provides an indication of uncertainty in
predictions, which can be highly useful for coastal engineers
and managers taking a risk-based approach to coastal hazard
management. Figure 9b–d displays the percentage of dune
erosion observations from the 40 profiles captured within en-
semble predictions for Cs values ranging from 10−5 to 10−1.
It can be seen that a high proportion of dune erosion obser-
vations are captured within the 66 %, 90 %, and 99 % ensem-
ble envelope across several orders of magnitude Cs. While
the main purpose of using ensemble runup predictions within
LEH04 is to incorporate uncertainty in the runup prediction,
this result demonstrates that the ensemble approach is less
sensitive to the choice of Cs than a deterministic model and
so can be useful for forecasting with non-optimized model
parameters.

Results in Fig. 9 and Table 1 demonstrate that there is rela-
tively little difference in model performance when more than
10 to 100 ensemble members are used, which is consistent
with results presented previously in Fig. 5 that showed that
only 10 random samples drawn from the GP R2 predictor
were required to capture 95 % of the scatter in the R2 data
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Figure 9. Results of the stochastic parameterization methodology
for R2 ensembles of 5, 10, 20, 100, 1000, and 10 000 members and
Cs values ranging from 10−5 to 10−1. (a) The mean absolute er-
ror (MAE) between the median ensemble dune erosion predictions
and the observed dune erosion averaged across all 40 profiles. (b–
d) show the percentage of dune erosion observations that fall within
the 99 %, 90 %, and 66 % ensemble prediction ranges respectively.

used to develop and test the GP. This suggests that the GP
approach efficiently captures scatter (uncertainty) in runup
predictions and subsequently dune erosion predictions, re-
quiring on the order of 10 samples, which is significantly less
than the 103–106 runs typically used in Monte Carlo simula-
tions to develop probabilistic predictions (e.g., Callaghan et
al., 2008; Li et al., 2013; Ranasinghe et al., 2012).

5 Discussion

5.1 Runup predictors

Studies of commonly used deterministic runup parameteriza-
tions such as those proposed by Hunt (1959), Holman (1986),
and Stockdon et al. (2006), amongst others, show that these
parameterizations are not universally applicable and there
remains no perfect predictor of wave runup on beaches
(Atkinson et al., 2017; Passarella et al., 2018a; Power et al.,
2019). This suggests that the available parameterizations do
not fully capture all the relevant processes controlling wave
runup on beaches (Power et al., 2019). Recent work has
used ensemble and data-driven methods to account for unre-
solved factors and complexity in runup processes. For exam-
ple, Atkinson et al. (2017) developed a model of models by
fitting a least-squares line to the predictions of several runup
parameterizations. Power et al. (2019) used a data-driven, de-
terministic, gene-expression programming model to predict
wave runup against a large dataset of runup observations.
Both of these approaches led to improved predictions, when
compared to conventional runup parameterizations, of wave
runup on the datasets tested in these studies.

The work presented in this study used a data-driven Gaus-
sian process (GP) approach to develop a probabilistic runup
predictor. While the mean predictions from the GP predic-
tor developed in this study using high-resolution lidar data
of wave runup were accurate (RMSE= 0.18 m) and better
than those provided by the Stockdon et al. (2006) formula
tested on the same data (RMSE= 0.36 m), the key advan-
tage of the GP approach over deterministic approaches is
that probabilistic predictions are output that is specifically
derived from data and implicitly accounts for unresolved pro-
cesses and uncertainty in runup predictions. Previous work
has similarly used GPs for efficiently and accurately quan-
tifying uncertainty in other environmental applications (e.g.,
Holman et al., 2014; Kupilik et al., 2018; Reggente et al.,
2014). While alternative approaches are available for gener-
ating probabilistic predictions, such as Monte Carlo simula-
tions (e.g., Callaghan et al., 2013), the GP approach offers a
method of deriving uncertainty explicitly from data, requires
no deterministic equations, and is computationally efficient
(i.e., as discussed in Sect. 4.3, drawing 10 000 samples of
120 h runup time series on a standard desktop computer took
less than 1 s). However, as discussed in Sect. 2.3, when devel-
oping a GP, or any machine-learning model, the training data
should include the full range of possible variability in the
data to be modelled in order to avoid extrapolation. A limita-
tion of using this data-driven approach for runup prediction
is that it can be difficult to acquire a training dataset that cap-
tures all possible variability in the system from, for example,
longer-term trends in the wave climate, extreme events, or a
potentially changing wave climate in the future (Semedo et
al., 2012).
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Table 1. Quantitative summary of Fig. 9, showing the optimumCs value for differing ensemble sizes, along with the associated mean absolute
error (MAE) and percent of the 40 dune erosion observations captured by the 66 %, 90 %, and 99 % ensemble prediction range.

Ensemble Optimum MAE r2 Percent Percent Percent
members Cs (m3 m−1) captured captured captured

in the 66 % in the 90 % in the 99 %
ensemble ensemble ensemble
range (%) range (%) range (%)

5 4.1× 10−3 1.59 0.86 45 57 65
10 3.4× 10−3 1.50 0.87 55 75 78
20 3.4× 10−3 1.54 0.86 62 78 88
100 3.3× 10−3 1.61 0.86 68 88 100
1000 2.8× 10−3 1.64 0.86 65 88 100
10 000 2.8× 10−3 1.64 0.86 65 88 100

5.2 Including uncertainty in dune erosion models

Uncertainty in wave runup predictions within dune-impact
models can result in significantly varied predictions of dune
erosion. For example, the model of Larson et al. (2004) used
in this study only predicts dune erosion if runup elevation
exceeds the dune toe elevation and predicts a non-linear re-
lationship between runup that exceeds the dune toe and re-
sultant dune erosion. Hence, if wave runup predictions are
biased too low then no dune erosion will be predicted, and
if wave runup is predicted too high then dune erosion may
be significantly over predicted. Ensemble modelling has be-
come standard practice in many areas of weather and cli-
mate modelling (Bauer et al., 2015), as well as hydrologi-
cal modelling (Cloke and Pappenberger, 2009), and more re-
cently has been applied to coastal problems such as the pre-
diction of cliff retreat (Limber et al., 2018) as a method of
handling prediction uncertainty. While using a single deter-
ministic model is computationally simple and provides one
solution for a given set of input conditions, model ensembles
provide a range of predictions that can better capture the vari-
ety of mechanisms and stochasticity within a coastal system.
The result is typically improved skill over deterministic mod-
els (Atkinson et al., 2017; Limber et al., 2018) and a natural
method of providing uncertainty with predictions.

As a quantitative comparison, Splinter et al. (2018) ap-
plied a modified version of the LEH04 model to the same
June 2011 storm dataset used in the work presented here with
a modified expression for the collision frequency (i.e. the
t/T term in Eq. 9) based on work by Palmsten and Hol-
man (2012). The parameterization of Stockdon et al. (2006)
was used to estimate R2 in the model. The model was forced
hourly over the course of the storm, updating the dune toe,
recession slope, and profiles based on each daily lidar sur-
vey. Based on only the 40 profiles used in the present study,
results from Splinter et al. (2018) showed that the deter-
ministic LEH04 approach reproduced 68 % (r2

= 0.68) of
the observed variability in dune erosion. As shown in Ta-

ble 1, the simple LEH04 model (Eq. 9) applied here using the
GP runup predictor to generate ensemble prediction repro-
duced∼ 85 % (based on the ensemble mean) of the observed
variability in dune erosion for the 40 profiles. While there
are some discrepancies in the two modelling approaches, the
ensemble approach clearly has an appreciable increase in
skill over the deterministic approach – attributed here to us-
ing a runup predictor trained on local runup data – and the
ensemble modelling approach. However, a major advantage
of the ensemble approach over the deterministic approach is
the provision of prediction uncertainty (e.g., Fig. 8). While
the mean ensemble prediction is not 100 % accurate, Table 1
shows that using just 100 samples can capture all the ob-
served variability in dune erosion within the ensemble out-
put.

The GP approach is a novel approach to building model
ensembles to capture uncertainty. Previous work modelling
beach and dune erosion has successfully used Monte Carlo
methods, which randomly vary model inputs within many
thousands of model iterations, to produce ensembles and
probabilistic erosion predictions (e.g., Callaghan et al., 2008;
Li et al., 2013; Ranasinghe et al., 2012). As discussed ear-
lier in Sect. 4.3, the GP approach differs from Monte Carlo
in that it explicitly quantifies uncertainty directly from data,
does not use deterministic equations, and can be computa-
tionally efficient.

6 Conclusion

For coastal managers, the accurate prediction of wave runup
as well as dune erosion is critical for characterizing the vul-
nerability of coastlines to wave-induced flooding, erosion of
dune systems, and wave impacts on adjacent coastal infras-
tructure. While many formulations for wave runup have been
proposed over the years, none have proven to accurately pre-
dict runup over a wide range of conditions and sites of in-
terest. In this contribution, a Gaussian process (GP) with
over 8000 high-resolution lidar-derived wave runup obser-
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vations was used to develop a probabilistic parameterization
of wave runup that quantifies uncertainty in runup predic-
tions. The mean GP prediction performed well on unseen
data, with a RMSE of 0.18 m, which is a significant improve-
ment over the commonly used R2 parameterization of Stock-
don et al. (2006) (RMSE of 0.36 m) used on the same data.
Further, only 10 randomly drawn models from the probabilis-
tic GP distribution were needed to form an ensemble that
captured 95 % of the scatter in the test data.

Coastal dune-impact models offer a method of predicting
dune erosion deterministically. As an example application of
how the GP runup predictor can be used in geomorphic sys-
tems, the uncertainty in the runup parameterization was prop-
agated through a deterministic dune erosion model to gener-
ate ensemble model predictions and provide prediction un-
certainty. The hybrid dune erosion model performed well on
the test data, with a squared correlation (r2) between the ob-
served and predicted dune erosion volumes of 0.85. Impor-
tantly, the probabilistic output provided uncertainty bands of
the expected erosion volumes, which is a key advantage over
deterministic approaches. Compared to traditional methods
of producing probabilistic predictions such as Monte Carlo,
the GP approach has the advantage of learning uncertainty di-
rectly from observed data, it requires no deterministic equa-
tions, and is computationally efficient.

This work is an example of how a machine-learning model
such as a GP can profitably be integrated into coastal mor-
phodynamic models (Goldstein and Coco, 2015) to provide
probabilistic predictions for nonlinear, multidimensional
processes, and drive ensemble forecasts. Approaches com-
bining machine-learning methods with traditional coastal
science and management models present a promising area
for furthering coastal morphodynamic research. Future work
is focused on using more data and additional inputs, such as
offshore bar morphology and wave spectra, to improve the
GP runup predictor developed here, testing it at different lo-
cations and integrating it into a real-time coastal erosion fore-
casting system.

Code and data availability. The data and code used to develop the
Gaussian process runup predictor in this paper are publicly available
at https://doi.org/10.5281/zenodo.3401739 (Beuzen and Goldstein,
2019).

Author contributions. The order of the authors’ names reflects the
size of their contribution to the writing of this paper.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue “Ad-
vances in computational modelling of natural hazards and geohaz-
ards”.

Acknowledgements. Wave and tide data were kindly provided by
the Manly Hydraulics Laboratory under the NSW Coastal Data Net-
work Program managed by OEH. The lead author is funded under
the Australian Postgraduate Research Training Program.

Financial support. This research has been supported by the Aus-
tralian Research Council (grant nos. LP04555157, LP100200348,
and DP150101339), the NSW Environmental Trust Environmental
Research Program (grant no. RD 2015/0128), and the DOD DARPA
(grant no. R0011836623/HR001118200064).

Review statement. This paper was edited by Randall LeVeque and
reviewed by two anonymous referees.

References

Atkinson, A. L., Power, H. E., Moura, T., Hammond, T., Callaghan,
D. P., and Baldock, T. E.: Assessment of runup predictions by
empirical models on non-truncated beaches on the south-east
Australian coast, Coast. Eng., 119, 15–31, 2017.

Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of nu-
merical weather prediction, Nature, 525, 47–55, 2015.

Berner, J., Achatz, U., Batté, L., Bengtsson, L., Cámara, A. D. L.,
Christensen, H. M., Colangeli, M., Coleman, D. R., Crommelin,
D., Dolaptchiev, S. I., and Franzke, C. L.: Stochastic parameter-
ization: Toward a new view of weather and climate models, B.
Am. Meteorol. Soc., 98, 565–588, 2017.

Beuzen, T. and Goldstein, E. B.: Tomas-
Beuzen/BeuzenEtAl_2019_NHESS_GP_runup_model:
First release of repo (Version 0.1), Zenodo,
https://doi.org/10.5281/zenodo.3401739, 2019.

Beuzen, T., Splinter, K. D., Turner, I. L., Harley, M. D., and
Marshall, L.: Predicting storm erosion on sandy coastlines
using a Bayesian network, in: Proceedings of Australasian
Coasts & Ports: Working with Nature, 21–23 June 2017, Cairns,
Australia, 102–108, 2017.

Beuzen, T., Splinter, K., Marshall, L., Turner, I., Harley, M., and
Palmsten, M.: Bayesian Networks in coastal engineering: Dis-
tinguishing descriptive and predictive applications, Coast. Eng.,
135, 16–30, 2018.

Birkemeier, W. A., Savage, R. J., and Leffler, M. W.: A collection
of storm erosion field data, Coastal Engineering Research Center,
Vicksburg, MS, 1988.

Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-
generation wave model for coastal regions: 1. Model descrip-
tion and validation, J. Geophys. Res.-Oceans, 104, 7649–7666,
https://doi.org/10.1029/98jc02622, 1999.

Buchanan, M.: Ignorance as strength, Nat. Phys., 14, 428,
https://doi.org/10.1038/s41567-018-0133-9, 2018.

Callaghan, D. P., Nielsen, P., Short, A., and Ranas-
inghe, R.: Statistical simulation of wave climate and

www.nat-hazards-earth-syst-sci.net/19/2295/2019/ Nat. Hazards Earth Syst. Sci., 19, 2295–2309, 2019

https://doi.org/10.5281/zenodo.3401739
https://doi.org/10.5281/zenodo.3401739
https://doi.org/10.1029/98jc02622
https://doi.org/10.1038/s41567-018-0133-9


2308 T. Beuzen et al.: Ensemble models from machine learning: an example of wave runup

extreme beach erosion, Coast. Eng., 55, 375–390,
https://doi.org/10.1016/j.coastaleng.2007.12.003, 2008.

Callaghan, D. P., Ranasinghe, R., and Roelvink, D.: Probabilistic
estimation of storm erosion using analytical, semi-empirical, and
process based storm erosion models, Coast. Eng., 82, 64–75,
2013.

Camus, P., Mendez, F. J., Medina, R., and Cofiño, A. S.: Analysis of
clustering and selection algorithms for the study of multivariate
wave climate, Coast. Eng., 58, 453–462, 2011.

Cloke, H. and Pappenberger, F.: Ensemble flood forecasting: A re-
view, J. Hydrol., 375, 613–626, 2009.

Cohn, N. and Ruggiero, P.: The influence of seasonal to interan-
nual nearshore profile variability on extreme water levels: Mod-
eling wave runup on dissipative beaches, Coast. Eng., 115, 79–
92, 2006.

Dancik, G. M. and Dorman, K. S.: mlegp: statistical analysis for
computer models of biological systems using R, Bioinformatics,
24, 1966–1967, 2008.

den Heijer, C., Knipping, D. T. J. A., Plant, N. G., van Thiel
de Vries, J. S. M., Baart, F., and van Gelder, P. H. A. J. M.:
Impact Assessment of Extreme Storm Events Using a Bayesian
Network, Paper presented at the Coastal Engineering (No. 33),
Santander, Spain, 2012.

Erikson, L. H., Larson, M., and Hanson, H.: Laboratory investiga-
tion of beach scarp and dune recession due to notching and sub-
sequent failure, Mar. Geol., 245, 1–19, 2007.

García-Medina, G., Özkan-Haller, H. T., Holman, R. A., and Rug-
giero, P.: Large runup controls on a gently sloping dissipative
beach, J. Geophys. Res.-Oceans, 122, 5998–6010, 2017.

Goldstein, E. B. and Coco, G.: A machine learning approach for
the prediction of settling velocity, Water Resour. Res., 50, 3595–
3601, 2014.

Goldstein, E. B. and Coco, G.: Machine learning components in
deterministic models: hybrid synergy in the age of data, Front.
Environ. Sci., 33, 1–4, 2015.

Goldstein, E. B. and Moore, L. J.: Stability and bistability in a one-
dimensional model of coastal foredune height, J. Geophys. Res.-
Earth Surf., 121, 964–977, 2016.

Goldstein, E. B., Coco, G., and Murray, A. B.: Prediction of wave
ripple characteristics using genetic programming, Cont. Shelf
Res., 71, 1–15, 2013.

Goldstein, E. B., Coco, G., and Plant, N. G.: A Review of
Machine Learning Applications to Coastal Sediment Trans-
port and Morphodynamics, Earth Sci. Rev., 194, 97–108,
https://doi.org/10.1016/j.earscirev.2019.04.022, 2019.

Guedes, R., Bryan, K. R., and Coco, G.: Observations of wave
energy fluxes and swash motions on a low-sloping, dissipative
beach, J. Geophys. Res.-Oceans, 118, 3651–3669, 2013.

Guza, R. and Feddersen, F.: Effect of wave frequency and direc-
tional spread on shoreline runup, Geophys. Res. Lett., 39, 1–5,
https://doi.org/10.1029/2012GL051959, 2012.

Holman, D., Sridharan, M., Gowda, P., Porter, D., Marek, T., How-
ell, T., and Moorhead, J.: Gaussian process models for reference
ET estimation from alternative meteorological data sources, J.
Hydrol., 517, 28–35, 2014.

Holman, R.: Extreme value statistics for wave run-up on a natural
beach, Coast. Eng., 9, 527–544, 1986.

Hunt, I. A.: Design of sea-walls and breakwaters, T. Am. Soc. Civ.
Eng., 126, 542–570, 1959.

Krasnopolsky, V. M. and Fox-Rabinovitz, M. S.: Complex hybrid
models combining deterministic and machine learning compo-
nents for numerical climate modeling and weather prediction,
Neural Networks, 19, 122–134, 2006.

Kupilik, M., Witmer, F. D., MacLeod, E.-A., Wang, C., and Ravens,
T.: Gaussian Process Regression for Arctic Coastal Erosion Fore-
casting, IEEE T. Geosci. Remote, 99, 1–9, 2018.

Larson, M., Erikson, L., and Hanson, H.: An analytical model to
predict dune erosion due to wave impact, Coast. Eng., 51, 675–
696, 2004.

Li, F., Van Gelder, P., Callaghan, D., Jongejan, R., Heijer, C. D.,
and Ranasinghe, R.: Probabilistic modeling of wave climate and
predicting dune erosion, J. Coast. Res., 65, 760–765, 2013.

Limber, P. W., Barnard, P. L., Vitousek, S., and Erikson, L. H.: A
model ensemble for projecting multidecadal coastal cliff retreat
during the 21st century, J. Geophys. Res.-Ea. Surf., 123, 1566–
1589, 2018.

MacDonald, B., Ranjan, P., and Chipman, H.: GPfit: An R package
for fitting a Gaussian process model to deterministic simulator
outputs, J. Stat. Softw., 64, 1–23, 2015.

Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O.,
Ebi, K. L., Frame, D. J., Held, H., Kriegler, E., Mach, K.
J., Matschoss, P. R., and Plattner, G. K.: Guidance note for
lead authors of the IPCC fifth assessment report on consistent
treatment of uncertainties, Intergovernmental Panel on Climate
Change (IPCC), 2010.

Mull, J. and Ruggiero, P.: Estimating storm-induced dune erosion
and overtopping along US West Coast beaches, J. Coast. Res.,
30, 1173–1187, 2014.

Overbeck, J. R., Long, J. W., and Stockdon, H. F.: Testing model pa-
rameters for wave-induced dune erosion using observations from
Hurricane Sandy, Geophys. Res. Lett., 44, 937–945, 2017.

Palmsten, M. L. and Holman, R. A.: Laboratory investigation of
dune erosion using stereo video, Coast. Eng., 60, 123–135, 2012.

Palmsten, M. L., Splinter, K. D., Plant, N. G., and Stockdon, H.
F.: Probabilistic estimation of dune retreat on the Gold Coast,
Australia, Shore Beach, 82, 35–43, 2014.

Parker, K., Ruggiero, P., Serafin, K. A., and Hill, D. F.: Emulation
as an approach for rapid estuarine modeling, Coast. Eng., 150,
79–93, 2019.

Passarella, M., De Muro, S., Ruju, A., and Coco, G.: An assessment
of swash excursion predictors using field observations, J. Coast.
Res., 85, 1036–1040, 2018a.

Passarella, M., Goldstein, E. B., De Muro, S., and Coco, G.: The use
of genetic programming to develop a predictor of swash excur-
sion on sandy beaches, Nat. Hazards Earth Syst. Sci., 18, 599–
611, https://doi.org/10.5194/nhess-18-599-2018, 2018b.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
and Vanderplas, J.: Scikit-learn: Machine learning in Python, J.
Mach. Learn. Res., 12, 2825–2830, 2011.

Phillips, M. S., Blenkinsopp, C. E., Splinter, K. D., Harley, M. D.,
and Turner, I. L.: Modes of berm and beachface recovery follow-
ing storm reset: observations using a continuously scanning lidar,
J. Geophys. Res.-Ea. Surf., 124, 720–736, 2019.

Plant, N. G. and Stockdon, H. F.: Probabilistic prediction of barrier-
island response to hurricanes, J. Geophys. Res.-Ea. Sur., 117,
F03015, https://doi.org/10.1029/2011jf002326, 2012.

Nat. Hazards Earth Syst. Sci., 19, 2295–2309, 2019 www.nat-hazards-earth-syst-sci.net/19/2295/2019/

https://doi.org/10.1016/j.coastaleng.2007.12.003
https://doi.org/10.1016/j.earscirev.2019.04.022
https://doi.org/10.1029/2012GL051959
https://doi.org/10.5194/nhess-18-599-2018
https://doi.org/10.1029/2011jf002326


T. Beuzen et al.: Ensemble models from machine learning: an example of wave runup 2309

Power, H. E., Gharabaghi, B., Bonakdari, H., Robertson, B., Atkin-
son, A. L., and Baldock, T. E.: Prediction of wave runup on
beaches using Gene-Expression Programming and empirical re-
lationships, Coast. Eng., 144, 47–61, 2019.

Ranasinghe, R., Callaghan, D., and Stive, M. J.: Estimating coastal
recession due to sea level rise: beyond the Bruun rule, Climatic
Change, 110, 561–574, 2012.

Rasmussen, C. E. and Nickisch, H.: Gaussian processes for machine
learning (GPML) toolbox, J. Mach. Learn. Res., 11, 3011–3015,
2010.

Rasmussen, C. E. and Williams, C. K.: Gaussian Processes for
Machine Learning, The MIT Press, Cambridge, Massachusetts,
2006.

Reggente, M., Peters, J., Theunis, J., Van Poppel, M., Rademaker,
M., Kumar, P., and De Baets, B.: Prediction of ultrafine parti-
cle number concentrations in urban environments by means of
Gaussian process regression based on measurements of oxides
of nitrogen, Environ. Model. Softw., 61, 135–150, 2014.

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gib-
son, N., and Aigrain, S.: Gaussian processes for time-
series modelling, Philos. T. Roy. Soc. A, 371, 20110550,
https://doi.org/10.1098/rsta.2011.0550, 2013.

Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries,
J., McCall, R., and Lescinski, J.: Modelling storm impacts on
beaches, dunes and barrier islands, Coast. Eng., 56, 1133–1152,
https://doi.org/10.1016/j.coastaleng.2009.08.006, 2009.

Ruggiero, P., Komar, P. D., McDougal, W. G., Marra, J. J., and
Beach, R. A.: Wave runup, extreme water levels and the erosion
of properties backing beaches, J. Coast. Res., 17, 407–419, 2001.

Sallenger, A. H.: Storm impact scale for barrier islands, J. Coast.
Res., 16, 890–895, 2000.

Semedo, A., Weisse, R., Behrens, A., Sterl, A., Bengtsson, L., and
Günther, H.: Projection of global wave climate change toward the
end of the twenty-first century, J. Climate, 26, 8269–8288, 2012.

Short, A. D. and Trenaman, N.: Wave climate of the Sydney region,
an energetic and highly variable ocean wave regime, Mar. Fresh-
water Res., 43, 765–791, 1992.

Simmons, J. A., Splinter, K. D., Phillips, M. S., and Leaman, C. K.:
Wave runup detection from Lidar using machine learning tech-
niques, Environ. Model. Softw., in preparation, 2019.

Splinter, K. D. and Palmsten, M. L.: Modeling dune response to an
East Coast Low, Mar. Geol., 329, 46–57, 2012.

Splinter, K. D., Kearney, E. T., and Turner, I. L.: Drivers of along-
shore variable dune erosion during a storm event: Observations
and modelling, Coast. Eng., 131, 31–41, 2018.

Stockdon, H. F., Holman, R. A., Howd, P. A., and
Sallenger, A. H.: Empirical parameterization of
setup, swash, and runup, Coast. Eng., 53, 573–588,
https://doi.org/10.1016/j.coastaleng.2005.12.005, 2006.

Stockdon, H. F., Sallenger Jr., A. H., Holman, R. A., and Howd, P.
A.: A simple model for the spatially-variable coastal response to
hurricanes, Mar. Geol., 238, 1–20, 2007.

Tinoco, R., Goldstein, E., and Coco, G.: A data-driven approach
to develop physically sound predictors: Application to depth-
averaged velocities on flows through submerged arrays of rigid
cylinders, Water Resour. Res., 51, 1247–1263, 2015.

Van Oorschot, J. and d’Angremond, K.: The effect of wave energy
spectra on wave run-up, Coast. Eng., 1968, 888–900, 1969.

www.nat-hazards-earth-syst-sci.net/19/2295/2019/ Nat. Hazards Earth Syst. Sci., 19, 2295–2309, 2019

https://doi.org/10.1098/rsta.2011.0550
https://doi.org/10.1016/j.coastaleng.2009.08.006
https://doi.org/10.1016/j.coastaleng.2005.12.005

	Abstract
	Introduction
	Gaussian processes
	Gaussian process theory
	Gaussian process kernel optimization
	Training a Gaussian process model

	Development of a Gaussian process runup model
	Runup data
	Training data for the GP runup predictor
	Runup predictor results

	Application of a Gaussian process runup predictor in a coastal dune erosion model
	Dune erosion model
	June 2011 storm data
	The effect of Cs and ensemble size on dune erosion

	Discussion
	Runup predictors
	Including uncertainty in dune erosion models

	Conclusion
	Code and data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

