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Integrated tumor identification and automated scoring
minimizes pathologist involvement and provides new
insights to key biomarkers in breast cancer
Peter Bankhead1, José A Fernández1, Darragh G McArt1, David P Boyle1, Gerald Li1, Maurice B Loughrey1,2,
Gareth W Irwin3, D Paul Harkin3, Jacqueline A James1,2, Stephen McQuaid1,2, Manuel Salto-Tellez1,2 and
Peter W Hamilton1

Digital image analysis (DIA) is becoming central to the quantitative evaluation of tissue biomarkers for discovery, diagnosis
and therapeutic selection for the delivery of precision medicine. In this study, automated DIA using a new purpose-built
software platform (QuPath) is applied to a cohort of 293 breast cancer patients to score five biomarkers in tissue
microarrays (TMAs): ER, PR, HER2, Ki67 and p53. This software is able to measure IHC expression following fully automated
tumor recognition in the same immunohistochemical (IHC)-stained tissue section, as part of a rapid workflow to ensure
objectivity and accelerate biomarker analysis. The digital scores produced by QuPath were compared with manual scores
by a pathologist and shown to have a good level of concordance in all cases (Cohen’s κ40.6), and almost perfect
agreement for the clinically relevant biomarkers ER, PR and HER2 (κ40.86). To assess prognostic value, cutoff thresholds
could be applied to both manual and automated scores using the QuPath software, and survival analysis performed for
5-year overall survival. DIA was shown to be capable of replicating the statistically significant stratification of patients
achieved using manual scoring across all biomarkers (Po0.01, log-rank test). Furthermore, the image analysis scores were
shown to consistently lead to statistical significance across a wide range of potential cutoff thresholds, indicating the
robustness of the method, and identify sub-populations of cases exhibiting different expression patterns within the p53
and Ki67 data sets that warrant further investigation. These findings have demonstrated QuPath’s suitability for fast,
reproducible, high-throughput TMA analysis across a range of important biomarkers. This was achieved using our tumor
recognition algorithms for IHC-stained sections, trained interactively without the need for any additional tumor
recognition markers, for example, cytokeratin, to obtain greater insight into the relationship between biomarker
expression and clinical outcome applicable to a range of cancer types.
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The microscopic analysis of tissue samples continues to be the
mainstay of diagnosis, grading and therapeutic decision making
in solid cancers, also for precision medicine and targeted
therapy. In this context, the diagnostic test therefore acts as a
reliable companion to the selection of therapy for an individual
patient. Indeed, in solid cancers, tissue or cellular samples are
the core of predictive pathology or personalized medicine.1

Tissue samples can be used in multiple manners to achieve
a diagnostic goal.2 They serve to identify mutations or other
genomic anomalies from extracted nucleic acids by low-
throughput PCR or next-generation sequencing, by labeling

sequences in vitro using FISH or DISH, RNA in situ detection
or immunohistochemical (IHC) detection of proteins. The
latter probably presents the most widely used, cost-effective
and practical solution for biomarker evaluation in primary
diagnostics, and is used extensively in research for the rapid
screening of candidate biomarkers in multiplex platforms
such as tissue microarrays (TMAs).

Despite the existence of robust guidelines for
optimization,3,4 on its own IHC is limited by the subjectivity
associated with (a) the characterization of the appropriate
tumor areas to analyze within a complex tissue section; and

1Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland, UK; 2Tissue Pathology,
Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK and 3Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, Northern Ireland, UK
Correspondence: Professor M Salto-Tellez and Professor PW Hamilton, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast,
BT9 7AE, UK.
E-mail: m.salto-tellez@qub.ac.uk or p.hamilton@qub.ac.uk

Received 4 June 2017; revised 29 September 2017; accepted 29 September 2017; published online 4 December 2017

www.laboratoryinvestigation.org | Laboratory Investigation | Volume 98 January 2018 15

Laboratory Investigation (2018) 98, 15–26
© 2018 USCAP, Inc All rights reserved 0023-6837/18 $32.00

http://dx.doi.org/10.1038/labinvest.2017.131
mailto:m.salto-tellez@qub.ac.uk
mailto:p.hamilton@qub.ac.uk
http://www.laboratoryinvestigation.org


(b) the visual interpretation of the expression patterns and
intensities in tumor cells and surrounding tissues. Numerous
studies have shown poor inter-laboratory, inter-observer and
intra-observer reproducibility in the assessment of IHC
expression patterns of tissue.5,6 This variability is slowing
the progress of biomarker discovery and delivery of precision
medicine.

Automated digital image analysis (DIA) has the potential to
provide the objectivity, reliability and speed required to
radically transform tissue biomarker research, discovery and
routine delivery. It is only recently, however, that the
scanning technology, image processing and image under-
standing algorithms are aligning to allow solutions to be
developed with genuine impact.7

This article demonstrates the application and evaluation of
a new, comprehensive digital pathology image analysis
platform developed in-house at Queen’s University Belfast:
QuPath. The platform allows (a) the accurate recognition of
tumor and non-tumor cells within whole or TMA sections
using automated digital algorithms, and (b) reproducible IHC
scoring of relevant biomarkers, which provides an alternative
to traditional, subjective manual scoring. Hereby we demon-
strate QuPath’s ability to achieve robust biomarker scoring to
support high-throughput studies, and to provide additional,
quantitative data that can offer new insights into biomarker
interpretation. The QuPath software presented here repre-
sents an advanced platform for algorithm development, with
the ability to accelerate tissue research and provide the tools
to link discovery with diagnostics.

MATERIALS AND METHODS
Study Design
Image analysis was applied to score the clinically important
biomarkers estrogen receptor (ER), progesterone receptor
(PR) and HER2, in addition to Ki67 and p53, in TMAs for a
cohort of 293 female patients with de novo breast cancer who
were diagnosed and received treatment in Northern Ireland.
Tissue from each patient was sampled in triplicate from
different regions of the tumor, giving rise to a total of nine
TMA blocks each containing 90–100 tissue cores. Full clinical
and pathological follow-up was available for each patient, and
full details regarding the cohort have been published
previously.8 Of note, 169 cases were Grade 3 (58%), 119
cases Grade 2 (41%) and 5 cases Grade 1 (2%), while at time
of diagnosis 175 tumors were ER +ve (60%), 115 ER -ve
(39%) and 3 had unknown ER status (1%). All patients
received anthracycline-based chemotherapy, with or without
radiotherapy.8

Immunohistochemistry
All IHC was performed in a hybrid laboratory (Northern
Ireland Molecular Pathology Laboratory) that has UK Clinical
Pathology Accreditation, using established protocols
described in detail elsewhere.8 The antibodies used were as
follows: anti-ER (clone 6F11 mouse monoclonal antibody;

Leica); anti-PR (clone PgR 636 mouse monoclonal antibody;
Dako); anti-HER2 (clone CB11 mouse monoclonal antibody;
Leica); anti-p53 (clone DO-7 mouse monoclonal antibody;
Dako, Cambridgeshire, UK). In the case of Ki67, the original
data set was stained with NCL-Ki67-MM1 antibody on a
Leica staining platform with a polymer-based detection
system. As a result of the recognized variation in Ki67
antibodies, and in particular their suitability for image
analysis,9 additional tissue sections were also cut and stained
with Confirm anti-Ki67 (clone 30-9) antibody on a Ventana
platform with an Optiview detection kit for comparison.

Manual Scoring
All biomarkers in this data set were scored manually by a
pathologist as described previously,8 and the pathologist also
selected appropriate clinical cutoff thresholds that should be
applied to these scores following standard guidelines in the
literature.8 This allowed us to obtain a binary ‘clinical score’
variable distinguishing between positive and negative cases,
which is not necessarily the modus operandi in clinical
practice for some of these biomarkers but allowed a clear-cut
comparison of the results. Briefly, ER and PR were evaluated
using the Allred scoring method, giving scores in the range
0–8, where a score ≥ 3 was considered positive provided the
proportion score was at least 2. Ki67 was evaluated using
visual estimates of the percentage of positive staining tumor
cells (range 0–100%), where ≥ 15% was considered positive.
HER2 was scored in IHC according to current USA/UK
guidelines10,11 taking into consideration membranous stain-
ing only; cases scored as 0 and 1+ were considered negative,
whereas 3+ was considered positive; equivocal cases (2+) were
further subjected to DDISH analysis to identify amplification
and categorized as positive or negative accordingly. p53 was
assessed by calculating H-scores (range 0–300)12,13 based
upon nuclear staining. For p53 only, two cutoff thresholds
(H-scores of 6 and 160) were required to separate extreme
expression (both positive and negative) from the intermediate
‘wild-type’ phenotype. For the other biomarkers, a single
cutoff was selected to separate strong/positive from weak/
negative expression. Manual Ki67 scores were available for the
MM1 antibody only.

Digital Image Analysis
All image analysis was performed using QuPath, which is a
flexible software platform suitable for a range of digital
pathology applications. In this study, the primary image
analysis workflow comprised stain estimation, TMA dearray-
ing, cell segmentation, feature computation and tumor cell
identification with intensity classification (see Supplementary
Figure 1). Application of this workflow resulted in both fine-
grained cell-by-cell analysis and overall summary scores of
biomarker expression for each TMA core. Dearraying
consisted of an automated first step of core detection and
grid assignment, followed by a manual quality assurance
check during which the grid could be manually refined and
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cores removed if considered unsuitable for analysis (eg,
because of insufficient tissue or dominant artifacts).

Cells are identified within QuPath using an custom,
unsupervised algorithm based on stain separation using color
deconvolution,14 followed by a sequence of image processing
operations used to identify potential nucleus fragments either
in the hematoxylin channel or from the sum of optical density
values, depending upon stain characteristics. Morphological
operations are then applied to merge and split fragments to
identify individual nuclei. Each detected nucleus is expanded
to give an approximation of the full cell area, constrained by
distance and the proximity of neighboring nuclei, or by the
presence of membrane staining in the case of HER2. A list of
103 (ER, PR, Ki67, p53) or 115 (HER2) features derived from
cell morphometry and intensity measurements are then
calculated for each cell (Supplementary Table 1). A random
trees classifier15 is trained separately for each IHC biomarker
using these features by having an experienced user annotate
regions in a subset of the TMA cores across up to three slides,
with interactive feedback on classification performance
provided during training in the form of markup images. This
limit of three sides was not imposed by QuPath, but was
applied to ensure that the majority of the TMA cores used in
the analysis were ‘unseen’ during training—as would
normally be the case in high-throughput studies.

Cells were further subclassified according to staining
intensity by applying manually selected thresholds to mean
DAB optical density values determined by color
deconvolution14 from the nuclear compartment (ER, PR,
Ki67, p53) or membrane (HER2) of each cell. Cells close to
the border of the core were removed by an iterative algorithm,
which first calculated the convex hull for all cell centroids and
then removed cells occurring on the boundary. This reduced
the risk of artifacts impacting the final scores by excluding a
thin layer of cells found at the outer edge of the tissue,
whereas retaining the cells in the center.

Whole slide images were hosted remotely by PathXL
(Belfast, UK), whereas analysis was performed locally on a
desktop computer using a custom integration with PathXL’s
API. After an initial interactive pre-analysis used to identify
TMA cores and train up the tumor cell classification, scripts
were generated for each biomarker to automate the analysis
across the full data set.

Generation of Summary Scores
TMA cores identified as containing fewer than 100 tumor
cells were excluded as unsuitable for scoring by DIA. After
application of this selection criterion, the image analysis
workflow resulted in 3911 tissue cores scored across all
biomarkers, each containing an average of 3440 cells, of
which 50.1% were classified as tumor cells. For each core, the
tumor cell counts were combined into summary measure-
ments incorporating information about DAB staining inten-
sity, including the H-score (range 0–300), Allred score (range
0–8) and the percentage of cells staining positive (0–100%).

For consistency, the H-score was used as the primary image
analysis output for ER, PR and p53, whereas the percentage of
positive tumor cells was used for Ki67—equivalent to the
standard Ki67 labeling index.16 To more closely match clinical
guidelines for HER2 scoring,17,18 a modified H-score was
calculated for HER2 as follows: cores having at least 10%
tumor cells with strongly positive membranous staining were
automatically assigned the maximum value (300) and cores
exhibiting o10% moderate staining were assigned the
minimum value (0), whereas all other cases were considered
equivocal and the original H-score was retained. Where
multiple summary measurements were available for a patient
for each biomarker, the median was used as representative for
that patient, so that each patient had at most one score per
biomarker.

Statistical Analysis
Pearson’s and Spearman’s correlation coefficients were used
to examine the relationship between the ‘raw’ image analysis
results and the pathologist’s manual scores. Further compar-
isons were then performed after applying cutoff thresholds to
both sets of scores and considering 5-year overall survival. In
the case of the visual assessment, the pathologist who
performed the scoring selected clinically relevant cutoff
thresholds, as described above. For automated image analysis,
a wider range of potential cutoff values was possible because
of the more continuous nature of the scoring methodologies
used. Therefore, several different methods were explored: (a)
median (or tertiles, in the case of p53), (b) ‘minimized
P-value’, based upon a log-rank test using overall survival and
considering all possible thresholds, excluding the top and
bottom 10% and (c) manual, in which a biologically plausible
threshold was chosen that divided the patients into groups of
roughly equal size to those previously identified by the
pathologist to achieve comparability—while restricted to
rounded values to reduce overfitting artifacts. It is important
to note that method (b) inherently involved multiple testing,
which leads to P-values, which are too small and cutoffs that
potentially lack clinical meaning;19–21 consequently, we also
report adjusted P-values to aid interpretation of the results.20

For p53, which required two cutoffs, method (b) was adapted
to return one cutoff above and one cutoff below the median,
and the log-rank test was performed comparing extreme
positive and negative vs intermediate scores.

Analysis was performed and plots were created using
QuPath’s built-in data exploration tools, and verified using R
version 3.3.122 (with the ‘survival’ package23) or MATLAB
(R2016a, The MathWorks, Inc., Natick, MA, USA) to confirm
accuracy.

RESULTS
Tumor Cell Classification
For all the biomarkers under investigation here, conventional
scoring requires selective analysis only within the tumor cell
population. For this reason, reliably and automatically
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identifying tumor cells is an essential component of any high-
throughput image analysis of this type. To facilitate this,
QuPath enables interactive training of cell classification, after
which the classifier can be saved and run over multiple slides,
and the results visualized via color-coded markup images.
Representative examples of these markup images are shown in
Figure 1 and in Supplementary Figures 2-4.

Concordance Between Pathologist and Image Analysis
Scoring
The correlations between DIA and pathologist biomarker
scores are summarized in Table 1. A high level of correlation
between manual and DIA scores is demonstrated in all cases.
The area under the receiver operating characteristic curve
(AUC) provides a measure of how the DIA scores may be
thresholded to align to the pathologist’s clinical (binary)
score, where values above 0.949 indicate almost perfect
agreement for the three clinical biomarkers ER, PR and
HER2. Correlation remained high using both antibodies for
Ki67, despite the pathologist’s scoring being based solely on
the MM1-stained images. Correlation between DIA scores
using each antibody against Ki67 was also high (PCC= 0.794,
rho= 0.778).

Survival Analysis
When assessing the performance of any new approach to
scoring IHC biomarkers, it is inadequate to use agreement
with manual scoring as the only ‘gold standard’ because of the
high inter- and intra-observer variability between

pathologists.24,25 Consequently, we incorporated survival
analysis after stratifying patients using the cutoff methods
described above to ascertain the extent to which DIA and
manual scores are each able to independently identify a
statistically significant stratification of patients for each
biomarker. The results looking at 5-year overall survival are
shown in Table 2, along with Kaplan–Meier curves using
manual cutoffs in Figure 2 (comparable Kaplan–Meier curves
based upon the pathologist’s scoring are given in

Figure 1 Example images showing QuPath’s trained tumor recognition applied to TMA cores stained for PR, Ki67 (Confirm) and HER2. Detected cells are
color-coded according to their classification: red (tumor, strongly positive), orange (tumor, moderately positive), yellow (tumor, weakly positive), blue
(tumor, negative) and green (non-tumor).

Table 1 Comparison of pathologist and DIA scores for each
biomarker set

N PCC Rho AUC

ER 267 0.908 0.892 0.996

PR 277 0.862 0.887 0.978

HER2 278 0.886 0.843 0.949

Ki67 MM1 270 0.852 0.795 0.900

Ki67 Confirm 260 0.771 0.729 0.877

p53 279 0.926 0.888 —

Pearson’s and Spearman’s correlation coefficients are calculated based on
matched ‘raw’ scores. AUC refers to the area under the receiver operating
characteristic curve, where DIA scores are compared with thresholded
pathologist scores as ‘ground truth’. Note that DIA scores using the Confirm
antibody against Ki67 are compared with the pathologist’s Ki67 scores,
which were made using the MM1 antibody only. Because of the requirement
for two cutoffs, no AUC is available for p53.
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Supplementary Figure 5). Although the analysis was applied
to the same cohort, slightly lower numbers of patients are
represented for the DIA scoring because of differences in core
selection, for example, through the exclusion of small or
folded tissue sections from DIA, or the automated rejection of
cores containing fewer than 100 detected tumor cells. For all
biomarkers considered, it was possible to achieve a stratifica-
tion of patients with a similar or improved statistical

significance (log-rank test, P-valueo0.05) using DIA when
compared with manual scoring using all of the cutoff
determination methods that were applied, with the exception
of the median cutoff for HER2—which did not provide a
result, since more than half of the cases had the minimum
score of 0. This is consistent with a prevalence of HER2
overexpression in breast cancers of 15–20%, which is not
taken into consideration when using a 50% cutoff.17

Table 2 Survival analysis based on thresholding both manual and image analysis biomarker scores

N Cutoff method Cutoff ≥ Total (high/low) Observed (high/low) Log-rank P-value

ER

Pathologist 288 Manual 174/114 17/24 0.00297

QuPath 268 Manual 5 177/91 16/20 0.00132

QuPath 268 Median 126.46 134/134 10/26 0.00187

QuPath 268 Log rank 172.94 117/151 5/31 0.00007 (0.00254)

PR

Pathologist 286 Manual 135/151 9/33 0.00014

QuPath 279 Manual 5 145/134 11/28 0.00068

QuPath 279 Median 7.93 140/139 10/29 0.00055

QuPath 279 Log rank 66.24 98/181 3/36 0.00010 (0.00360)

HER-2

Pathologist 284 Manual 71/213 17/23 0.00582

QuPath 279 Manual 1 63/216 15/24 0.00897

QuPath 279 Median 0 279/0 39/0 —

QuPath 279 Log rank 25.62 62/217 15/24 0.00703 (0.12337)

Ki67 (MM1)

Pathologist 282 Manual 135/147 25/14 0.01611

QuPath 274 Manual 15 113/161 19/20 0.23864

QuPath 274 Median 11.89 137/137 21/18 0.53721

QuPath 274 Log rank 2.46 233/41 30/9 0.12625 (0.80083)

Ki67 (CONFIRM, 30-9 clone)

QuPath 267 Manual 25.00 125/142 25/14 0.01300

QuPath 267 Median 24.10 134/133 28/11 0.00238

QuPath 267 Log rank 24.55 130/137 28/11 0.00114 (0.02840)

p53

Pathologist 287 Manual 92/111/84 17/9/15 0.01649

QuPath 280 Manual 40/180 91/92/97 16/5/19 0.00358

QuPath 280 Tertiles 34.61/174.1 93/93/94 16/7/17 0.02410

QuPath 280 Log rank 13.19/185.1 89/143/48 16/11/13 0.00090

Where a single cutoff threshold was determined by minimizing the log-rank P-value, adjusted values are also shown in parentheses. In the case of p53, where
two thresholds are required, total and observed patient numbers are shown according to high/moderate/low biomarker scores.
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However, in the case of Ki67 statistical significance was only
seen with DIA when the Confirm antibody was used, but not
MM1. This is consistent with reports suggesting that Ki67 is
particularly challenging for DIA, with a dependency upon the
specific antibody.9,26

Robustness of Cutoff Thresholds
Table 2 demonstrates that a highly significant association with
survival can be obtained using DIA in almost all cases, even
when using quite different methods of cutoff selection that
result in very different cutoff values. For example, the P-
values obtained using thresholds of 5 and 126.5 were almost
identical when applied to ER (both o0.002), despite the fact
that changing the cutoff resulted in 43 patients (16%) being
assigned to different groups.

To further explore the impact of cutoff selection upon the
identified associations with survival, we generated plots
showing the distribution of log-rank P-values for all possible
thresholds for the different biomarkers (Figure 3). The plots
for ER, PR and HER2 all show a wide range of values below
the conventional threshold of 0.05 taken to denote statistical
significance. For ER, this implies that any cutoff between 1
and 265 (a range encompassing the scores of 181 patients with
22 observed events) would yield a P-value below the 0.05
significance threshold. Similarly, any cutoff between 1 and
237 (140 patients and 16 observed events) would yield a
significant difference for PR H-scores, and any cutoff between
1 and 150 (8 patients and 2 observed events) would be
significant for HER2 (Figure 3, top 3 panels).

Figure 3 also highlights the stark difference in Ki67 scores
using each antibody. In the case of MM1, no single cutoff can
be used to identify statistically significant differences (ie, the
curve never dips below the 0.05 line), and indeed the curve
fluctuates quite widely—implying limited prognostic value.
However, the analysis using the Confirm antibody shows a
pronounced dip precisely in the range expected based upon
proposed Ki67 cutoffs of clinical relevance,24 so that a
significant difference in overall survival would be seen by
applying any cutoff between 7 and 26 (a range encompassing
98 patients and 13 observed events).

Alternative Scoring Methods
Having demonstrated the ability of DIA to robustly score all
the biomarkers within this study, we next wanted to examine
the importance of tumor recognition and the impact of
different DIA scoring approaches and methodologies. To do
this, we took advantage of the fact that QuPath generates data
on every individual cell that it detects, and this information
can easily be recombined to produce alternative scores. To
assess the importance of tumor recognition, we created a set
of H-scores where every cell—irrespective of tumor classifica-
tion—contributed to the result. Furthermore, for ER, PR and
p53 we calculated Allred scores based on tumor cells to
provide an alternative to the H-score used otherwise.27 In all
cases, clinically relevant cutoffs were determined automati-
cally by selecting the integer threshold that maximized
Youden’s J statistic, comparing DIA scores with the
pathologist’s clinical score for each patient. This maximized

Figure 2 Kaplan–Meier curves showing 5-year overall survival based on patient stratification using DIA scoring with manually defined cutoff thresholds
(see Table 2).
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the sum of the sensitivity and specificity, and ensured that all
cutoffs were in a clinically meaningful range.

These results are summarized in Table 3. When comparing
thresholded manual scores with H-scores generated by DIA
using tumor identification, near perfect agreement is seen for
ER, PR and HER2 (Cohen’s κ 40.86 in all cases), and good
agreement for Ki67 and p53 (κ 40.6). Lower agreement is
generally seen for all other methods of scoring all biomarkers,
in addition to lower sensitivity, specificity and accuracy in
most cases. However, lower agreement with the pathologist’s
scoring does not always translate into a loss of statistical
significance when associating the results with survival.
Interestingly, a significant association with overall survival is
seen when applying the H-score to all cells (ie, without tumor
recognition) in most cases—indicating that, for at least some
IHC biomarkers that are conventionally scored only within
the tumor cell population, accurate tumor recognition is not a
necessary prerequisite for identifying associations within a
sufficiently large cohort for a TMA study, where a measure of
tumor identification is already incorporated in the region
selection applied when constructing the TMAs. Nevertheless,
in most cases the inclusion of a digital tumor identification
step has a substantial positive impact upon the quality of the
results, and improved agreement with the pathologist’s scores.
Furthermore, the range of cutoffs that may be applied to yield
a significant stratification was always substantially larger
whenever tumor recognition was applied—indicating its role
in improving the robustness of the results, and increasing the
likelihood that any cutoff used would generalize well to new
data (Supplementary Table 2). Finally, it should be kept in
mind that biomarkers exist for which expression within the

stromal cells is of equal or greater importance to the
expression within the tumor cells, and also that the automatic
exclusion of cores containing fewer than 100 tumor cells is
only possible whenever tumor identification is done; without
this, a more time-consuming manual quality assurance would
be required to remove cores lacking in sufficient tumor cells
for reliable analysis.

In addition to the value of tumor recognition, Table 3 also
shows the value of a DIA scoring mechanism with a wide
dynamic range. Use of the H-score (range 0–300) consistently
outperformed the Allred score (0–8), both in terms of
agreement with the pathologist’s cutoffs and in associations
with survival.

Application of Multiple Cutoffs to p53
Manual scoring of p53 within this data set made use of two
cutoffs, as it was previously shown by our group that this was
important to distinguish extreme positive and extreme
negative from moderate staining patterns.8 Consequently,
DIA scores were also generated here with two cutoffs.
Nevertheless, the continuous nature of the H-score provided
by DIA makes it amenable to alternative approaches to cutoff
selection, which may be particularly valuable when biologi-
cally derived cutoffs are not available. One intuitive method is
to consider ‘valleys’ present within P-value plots such as those
shown in Figure 3 as being suggestive of where appropriate
cutoff thresholds may lie. Applying this in the case of p53, the
plot actually suggests two potential cutoffs to separate weak
from moderate staining: at around H-scores of 15 and 50.
Applying each of these independently leads to a significant
stratification when comparing weak staining with moderate

Figure 3 Distribution of P-values for all possible thresholds represented in the data for image analysis scoring of each biomarker. Horizontal (dotted)
line indicates threshold for significance at 0.05 level.
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(P-values of 0.00038 and 0.0033, respectively; strong staining
with an H-score4150 omitted). However, using all suggested
cutoffs (15, 50 and 150) it is possible to identify four distinct
patient subgroups according to different levels of staining:
negative (o15; 49 patients), weak (≥ 15, o50; 63 patients),
moderate ( ≥50, o150; 67 patients) and strong (≥150; 101
patients). The negative subgroup has the worst prognosis,
with a statistically significant difference between this and the
weak subgroup (P= 0.0398). The separation between negative
and moderate is highly significant (P= 0.0002), whereas the
separation between weak and moderate remains significant
(P= 0.049), as does the separation between moderate and
strong (P= 0.0057). To our knowledge, this additional
separation between negative/weak sub-populations was not
previously reported, and not identified using the manual

scoring by a pathologist.8 This indicates another clear benefit
in the continuous, reproducible scoring possible using DIA,
where new expression phenotypes that may not be distin-
guished reproducibly by the naked eye can be identified using
quantitative characterization of biomarkers (Figure 4). Exam-
ple images are provided in Supplementary Figure 8.

Reevaluation of p53 and Ki67 According to ER Status
Although exploration of different cutoff values for categoriz-
ing scores produced by DIA, as described above, may provide
additional insights regarding the staining of individual
biomarkers in isolation, there is a risk of spurious findings
by allowing survival information to inform cutoff choices
because of the known problem of multiple testing20—
particularly where a narrow range of cutoff values leads to a

Table 3 Comparison of different scoring metrics

N Cutoff ≥ Sensitivity Specificity Accuracy Kappa P-value

ER

Tumor H-score 267 16 0.975 0.952 0.966 0.929 0.0049

All cells H-score 267 13 0.957 0.952 0.955 0.906 0.0025

Tumor Allred score 267 4 0.759 0.971 0.843 0.689 0.0079

PR

Tumor H-score 277 8 0.954 0.911 0.931 0.863 0.0002

All cells H-score 277 10 0.908 0.959 0.935 0.869 0.0018

Tumor Allred score 277 4 0.748 0.932 0.845 0.686 0.0030

HER-2

Tumor HER2 H-score 278 1 0.899 0.995 0.971 0.921 0.0090

All cells HER2 H-score 278 1 0.812 0.995 0.950 0.857 0.0070

Ki67 (MM1)

Tumor positive % 270 10 0.908 0.770 0.837 0.675 0.8689

All cells positive % 270 8 0.863 0.827 0.844 0.689 0.3587

Ki67 (CONFIRM, 30-9 clone)

Tumor positive % 260 24 0.828 0.783 0.804 0.608 0.0028

All cells positive % 260 14 0.820 0.790 0.804 0.608 0.0137

p53

Tumor H-score 279 14/190 0.726 0.910 0.799 0.603 0.0046

All cells H-score 279 15/121 0.536 0.919 0.688 0.411 0.1487

Tumor Allred score 279 4/7 0.827 0.730 0.789 0.558 0.0383

A cutoff threshold is determined automatically in each case by correlating DIA scores with a pathologist’s (binary) clinical scores, and this used to determine
sensitivity, specificity, accuracy and Cohen’s kappa values. A log-rank test is also applied with the identified cutoff to determine statistical significance for 5-
year overall survival.
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statistically significant result. Rather than applying numerous
cutoffs to a full cohort, a clearer picture may emerge by
considering patients separately according to different mole-
cular subtypes.

To explore this, we repeated the survival analysis of p53
and Ki67 using DIA scores after separating patients according
to ER status (Figures 5 and 6). For the ER-positive subgroup,
the primary finding remained, in that applying lower cutoffs

of either 15 or 50 combined with a higher cutoff of 150 could
separate strong and weak from moderate expression, where
moderate expression was associated with longer overall
survival. However, in the ER-negative subgroup, it was not
possible to identify a moderate subgroup for which prognosis
was more favorable. Instead, any single cutoff between 12 and
270 led to a significant stratification for which high p53
expression correlated with better overall survival, relative to

Figure 4 Application of additional cutoffs to p53 data. (Left, center) Cutoffs to separate weak from moderate staining are set at H-scores of 15 and 50
respectively; cases exhibiting strong staining (H-score 4150) are excluded (n= 179). (Right) Three cutoffs (15, 50 and 150) are applied to stratify patients
in the full data set.

Figure 5 (Top) Kaplan–Meier curves showing 5-year overall survival when stratifying patients according to p53 IHC scores, after separating patients
according to ER status. Cutoffs used are 15 and 150 (ER-positive; n= 168, P-value compares extreme low and high vs moderate) and 50 only (ER-
negative; n= 112). (Bottom) Plots showing how P-values vary according to different cutoff thresholds that could be applied for patient stratification (log-
rank test).
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the other patients within the ER-negative subgroup. This is
consistent with reports from the IBCSG Trials VIII and IX,
where high p53 was also found to be associated with better
survival among ER-negative patients, but worse survival
among ER-positive patients.28

For Ki67, the result was similar. For ER-positive cases, use
of the same cutoff thresholds as applied to the whole data set
identified an association between higher Ki67 labeling indices
and worse overall survival, which was statistically significant
for the Confirm antibody (P= 0.0039, cutoff 25) and not
quite significant for MM1 (P= 0.0547, cutoff 15). However,
within the ER-negative subgroup, the trend was reversed for
both antibodies: higher Ki67 indices were associated with
improved survival. This finding was statistically significant for
both antibodies using similar cutoff thresholds (cutoff 35,
P= 0.0176 Confirm antibody; cutoff 30, P= 0.0364 MM1). A
significant association of higher Ki67 indices with improved
prognosis was not evident within the pathologist’s manual
scores.

DISCUSSION
In this study, we have shown the ability of DIA to accurately
score a range of important biomarkers in breast cancer TMAs.
Using the QuPath digital pathology platform, we were able to

identify associations between biomarker expression and
overall survival with a similar or better level of statistical
significance to that achieved through manual scoring by an
experienced pathologist, while also uncovering additional
insights that warrant further investigation and validation.
Importantly, all of this has been achieved using automated
tumor recognition algorithms that can be quickly and
interactively trained to distinguish between different
cell types.

Several commercial digital pathology solutions, such as
Halo (Indica Labs, New Mexico, USA), Tissue Studio
(Definiens AG, Munich, Germany) or Oncotopix (Visio-
pharm A/S, Hoersholm, Denmark), also provide TMA
biomarker evaluation capabilities. Typically, the approach
implemented in software applications such as these is to first
identify regions of interest (eg, areas of tumor) based on an
automated or semi-automated region identification using
texture and color features, or alternatively by aligning a tumor
mask derived from an adjacent tissue section stained with a
cytokeratin marker. Cells within these regions are then
segmented and scored according to staining intensity to
produce the final result. Although QuPath offers some limited
texture-based region identification, it currently does not
provide image registration capabilities to align tissue sections

Figure 6 Kaplan–Meier curves showing 5-year overall survival when stratifying patients according to Ki67 labeling indices determined by DIA, after
separating patients according to ER status.
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automatically. Rather, the preferred approach within QuPath
switches the order of operations, so that cell segmentation is
placed first and then followed by a machine learning
classification step to identified the sub-population of cells to
be scored. In practice, this means that all cells may be
segmented up-front by batch processing, after which a
classifier to distinguish between cell types can be either
loaded from disk and applied, or trained interactively based
upon annotations provided by the user containing examples
of different cell types (Supplementary Figure 1). In both cases,
the final results are available immediately after classification.

The ability to perform algorithm training and verification
of the results across a cohort in one sitting helps ensure an
effective use of a pathologist’s time. During interactive
training, the classification tends to stabilize quickly for
common cell patterns, but an experienced pathologist
browsing the slides may recognize examples of cells that
differ markedly from those previously seen and have been
misclassified; in such cases they may add new annotations to
address the problem immediately and generate an improved
set of results—without a need to repeat lengthy processing
steps. This approach also avoids a reliance on cytokeratin
staining, which substantially increases cost and laboratory
effort, and limits the analysis to the intersection of tissue
samples where both the biomarker of interest and cytokeratin
staining has been successfully applied. On the other hand, the
method of analysis described here is subject to the effective-
ness of cell identification and classification, which may vary
depending upon the stain quality and biomarker expression
pattern. In particular, cell classification methods based on
morphological or texture features may perform less robustly
on lower grade tumors, where the features upon which the
classification is based may vary less between tumor and
benign cells. To this end, critical evaluation of the results and
stringent quality control at all stages are essential to ensure the
accuracy of the results, irrespective of the DIA software and
approach used.

Related to the above, we also explored the issues involved
when assessing the performance of DIA for biomarker
scoring. We have focused on two separate measures of
success: agreement with manual scoring by a trained
pathologist, and the ability to explore statistically the
relevance of marker stratification of patients by survival
analysis. Neither measure alone is scientifically optimal.
Considering manual scoring methods to be the gold standard
fails to take into account that DIA may be capable of
improved accuracy over that of a human. Also, demonstrating
improved statistical significance in patient stratification may
be a reflection on cohort size, patient event proportions and
other factors indicating overfitting, and does not necessarily
result in cutoff thresholds that are either generalizable or
transferable to clinical practice. Furthermore, in the case of
ER and PR, we have shown that the association with survival
is sufficiently strong such that there is a considerable ‘margin
for error’ in scoring when this is used to define successful

analysis; so much so that including a large number of non-
tumor cells in the evaluation, while somewhat diluting the
robustness, can still lead to a highly significant result and
excellent agreement with dichotomized manual scores. This
ought to serve as a warning against using ER and PR alone as
a demonstration that a new method of analysis is fit-for-
purpose in a general setting for other biomarkers. For these
reasons, we have presented our results across a range of
different biomarkers, both from multiple viewpoints and with
multiple different methods of cutoff selection, as a measure of
the robustness of our analysis.

Our results also revealed two results of biological interest. The
distinction between weak staining for p53 and no measurable
expression was made by our group in a qualitative manner after
careful validation of the p53 IHC,8 demonstrating the different
mutation status associated to this pattern. For the first time to
our knowledge, this is now reproduced using DIA from standard
brightfield IHC staining. The importance of this finding requires
a subsequent, independent cohort; however, this observation
highlights the potential of DIA in generating results with a
broader genomic relevance.

In addition, our initial results showed the strong depen-
dence of Ki67 scoring on the specific antibody used, in
keeping with previous reports.9 However, by separately
analyzing ER-positive and ER-negative patients, we further
demonstrated that substantial differences in the interpretation
of Ki67 existed for this cohort. These results are perhaps
surprising, given that it is well established that a high Ki67
labeling index is associated with worse prognosis.16 Never-
theless, it is also known that Ki67 score can be predictive of
neoadjuvant chemotherapy response,29 and mean Ki67
labeling indices have been found to be higher in patients
with a pathological complete response after neoadjuvant
chemotherapy; this has led to the hypothesis that there may
be a high cutoff above which prognosis is better than in
patients with lower Ki67 values.30 As all patients within the
cohort in this study received anthracycline-based
chemotherapy,8 our findings that high Ki67 values within
the ER-negative subgroup are significantly associated with
better overall survival lends tentative support to this
hypothesis, and warrants further investigation. In any case,
the fact that the ‘correct’ interpretation of Ki67 may take on
opposing roles depending upon the treatment and molecular
subtype of the cancer may shed some further light on why it
has proven so difficult to establish a standardized approach to
Ki67 evaluation with a single accepted methodology and
cutoff value,16,24 as the best cutoff found within each study is
highly dependent upon the makeup of the cohort. Our
comparison of two antibodies against Ki67 has also reiterated
the importance of antibody selection.

Based upon all our results, we are able to draw some
conclusions regarding the application of DIA to biomarker
evaluation. First, we have shown that it is possible to robustly
score a range of biomarkers in TMAs without a need for a
tumor identification marker. Second, we have demonstrated
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that tumor identification may not be essential in all cases
whenever the goal is simply to ascertain an association
between the biomarker and survival within TMAs; however,
where it is applied, tumor recognition improves the
robustness of the scoring by removing one confounding
factor. Furthermore, for some biomarkers, it can be
particularly important that the correct cells are being scored
in order to identify subtle effects. Third, we have shown the
benefits of using scoring metrics for DIA with a high dynamic
range. This improves the ability to distinguish between more
subtle differences, whereas also increasing the tolerance to a
small number of artifacts or misclassifications. The H-score
meets this criterion but the Allred score does not. Thus, it
should be kept in mind when planning DIA studies that the
preferred method of scoring may well differ from that which
would be used by a pathologist scoring manually.

Supplementary Information accompanies the paper on the Laboratory
Investigation website (http://www.laboratoryinvestigation.org)
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