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Chromatin architecture reorganization
during stem cell differentiation
Jesse R. Dixon1,2*, Inkyung Jung1*, Siddarth Selvaraj1,3*, Yin Shen1, Jessica E. Antosiewicz-Bourget4, Ah Young Lee1, Zhen Ye1,
Audrey Kim1, Nisha Rajagopal1, Wei Xie5, Yarui Diao1, Jing Liang6, Huimin Zhao6, Victor V. Lobanenkov7, Joseph R. Ecker8,
James A. Thomson4,9,10 & Bing Ren1,11

Higher-order chromatin structure is emerging as an important regulator of gene expression. Although dynamic chromatin
structures havebeen identified in the genome, the full scope of chromatin dynamics duringmammalian development and
lineage specification remains to be determined. By mapping genome-wide chromatin interactions in human embryonic
stem (ES) cells and four human ES-cell-derived lineages, we uncover extensive chromatin reorganization during lineage
specification. We observe that although self-associating chromatin domains are stable during differentiation, chromatin
interactions bothwithin and between domains change in a strikingmanner, altering 36%of active and inactive chromo-
somalcompartments throughout thegenome.By integratingchromatin interactionmapswithhaplotype-resolvedepigenome
and transcriptome data sets, we find widespread allelic bias in gene expression correlated with allele-biased chromatin
states of linked promoters and distal enhancers.Our results therefore provide a global view of chromatin dynamics and a
resource for studying long-range control of gene expression in distinct human cell lineages.

Three-dimensional genome organization is in-
creasingly considered an important regulator
of gene expression1–4. Recent high-throughput
studies of chromatin structure have begun to
shed light on the global organization of our
genome4–10. For instance, we and others recently discovered that inter-
phase chromosomes are partitioned into megabase-sized topological
domains and smaller sub-domains (also known as topologically assoc-
iated domains orTADs)6–9. TheseTADs form the basis for higher-level
structures referred to as the ‘A’ and ‘B’ compartments5,6. The A and B
compartments are closely linked to other functional partitions of the
genome, suchas early or lateDNAreplication timing andnuclear lamina
association11,12.Despite these advances, our understandingof the dynamic
nature of chromatin architecture across human cell types and its effect
on cellular identity is incomplete. Here we analyse genome-wide higher-
order chromatin interactions inH1 human ES cells and four humanES-
cell-derived lineages,mesendoderm(ME),mesenchymal stem(MS) cells,
neural progenitor (NP) cells and trophoblast-like (TB) cells13. These line-
ages represent extra-embryonic and embryonic lineages at early stages of
development and have been extensively characterized by the Epigenome
Roadmap project13, with data sets including mRNA-seq, ChIP-seq for
13-24 histone modifications, base-resolution methylC-seq and DNaseI
hypersensitivity (DHS) in each lineage13,14.As such, this experimental sys-
tem provides an opportunity to compare variability in higher-order
chromatin structure with underlying gene expression and chromatin
state in a genome-wide manner. Further, using a newly developed me-
thod tophase twoparental alleles into chromosome-spanhaplotypes from
high-resolution chromosome conformation capture (Hi-C) data15, we
have phased the H1 genome to allow for analysis of allele-specific activity

and chromatin structure. This represents the most
extensive data set generated to date, to our know-
ledge, for the analysis of higher-order chromatin
structure, allele-specific chromatin structure and
state, and allele-specific gene expression.

Data generation and validation
We performed Hi-C experiments5 in two biological replicates in H1
human ES cells and each of the four H1-derived lineages, generating
a total of 3.85-billion unique read pairs (Supplementary Table 1). We
normalized the intrinsic biases inHi-C data16, and confirmed the high
reproducibility and accuracyof ourHi-Cdata sets using severalmetrics
(ExtendedData Fig. 1a–d, Supplementary InformationandSupplemen-
tary Table 2).

Extensive A/B compartment switching
Hi-C interaction maps provide information on multiple hierarchical
levels of genome organization4. Previous studies demonstrated that the
genome is organized intoA and B compartments, containing relatively
active and inactive regions, respectively5,11. Currently, it is unclear if the
A andB compartments change during differentiation andhow this relates
to lineage specification. We observe a large degree of spatial plasticity in
the arrangement of theA/B compartments across cell types, with 36% of
the genome switching compartments in at least one of the lineages ana-
lysed (Methods; Fig. 1a and Extended Data Fig. 2a–c). Many of the A/B
compartment transitions are lineage-restricted (Fig. 1b). Notably, there
appears to be a large expansion of the B compartment upon differenti-
ationofhumanEScells toMScells or in IMR90 fibroblasts.These twocell
types havepreviously been shown to undergo an expansionof repressive
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heterochromatinmodifications during differentiation13,17. In this regard,
there appears to be a similar redistribution of the spatial organization of
their genomes as well.We observe that the regions that change their A/B
compartment status typically correspond to a single or series of TADs
(Fig. 1a, c and Extended Data Fig. 2d, e), suggesting that TADs are the
units of dynamic alterations in chromosome compartments. Consis-
tent with previous studies of individual loci18–20, we found that genes
that change fromcompartmentA toB tend to showreduced expression,
whereas genes that change from B to A tend to show higher expression
(Fig. 1d). In addition, lineage-restricted compartment A regions tend
to include more lineage-restricted genes compared to other regions
(Extended Data Fig. 3a). Although statistically significant, the overall
patterns of change in expression are subtle. Reasoning that thismodest
correlation may be due to the possibility that only a subset of genes
may be affected by compartment changes, althoughmost genes remain
unaffected,we identified a subset of 718 geneswithco-variationbetween
gene expression and compartment switching (Fig. 1e, Extended Data
Fig. 3b, c, andMethods). These genes were enriched for low CpG con-
tent promoters (21.8%versus 15.6% for non-concordant genes,P value
83 10211, Fisher’s exact test), and several significant Gene Ontology
(GO) terms, most notably related to extracellular proteins and extra-
cellular matrix (Supplementary Table 3). Taken together, these results
indicate that at a global level, there is a high degree of plasticity in theA
and B compartments, yet relatively subtle corresponding changes in
gene expression, indicating that theA andB compartments have a con-
tributory but not deterministic role in determining cell-type-specific
patterns of gene expression.

Domain-level chromatin dynamics
Wenext examined higher-order chromatin structure at a sub-chromosomal
scale. Previous studies indicated that chromosomes are composed of cell-
type-invariant TADs6,8. Across the six lineages analysed in this study, we
observe that although thepositioningofTADs remains stable between cell

types (Fig. 2a), numerous changes in chromatin structure occur within
domains.We observed a phenomenon that within some domains, a large
portionof the interactions appears to increase ordecrease across the entire
domain between cell types (Fig. 2b). This suggests that a subset of TADs
in a given lineage undergo concerted, domain-wide changes in interaction
frequency.Hundreds of TADs underwent such alterations in each lineage
(Fig. 2b and Extended Data Fig. 3d), with the changes in interaction fre-
quencycorrelatedpositivelywithactivemarks suchasDHS,H3K27acand
with CTCF binding, and negatively correlated with repressive chromatin
modifications such asH3K27me3 andH3K9me3 (Fig. 2c, seeMethods
fordetails). TADs that have a concerted increase in intra-domain inter-
action frequency tend to shift from the B to A compartments, while
domains that have a concerted decrease in interaction frequency tend
to shift fromAtoB(ExtendedDataFig. 3e, f).Consistentwith the changes
in chromatin state activity, genes within domains that have increased
intra-domain interaction frequency tend tobe upregulated,while genes
within domains that decrease intra-domain interaction frequency tend
to be downregulated (Extended Data Fig. 3g, h).

Chromatin state and dynamic interactions
In order to understand the relationship between chromatin dynamics
and other genomic and epigenomic features, we performed integrative
analysis of the Hi-C data along with the histone modifications, DHS, and
CTCF binding data in the six lineages. Specifically, we asked if particular
chromatin state patterns predict changes in chromatin interaction fre-
quency. We divided the genome into 40-kb bins and computed changes
in chromatin features in each bin upon differentiation. We then built a
Random Forest classification model based on chromatin features to clas-
sify local interacting bins as having either increased or decreased inter-
action frequency (seeMethods for details). Themodel was able to classify
regions of the genome that increased or decreased interaction frequency
with 73% accuracy (Fig. 2d, 100% graph; Extended Data Fig. 4a), which
increased to over 80% when we consider only the highest confidence
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Figure 1 | Dynamic reorganization of chromatin structure during
differentiation of human ES cells. a, First principal component (PC1) values
and Hi-C interaction heat maps in H1 ES cells and H1-derived lineages. PC1
values are used to determine the A/B compartment status of a given region,
where positive PC1 values represent A compartment regions (blue), and
negative values represent B compartment regions (yellow). Dashed lines
indicate TAD boundaries in ES cells. b, K-means clustering (k5 20) of PC1
values for 40-kb regions of the genome that change A/B compartment status in

at least one lineage. c, K-means clustering of PC1 values surrounding TAD
boundaries (‘b’ denotes boundary location). d, Distribution of fold-change in
gene expression for genes that change compartment status (‘A to B’ or ‘B to A’)
or that remain the same (‘stable’) upon differentiation (***P, 2.23 10216,
P values by Wilcoxon test; whiskers correspond to interquartile range).
e, Genome browser for two genes of which one (OTX2) shows concordance
between expression and PC1 values, whereas a second (TMEM260) does not.
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predictions as basedon the vote frequencydifference (Fig. 2d, 30%graph).
TheRandomForestmodelnotonly indicates that chromatin state features
provide information on changes in interaction frequency, it also allows us
to determinewhich chromatinmarks aremost predictive. Specifically, the
‘mean decrease’ of the Gini index for each chromatin mark indicates the
importance of a given feature during classification. In this regard, we
found that change in H3K4me1 density is the most important feature in
predicting changes in long-range chromatin interactions (Fig. 2e and Ex-
tendedData Fig. 4b, c). AsH3K4me1 is presentmostly at poised or active
enhancers21,22, and as enhancers are known to engage in looping interac-
tions that exist in a cell-type-specific manner23, these results suggest
that enhancer dynamics may play a role in regulating local interaction
changes during lineage specification. Consistent with this hypothesis,
40-kb regions with increased interaction frequency tend to have in-
creased enhancer density (Extended Data Fig. 4d, e).

Allele-specific chromatin organization
Normal diploid human cells contain two copies of each chromosome.
The collectionof variants ona givenparental chromosome (also known
as the parental haplotype) can be used to determine functional differ-
ences between two homologous chromosomes. Previous studies have
revealed substantial differences between alleles in gene expression,DNA
methylation, and chromatin states24–29. Apart from studies of individual
loci in the genome30–32, little is known about the variability in higher-
order chromatin structure betweenhomologous chromosomes. Recent
work from our laboratory15 has demonstrated that Hi-C data can be
re-purposed to reconstruct chromosome-spanhaplotypes,which allows
for the study of chromatin state and gene expression as a true diploid.
We generated chromosome-span haplotypes incorporating,93.5%of
all heterozygous variants for H1 from a combination of Hi-C data sets,
whole genome sequencing, and local conditional phasing15 (Fig. 3a).
We observe a high level of concordance among the predicted haplo-
types and paired sequence reads from data sets with ‘long insert’ sizes
(Extended Data Fig. 5a), indicating that the reconstructed haplotypes
are of highquality.Next,we re-analyseddata sets fromHi-C,mRNA-seq,
ChIP-seq, methylC-seq, and DNase-seq experiments and determined
from which parental haplotype each sequence read was derived (arbi-
trarily termed the ‘p1’ and ‘p2’ allele, as we cannot determine which
is the maternal or paternal copy from sequence information alone)
(Fig. 3b and Extended Data Fig. 5b).
From the haplotype-resolvedA and B compartment patterns across

the p1 and p2 alleles in each lineage, we found that homologous chro-
mosomes have highly similar A/B compartment patterns (Fig. 3c and
Extended Data Fig. 5c–e), with only 0.6–2.3% of the genome having
different A/B compartments between alleles in any given cell type (Ex-
tendedData Fig. 5f).Notably, rare regionsof the genomedo showchanges
inA/Bcompartment status betweenalleles (Fig. 3d), but arenot enriched
for either allele-biased or known imprinted genes (Extended Data
Fig. 5g, h). On the contrary, regions of the genome containing allele-
biasedor imprintedgeneshavea subtlebut statistically significant increase
in the variability of A/B compartment scores between alleles (Fig. 3e).
Likewise, the genomic regions with allelic chromatin states have greater
variability in A/B compartment scores (Fig. 3f). This indicates that
althoughmost allele-biased and imprinted genes do not have differen-
tial compartment status between alleles, theremaybe subtle differences
in higher-order chromatin structure between homologous chromo-
somes at allele-biased regions, reflecting their underlying allele biases in
activity. Lastly, similar toA/Bcompartmentpatterns, topological domain
patterns appear consistent between alleles (Extended Data Fig. 6a, b).
Together, these results suggest that the global foldingpatterns of homol-
ogous chromosomes are highly similar.

Allelic imbalances in gene expression
Previous studies of allele-resolved gene expression have identified wide-
spread imbalances in gene expression between different alleles24–27,33.
However, it remainsunclear towhat degree allele-biased gene expression
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Figure 2 | Domain-wide alterations in chromatin interaction frequency
and chromatin state. a, Chromatin interaction heat maps in H1 lineages
and IMR90 fibroblasts. Also shown are domain calls in ES cells and the
directionality index (DI) in each lineage. b, Changes in interaction frequency
between ES and MS cells. Regions with higher interaction frequency in ES
cells are shown in blue, while regions with higher interaction frequency in MS
cells are shown in yellow. TADs having a concerted increase or decrease in
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frequency listed. Domains that do not show a concerted change are shown in
grey. c, Boxplots of Pearson correlations coefficients between interaction
frequency changes and chromatin mark changes across TADs for each
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within 1.53 the interquartile range. d, Classification accuracy of the
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varies among different lineages of a single individual. To address this, we
re-analysed haplotype-resolved mRNA-seq data and identified allelic
biases in gene expression across the five H1 lineages. A total of 1,787
genes showed allelic bias in gene expression in one or more lineages
studiedhere, representing,24%of all testable genes (false discovery rate
(FDR)10%,Fig. 4a).Most allelic differences in expression arenot ‘on/off’
events, but instead reflect biases in the level of expression fromeach allele
(Fig. 4b). Further, allele-biased genes include both lineage-specific and
constitutively expressed genes (ExtendedData Fig. 6c, d), andpatterns of
allelic bias can also be constitutive or cell-type variable (Fig. 4c, d). Only
in rare cases do genes switch expression from one allele to the other
between cell types.
As expected, genes subject to genomic imprinting are enriched among

genes with allelic biases in expression (Fig. 4e), though these represent

,1% of allele-biased genes (Fig. 4f). Although imprinted genes often
occur in clusters, the majority of allele-biased gene expression is not
clustered in the genome (ExtendedData Fig. 6e). Taken together, these
data suggest thatmost instances of allele-biased gene expression are due
tomechanismsother thangenomic imprinting.Onepossible regulatory
mechanism that could give rise to allele-biased expression would be
allelic bias in activity of cis-regulatory elements near these genes. Indeed,
regionsof the genomethat showallele bias inhistone acetylation, histone
methylation, CTCF binding, and DHS are closer to allele-biased genes
than randomly selected genomic regions (Fig. 4g). Furthermore, allelic
gene expression is strongly correlated with DNAmethylation or chro-
matinmodification state at promoters (Fig. 4h, i). Of the 247 genes that
contain heterozygous variants in their promoter regions and display
biased transcription in at least one lineage, a majority exhibit allele-
biased chromatin modifications or DNAmethylation at the promoter
(Fig. 4h). Interestingly, 29%of the testable genes that have allele-biased
expression show no evidence of allelic bias in chromatin state or DNA
methylationat thepromoter (Fig. 4h), raising thepossibility that elements
outside of promotersmay be responsible for the allelic gene expression.
We identified 726, 969, and 5,769 allelic enhancers13 that showed allele

bias in histone acetylation, DHS, and DNA methylation, respectively
(Fig. 5a). We observed a general concordance in allelic biases between
enhancers exhibiting allelic histone acetylation and enhancers showing
allelic DHS (Fig. 5a). However, we observe only modest concordance
between DHS or acetylation defined enhancers with those identified
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based on allelic DNA methylation (Fig. 5a). This may reflect greater
power in identifying differentially methylated regions between the two
alleles.Alternatively, thismay reflect the presence of ‘poised’ enhancers,
where there is not a strict relationship betweendifferences inDNAmeth-
ylation and enhancer or DHS state34,35. Enhancers with allele-biased
acetylationaregenerally locatedcloser togenes that also showallele-biased
expressionwhen comparedwith enhancers that lack allele bias (Fig. 5b
and Extended Data Fig. 6f). A majority (66%) of the 640 allelic genes
that display strong Hi-C interactions with allelic enhancers also show
concordant allelic activity between the enhancer andpromoter (Fig. 5c,
ExtendedData Fig. 7, andMethods). Additionally, enhancer-gene pairs
linked by relatively strong Hi-C interactions show greater correlation
between allelic enhancer activity and allelic gene expression compared
with pairs linked byweakerHi-C interactions (Fig. 5d). To test if allelic
enhancers indeed form specific contacts with allele-biased genes, we
performed 4C-seq31,36 with 6 allele-biased enhancers and identified that
4 out of these 6 allelic enhancers showed specific 4C interactionswith a
nearbyallele-biased gene (Fig. 5e, ExtendedData Fig. 8 andSupplemen-
tary Table 4). Taken together, our results strongly support that allele-
biased enhancer activity is apossiblemechanismunderlyingallele-biased
gene expression.
To determine if part of themechanism of regulation by allele-biased

enhancers also involvedallelic chromatin loopingbetweendistal enhancers
andputative target genes,we tested for the presence of allele-biasedHi-C
reads at allele-biased enhancers throughout the H1 genome by aggre-
gating all Hi-C reads between allelic enhancers and the promoters of
nearbyallelic genes.Weobserved that alleles containingenhancer activity
generally have higher numbers of chromatin interactions with the tar-
get promoters (Extended Data Fig. 9a). This result is confirmed by re-
analysis of previous high-resolution 4C-seq results31. Two loci (HAPLN1
andMAN1C1) show a similar trend between allele bias in enhancer–
promoter interactions with the allelic enhancer acetylation and gene
expression levels (Fig. 5f andExtendedData Fig. 9), though the trend in
the allelic 4C-seq does not meet statistical significance. The remaining
two loci (FAM65B, PXK) appear to have nearly equal interaction fre-
quencieswith the target promoters. Taken together, these results suggest
that the allele-biased enhancers can impart allele-biased gene expression
either through stable higher-order DNA looping between the two alleles
or through potential allele-specific enhancer–promoter interactions.

Discussion
We have presented genome-wide chromatin interaction maps in H1
human ES cells and four H1-derived lineages. We observed dynamic re-
organization of higher-order chromatin structure during ES cell differ-
entiation at multiple hierarchical scales.We found extensive switching
between the A and B compartments during ES cell differentiation, and
observed that distinct subsets of genes have concordant A/B compart-
ments status and expression levels. In this regard, these results are similar
towhat has been seenwith nuclear lamina tethering studies20,37–39, where
the expressionof only a subset of genes is affectedby compartment changes,
while other genes remainunaffected.Changes in compartment statusmay
influence the accessibility of genomic regions to transcription factors or
other regulatory proteins, whichmaybe particularly important for certain
subsets of genes.
In addition,wehave observed local alterations in chromatin interaction

frequency within TADs. These local changes are best predicted by changes
in levelsofH3K4me1andthedensityof enhancerelements.This is inagree-
mentwith recent 5C studies demonstrating that cell-type specific inter-
action regions are enriched for Smc1,mediator, and transcription factor
binding sites7. Taken together, these results suggest that enhancer elements
likely play an important role in shaping local higher-order chromatin
structure throughout the genome. In addition, by analysing patterns of
chromatin interactionsoneachparental allele,weobserve relativelyminor
global changes in higher-order chromatin structure between alleles.
The chromatin interaction maps generated in this study also allowed

the reconstruction of chromosome-span haplotypes for the H1 genome.
This data set represents one of the first studies of allele-biased expression
across multiple cell types of a single individual, as well as analysis of chro-
matin state at the linked cis regulatory elements.Ourdata setwill serve as a
valuable tool for the community to better understand the gene regulatory
networks controlling pluripotency and differentiation of human embry-
onic stem cells.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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METHODS
Cell culture and previous data sets analysed.H1human ES cells andH1-derived
cellswere cultured as previously described13. ChIP-seq experiments forCTCFwere
performed using previously published methods and antibodies13,40. Hi-C libraries
were generated as previously described5. Two biological replicates of Hi-C data
were generated for each lineages in order to assess the reproducibility of the data.
Hi-C and ChIP-seq libraries were sequenced on the IlluminaHi-Seq 2000 andHi-
Seq 2500 platforms.mRNA-seq, ChIP-seq for histonemodifications andmethylC-
seq data sets have been previously published13. DNase-seq experiments have been
previously described elsewhere14.
Sequence read alignment. The following description applies for the alignment of
DNAmethylation,ChIP-seqandDNase-seqdata sets. Single-endsequencingdatawas
mapped to a variant masked reference genome (hg18) using Novoalign. Unmapped
and non-uniquely mapping reads were removed, and PCR duplicate reads were
removed with Picard. Reads were processed with the Genome Analysis Toolkit
(GATK)41. Specifically, reads underwent indel recalibration and variant realignment.
Lastly, reads that overlapped with variant loci were split into the ‘p1’ and ‘p2’ allele
according to whether the base in each sequencing read matched the sequence from
either the p1 or the p2 alleles.
For Hi-C data sets, read pairs were mapped independently to the variant masked

genome using Novoalign. Reads were then manually paired using in house scripts.
Non-uniquelymapping, unmapped reads andPCRduplicate readpairswere removed.
Reads pairs were then split into single reads and processed through the same GATK
pipelinedescribedabove including indel re-alignmentandvariant recalibration. Finally,
read pairs were manually re-paired using in house scripts.
FormRNA-seq, wemapped the paired-end data to a variantmasked reference.We

used Useq software to first process the variant masked genome to create a splice
junction reference. Reads were thenmapped to the Useq processed reference genome
using Novoalign. Lastly, we converted the read alignment locations from the Useq
processed genome back to hg18 coordinates using Useq.
Whole-genome sequencing, genotyping and haplotyping.Whole genome sequen-
cing (WGS) data for the H1 genome was downloaded from the Sequence Read
Archive database (SRA049981). Reads were mapped to the hg18 reference genome
usingNovoalign. Unmapped and non-uniquelymapping readswere removed using
in house scripts. PCR duplicate reads were removed using Picard. The data was
processed through the Genome Analysis Toolkit (GATK) best practices guidelines.
We performed indel recalibration, variant realignment, variant calling using the
Unified Genotyper, and variant recalibration.
Haplotypingwas performedusing the previously describedHaploSeqmethod15.

Briefly,Hi-C reads fromeachof theH1derived lineageswereusedas input sequencing
into the HapCUT software42 in order to generate haplotype predictions. For final
haplotype calls, Hi-C data was combined with WGS mate-pair data for the H1 gen-
ome. HapCUT generates several ‘blocks’ for each chromosome. The vast majority of
variants on each chromosome are in the ‘most variants phased’ (MVP) block. The
MVP block for each chromosome was used as a ‘seed haplotype’ for local conditional
phasing using population sequencing data from the 1000 genomes project using the
Beagle v.4.0 software43. This generates two haplotypes for each chromosome, one for
the maternal allele and one for the paternal allele. As we do not have information
regarding the parent of origin in theH1 genome, we arbitrarily define each allele as the
p1 or p2 allele (p1 and p2 for parent 1 and 2, respectively). The p1 and p2 allele for
different chromosomes are not necessarily derived from the same parent, as this
information is only accessible if the sequence of H1’s parents were also available.
Haplotype alignment bias.Althoughwemapped the ChIP-seq,DNase-seq,Hi-C
and DNA methylation data sets to a variant masked genome, we recognize that
there could still be local alignment biases favouring a given allele. To account for
this, weperformed a two-step filtering process. First,we generated simulated reads
that span each position surrounding a variant location in the genome. SNPs and
indels that showed .5% and .10% biases, respectively, were excluded from all
downstream analyses, as these variants show an inherent mapping bias. Second,
for each variant in the genome, we calculated the coverage over the variant based
onWGS data. Based on theWGS data, we expect each variant to have near equal
coverage between the two alleles. Any variant that had sequencing coverage greater
than 3 standard deviations above the mean for each haplotype along a chromo-
some was excluded, as were variants that showed a Benjamini corrected binomial
P value of#0.05 when comparing the WGS read coverage on each allele. Lastly,
analysis of allele-biased coverage at a SNP level can be very sensitive to genotyping
errors, in particular if a homozygous variant is erroneously called as heterozygous.
To account for this wemade a null hypothesis that all called heterozygous variants
were actually homozygous. We excluded any heterozygous variant with a GATK
derived genotype P value of greater than 0.05 (after Benjamini correction). This
excluded roughly 2% of all heterozygous SNPs in the genome as having genome
sequencing coverage that could be expected for a homozygous variant.

Estimation of random collision events inHi-C data.We estimated random col-
lision events by calculating the intermolecular ligation rate between a nuclear chro-
mosome (chrN) and themitochondrial chromosome (chrM).The interacting space
between chrN and chrM can be defined bymultiplying (roughly 16 kb per chrM3

numberof chrMper chrN) and (roughly 6.16Gbperdiploidnucleus). Thenumber
of chrM per chrN was calculated from ChIP-seq input sequencing data.
Number of chrMper chrN5Number of read counts for chrM/number of read

counts for chrN3 6.16Gb per chrN3 16 kb per chrM.
The number of random collision events between any given two loci (40-kb bin

size) was estimated as following.
Numberof randomcollision events per 40 kb25number of intermolecular inter-

actionsbetweenchrNandchrM/interacting spacebetweenchrNandchrM340 kb2.
The estimated randomcollision events are summarized in SupplementaryTable 2.

Topological domain calling.Wesystemically identified topological domains based
on the directionality index (DI) score and aHiddenMarkovModel (HMM)as pre-
viously described6. The number of identified topological domains across human
genome was 2,468, 2,489, 2,202, 2,144 and 2,407 for ES, ME, MS, NP and TB cells,
respectively.According to the topological domainpatterns, genomeswerepartitioned
into domains, boundaries and unstructured regions as previously described.
Identification of A and B compartments. Identification ofA andB compartments
was performed conceptually similarly to what has been previously described5, though
with severalmodifications.We used the normalized 40-kb interactionmatrices for
each cell type and calculated the expected interaction frequencybetween two40-kb
bins given the distance separating them in the genome. We used a sliding window
approachwith a bin size of 400 kb and a step size of 40-kb to generate an observed/
expected matrix. The observed frequency was the sum of all observed interaction
frequencies of the 40-kb bins making up the larger 400-kb bin. Likewise, the
expected frequency was the sum of the expected frequencies of each of the 40-
kb bins making up the larger 400 kb bin. This value was used to generate the
observed/expected. This was then converted to a Pearson correlation matrix and
subsequently used for principal component analysis as previously described5. Speci-
fically,weused the ‘cov’ function inR togenerate a covariancematrix fromthePearson
correlationmatrix, and thenweused the ‘eigen’ function inR to generateEigen vectors
and Eigen values from the covariance matrix. The first principal component for each
chromosomewasused to identify regionsof thegenomeasbelonging to either theAor
B compartment. The direction of the Eigen values is arbitrary, and therefore positive
values were set to ‘A’ and negative valueswere set to ‘B’ based on their associationwith
gene density.
To identify regions of the genome that switched A/B compartment status with

differentiation, we first identified regions with statistically significant variability in
PC1 values across all cell types usingANOVA. Second, we considered only regions
where both biological replicates showed changes in PC1 values from positive to
negative or vice versa. This allowedus todefine the 36%of the genome that changes
compartment status in at least one lineage.
Identificationof geneswith concordant expressionandA/Bcompartment status.
To define genes with concordant changes in expression and compartment status,
wecalculated the covariancebetween the vectorof the log2 of gene expressionvalues
and vector of PC1values for each gene across the six lineages analysed.We use this
calculated covariance as ametric to quantitatively define ‘concordance’. To calcu-
late aP value for the covariance for each gene,we compared these observed covari-
ance values to a random background distribution. The background distribution
was generated by randomly shuffling the vector of log2 of gene expression for each
gene and then calculating the covariance between the random gene expression
vector and the PC1 values. Thiswas repeated 1,000 times for each gene, and a rank-
based P value could then be calculated for the observed covariance values. These
genes were shown to be enriched for lowCpG content promoters, which is defined
here by an observed/expected CpG content of ,0.35. GO terms analysis of this
subset of genes was performed using the DAVID GO terms website.
Identification of A andB compartments in each allele. Identification of A and B
compartments in each allele was performed similarly as described in the above sec-
tion, thoughwith severalmodifications.Due to the low density ofHi-C interaction
frequencies in each allele, we used a sliding window approach with a bin size of
1-Mb and a step size of 200-kb to generate an observed/expectedmatrix. The first
principal component in each allele was used to identify regions of the genome as
belonging to either the A or B compartment. The direction of the Eigen values is
arbitrary, and therefore the direction was determined according to the correlation
coefficient values with the PC1 values generated in the above section.
Changes in intra-domain interaction frequency.To compute the change in inter-
action frequency between cell types, we first merged the Hi-C data between two
replicates for each cell type. Themerged, normalized interactionmatrices were quan-
tile normalized between all lineages to accommodate for differences in frequency
strictly due to sequencingdepth. The differences between cell typeswere computed
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by simply subtracting the interaction frequency of each bin Iij of ES cells from the
differentiated cell types (as shown in Fig. 2b).
To assess for concerted domain-wide changes in interaction frequency, we calcu-

lated two values for each domain: the fraction of interacting bins in the domain that
showed an increase in interaction frequency and the fraction of bins that showed a
decrease in interaction frequency. To compare these numbers to what would be
expected at random, we calculated the same two values for each domain where the
bins of the domain where made up of randomly selected intra-domain interacting
bins from throughout the genome, keeping the portion of bins in each domain
separated by a given genomic distance constant. This randomizationwas performed
10,000 times for eachdomain.At random, each domain on average had roughly 50%
of bins that increased in interaction frequency and 50% that decreased in interaction
frequency. By seeing deviations from these expected values, we could assess for ‘con-
certed’ changes in interaction frequency. We assigned a rank-based P value of the
degreeof ‘concertedness’ for eachdomainbycomparing the actual observedportionof
the domain that was either increased or decreased in interaction frequency with what
was observed at random for each domain. These P values were adjusted for multiple
testing using Benjamini correction, and we considered any domain as having under-
gone a concerted change if the final corrected P value was less than 0.001 (0.1% FDR).
Changes in intra-domain interaction frequency between alleles.Domain-wide
interaction frequency differences between alleles were calculated by using the
same approach described in the above section. If the domain-wide average inter-
action frequencydifferencebetween alleleswas significantlymore than randomized
data (P value 0.001), the corresponding domains are considered as having allele
specific domain-wide interaction frequency changes.
Correlation coefficient between domain-wide interaction frequency changes
andmodification changes.Thedomain-wide correlations shown inFig. 2c between
changes in interaction frequency and various chromatinmarks were calculated as
follows. For each domain, the intra-domain interaction frequency differences between
ES cells and each differentiated lineage was calculated for each 40-kb interacting
bin of the domain (wherewe define a single ‘interacting bin’ as being formedby the
interaction of two underlying 40-kb genomic bins). These values were considered
as the first vector for the correlations. The vector of histone modification values
was calculated as follows. For each 40-kb interacting bin, the enrichment of a given
chromatinmark in the two 40-kb bins that compose the interaction was averaged.
The average enrichmentwas thenmultiplied by aweight proportional to the genomic
distance between the two 40-kb bins. This weight was based on the global average
of Hi-C interaction frequencies from six lineages analysed between loci separated
by a given genomic distance. The two vectorswere used to calculate a Pearson cor-
relation in each chromosome, which reflects how change in domain-wide inter-
action frequency correlates with domain-wide chromatin mark changes.
The Random Forest classification model. We built a Random Forest model to
better understand which chromatinmodificationsmay bemost predictive of changes
in interaction frequency between any two given loci. The aim of the Random Forest
model was to classify 40-kb interacting bins as either increased or decreased in inter-
action frequencygiven informationabout theenrichmentofvarious chromatinmarks,
DHS andCTCFbinding sites. The utility of theRandomForestmodel is twofold: first,
by assessing the accuracy of the model using observed data, we can learn whether the
information supplied to the model (in this case the chromatin state, DHS and CTCF
data) is predictive of the outcome, namely changes in interaction frequency. The
second powerful aspect of the model is that it allows us to assess which input data
supplied to themodel is most informative, allowing us to determine which chromatin
state features may bemost predictive of changes in higher-order chromatin structure.
Themodelwas built as follows: 40-kb interacting bins in the genomewere classified

into two groups, ones that increased in interaction frequency, and ones that decreased
in interaction frequency. These changes were defined if the 40-kb based interaction
frequencies increased or decreased more than twofold in the differentiated lineage
compared to those in H1 ES cells. We only considered interacting bins separated by
less than 2Mb.We added a pseudocount value to the average interaction frequencies
when we calculate fold changes to allow for comparison of zero values. The resulting
criteria yielded 768,793 interacting bins as either losses or gains. Chromatin state
changes of H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3, H3K36me3,
DHS signal, and CTCF were also calculated. For each 40-kb bin, RPKM values for
each chromatin mark were calculated. Fold changes of RPKM values were calculated
by comparing with RPKM values in H1 ES cells. Those 8 chromatin marks were
assigned to each interacting region, thus for each interaction (consisting of two inter-
acting 40-kb bins) we can construct a 1 by 16 feature vector.
Using those feature vectors, we built a classificationmodel between gain and loss of

interactions using a Random Forest R package with default parameters except for
specifying themodel touse500 trees.Theperformancewasmeasuredaccording to two
criteria, the out-of-back error rate achieved from the Random forest model and the
tenfold cross validation. We compared out-of-back error rate to tenfold cross valid-
ation and observed very similar results (shown in Extended Data Fig. 4a).

As a final result, the Random Forest model gives vote frequencies for predicting
whether a given interaction is increased or decreased. The difference in vote frequency
between the two states reflects the confidence of themodel in a givenprediction,with a
larger vote frequency difference indicating a higher degree of confidence. The sum of
the vote frequencies is equal to 1.As an example, in the casewhere themodel couldnot
predict any changes in interaction frequency, the vote frequencies would be expected
toboth equal 0.5. If the vote frequency for the ‘loss of interaction’ classwas greater than
0.5, the interacting bin would be classified as having undergone a loss of interaction.
Likewise, if the ‘gain of interaction’ vote frequency was greater than 0.5, the bin was
classified as a gain of interaction. Again, the difference in vote frequencies between the
two classes reflects the degree of confidence of the model in a given prediction.
When we built the classification model, the balance for the number of inputs

between two classes is important. If the model includes more gain of interaction fea-
tures rather than loss of interaction features, themodel ismore likely trained to predict
a gain of interactions. To avoid this issue, we randomly selected the same number of
gain of interaction and loss of interaction feature vectors while building the classifica-
tion model.
The Random Forest model also provides a measure of the importance of each

variable during classification as the ‘mean decrease’metric of theGini index. For a
given variable, higher the mean decrease in Gini index, the more important the
variable is during classification.
Identification of allelic biased genes, enhancers and SNPs
Allelic genes. We considered the two replicates of mRNA-seq data and used a
negative binomial distribution (10% FDR) to calculate significantly biased genes
between the two alleles, where genes are defined bymerging isoforms (fromRefSeq).
We used the edgeR software package in R for calculating the P values.
Allelic SNPs.We estimated if a SNP is allele-biased on different types of readouts.
In particular, we usedChIP-seq,DHS, andCTCFdata sets independently to obtain
readouts of each SNP between the two alleles. We then used a binomial statistic
(with an expectation P5 0.5) to identify significantly biased SNPs for a given data
set. FDR was based on 1,000 random permutations.
Differential methylation among alleles (DMRs). Bisulfite sequencing reads were
mapped using Novoalign methylation aligner to an H1 variant masked hg18 ref-
erence genome.Duplicated andpoorlymapped readswere removed, and the reads
that contain SNPswere retained for downstream analyses. Readswere then assigned
to either the p1 or the p2 allele on the basis of the SNPs present in each read. During
this assignment, certain SNPs could not be resolved between the two alleles because
of considerations of bisulfite conversion. Specifically, when a SNP is C/T (or listed
as A/G on the reverse strand), the conversion of methyl-C to T by bisulfite will
make it impossible to distinguish whether a given read is a methylated cytosine
fromone allele or a thymidine from the other allele. In these cases, these SNPswere
excluded fromdistinguishing fromwhich allele a given readwasderived.After resolv-
ing into eachallele,CpGswere called andnearbyCpGweremerged (within 100bp).
Of note, in instances where a SNP contains a cytosine, it would be impossible to
distinguish whether a difference between two alleles is due to the polymorphism
or due to the change in methylation. As such, any position in the genome with a
SNPwas excluded fromour calculation of the percentagemethylation over a given
window.We called ASM in each of these CpGs using Fisher’s exact test with 10%
FDRaftermultiple testing correction as a threshold for significance.We randomly
shuffled the methylation and unmethylation values for a given haplotype (for a
CpG) and used these random estimates to obtain FDR.
Allelic enhancers. To study allele bias at enhancers, we first calculated the com-
binedcoverageofwholegenomesequencingdata andbisulfite sequencing (without
regard for methylation status). Any enhancer where one of the two alleles con-
tained less than 35% of the total allele resolved reads at the enhancer was excluded
as having an inherent bias in mapping between the two alleles. To systematically
study allelic enhancers, we combined several enhancermarks to obtain a combined
acetylation bam file. This combined bam file gives us the required coverage in an
allelic context to performan in-depth analyses. Inparticular,we combineddata from
H4K8ac,H4K91ac,H2BK120ac,H3K18ac,H3K23ac,H3K27ac,H3K4ac,H2AK5ac
andH3K9acmarks.Using this combinedbamfile,weexaminedallelic SNPsdescribed
as above. For evaluating allelic enhancers, we obtained readout for enhancers defined
in ref. 13 (6 2.5 kb from enhancer peaks) between the two alleles. Then we used
binomial to obtain significance at an FDRof 10%, as evaluated by the randomper-
mutation analyses (1,000 permutations). The same analysis was used to call allele-
biasedenhancersbasedonDHSdata.For theanalysis of allelebias inDNAmethylation
at enhancers, we considered any enhancer as having allele-biased DNA methyla-
tion if at least one ASM bin overlapped with the enhancer. If more than one bin of
ASMoverlappedan enhancer,we checked to seewhether thepatterns ofASMwere
concurrent between all bins. If there were divergent patterns between ASMbins at
an enhancer, these enhancers were excluded.
Distance of allelic enhancers to allelic genes.We compared the distance between
allele-biased enhancers, as identified by histone acetylation levels with randomly
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selected enhancers, to test the hypothesis that if allele-biased enhancers regulate
allele-biased genes, they should generally be closer to allele-biased genes than should
randomly chosen enhancers (Fig. 5b). This analysis was complicated by the fact that
the rates of heterozygous SNPs near allele-biased genes are higher than for non-
allele-biased genes in the genome (Extended Data Fig. 6f). This creates a situation
of possible ascertainment bias, owing to the fact that enhancers near allele-biased
genes will therefore tend to have slightly higher allele-resolved read coverage as
compared with randomly chosen enhancers throughout the genome. To account
for this, when comparing the distance of allele-biased enhancers to allele-biased
genes with randomly chosen enhancers, we selected random enhancers to match
the coverage profile of allele-biased enhancers. This was accomplished by binning
all enhancers into increments of 50 sequencing reads, from0 to 49, 50 to 99, etc, up
to 1,700 reads. For each identified allele-biased enhancer, we selected 100 random
enhancers from the same coverage bin. This limits the effects of local variation in
heterozygosity rates throughout the genome on the likelihood of identifying allele-
biasedenhancersnear allele-biasedgenes.As such, the results inFig. 5bareprobably
not due to the possibility of having greater statistical power for calling allele-biased
enhancers near allele-biased genes (because of greater heterozygosity rates andhigher
numbers of allele-resolved reads).
Enhancers, gene expression levels, lineage-specific genes, housekeeping genes
and imprintinggenes.The enhancer regionswere defined as previously described44.
Briefly, enhancer chromatin signatures were trained for p300 binding sites in H1
ES cells usingRFECS algorithmbased onH3K4me1,H3K4me3 andH3K27ac sig-
nals at 100-bp bin size. Next, these modification signals in all cell lines were tested
to predict enhancers. The predicted enhancers that overlap with H3K4me3 peaks
orwithin 2.5 kbof the transcription start sitewere removed. Enhancersweremerged
from all cell types if they are located close to each other (,2 kb) by taking themid-
point at the centre of the new enhancer.
For the gene list, gene expression levels, housekeeping genes and lineage-specific

genes we used the same data set as described in ref. 13. For imprinting genes, we
obtained known imprinted genes downloaded from publicly available imprinting
gene database (http://www.geneimprint.com/).
Linking between allelically expressed genes and allele-biased promoter activ-
ities. To investigate how many allele-biased gene promoter activities are consistent
with allelic gene expression levels, firstwe selected allelic genes that contain at least one
allelic SNP in their promoter regions (1.5 kb upstream and downstream from tran-
scription start site). We only considered allelic SNPs defined by DHS, H3K4me3,
histone acetylation, combined H3K9me3 and H3K27me3, and DNA methylation
because the signatures of those chromatin marks at the promoter regions are well
defined. If promoters aremarkedbyallelic SNPs fromH3K9me3/H3K27me3orDNA
methylation and the allelic gene expression levels are consistent with the allele-biased
promoter activities, the genes canbe explainedbyallelic repressivemarks. If promoters
are marked by allelic SNP from histone acetylations, H3K4me3, and DHS, and allelic
gene expression levels are consistent with the allele-biased promoter activities, the
genes can be explained by allelic active marks.
Identification of enhancer–promoter interactions. To investigate the linking
between allelic genes and allelic enhancers we first defined enhancer-promoter inter-
actions using Hi-C interaction frequency data. Hi-C interaction frequencies were
calculated in terms of 5-kb windows and normalized using HiCNorm. After that,
we considered all pairs of promoters and enhancers in each chromosome. Pro-
moter regions were fixed as 6 5 kb surrounding transcriptional start sites and
enhancer regions were defined by using different window sizes as: 5 kb, 10 kb,
20 kb, 30 kb, 40 kb, 50 kb, 75 kb, 100 kb, 300 kb and 500 kb surrounding the centre
of each enhancer (Extended Data Fig. 7). The interaction frequencies between a
promoter and an enhancer at a certain window size were calculated as (interaction
frequency / window size of an enhancer)3 5 kb. Final interaction scores were de-
fined as summation of interaction frequencies between promoter and enhancer
with multiple window sizes. To calculate significance of each enhancer–promoter
interaction, we generated a random interaction frequency score by randomly permu-
tated interaction frequencies between thepromoter andenhancer in eachwindowsize.
Thedistributionof randominteraction frequency scoreswas fit toWeibull distribution
and then P values of the interaction frequency in each enhancer–promoter pair were
calculated. At a givenP value cutoff, we defined enhancer–promoter interactions. At a
P value cutoff of 131023, more than 80% of interactions are reproducible between
two biological replicates (Extended Data Fig. 7b). By taking this P value cutoff, we
defined 339,761, 354,529, 319,169, 158,453, 250,495, and 210,010 enhancer–promoter
interactions for ES,ME,MS,NP, TB and IMR90 cell lines between 103,982 enhancers
and 18,532 promoter regions. These enhancer–promoter interaction numbers can be
changed according to cutoff P values.
Comparison of enhancer–promoter interaction with other experiments. To
validate predicted enhancer–promoter interactions we compared the interaction fre-
quency scores to 5C scores and DNaseI quantitative trait loci (dsQTL) informa-
tion. 5C is a chromosome conformation capture (3C)-based approach to measure

the interactions of all versus all targeted regions. For the H1 ES cell lines, we down-
loaded previously generated 5Cdata23 and compared this to our interaction frequency
between enhancers and promoters. We observe very strong correlative patterns
between 5C and our interaction frequency scores (Extended Data Fig. 1b).We can
also observe that interacting pairs tend to showhigher 5C scores compared to non-
interacting pairs.
We also compared interaction frequency scores to dsQTL relationships. dsQTL

data provide functional relationships between DHS and their target promoters based
on QTL information45. We calculated enhancer–promoter interactions scores again
for all pairs of DHS and promoter regions based on dsQTL data. Interactions defined
by dsQTL were considered as target relationships, otherwise off-target relationships.
According to interaction distance, enhancer–promoter interaction scores were calcu-
lated between target and off-target gene relationships. We observe that target gene
relationships tend tohavehigher interaction frequency scores (ExtendedDataFig. 7d).
Pearson correlation coefficient between allele-biased gene-enhancer pairs.We
calculatedPearson correlation coefficients between allele-biased gene-enhancer pairs.
First we generate 1 by 10 vectors for each allelic gene and allelic enhancer using the
data fromH1 human ES cells and the four H1-derived lineages. For each lineage,
we assigned log2 (p2 allele read counts / p1 allele read counts) and log2 (p1 allele
read counts / p2 allele read counts) values as allelic bias information. After con-
structing two 1 by 10 vectors for both allelic gene and allelic enhancer, we calcu-
lated the Pearson correlation coefficient between them.
Identification of allelic Hi-C interactions. We investigated allelic Hi-C inter-
actions for allelic gene-enhancer pairs.We considered allelic interactions between
10-kb surrounding regions for both the transcription start site and enhancer, respec-
tively.Many of allelic gene-enhancer pairs do not have any allelic interactions, but
allelic gene-enhancer pairs show concordance if they are connected by allelicHi-C
interactions.
4C-seq experiments anddata analysis. 4Cseqwasperformedessentially as described
previously36. Six bait regions were chosen at allele-biased enhancer elements con-
taining SNPs thatwould allow forperformance of allele specific 4C-seq, as has been
previously described31. Primers were designed such that the first read of a paired-
end read would sequence the primer sequence derived from the bait region and
read into the target region of interest. The second read in the pair would read a
portion of the bait region containing the SNP of interest (see Extended Data Fig. 8
for a diagram of the experimental strategy). The primers were designed to include
the Illumina adaptor sequences necessary for sequencing as well as the presence of
barcodes derived from Illumina’s TruSeq adaptors that allowed formultiplexing of
4C-seq reactions. We used two 4 base cutters, NlaIII and DpnII, for the first or
second restriction enzyme digestion, depending on the locus in question (See Sup-
plementary Table 4). 4C-seq templates were prepared as previously described36. 16
PCR reactions using 200ng of 4C template were performed for 30 cycles for each
bait region and pooled together. The PCR reactions underwent a final purification
stepusingAMPurebeads (Beckman-Coulter) according to themanufacturer’s instruc-
tions (using a bead-to-sample ratio of 1.8). The concentrations of each 4C library
were calculatedusing theKAPAqPCR systemusing a standard curve. The libraries
were then combined and spiked in with other non-4C sequencing libraries for
sequencing on the Illumina Hi-Seq 2500 machine.
Sequence reads were processed as follows. For each read, the first and second

sequencing reads were checked to identify the presence of the primer sequences and
any expected portion of the bait region. Any sequence with greater than 20% mis-
matches to the expected bait region was discarded. The reads were trimmed such that
each readwas represented as a 36-mer,with 20bpderived from the bait region and the
subsequent 16bp, presumably containing the target region of interest. Based on the
SNP identified in the second sequencing read derived from the bait region, each of
these files were split into allele specific 4C-seq FASTQ files for further analysis.
4C-seq data wasmapped to a version of the hg18 genome with known SNPs in the

H1genomemasked toN, similar to other the strategy ofmapping other sequence read
data sets performed in this study. Custom indexes for this H1-masked hg18 genome
were built using the 4cseqpipe ‘‘-build_re_db’’ command. The reads were mapped
using the 4Cseqpipe software ‘‘-map’’ command to custom built indexes. Normalized
contact intensities were derived using the 4seqpipe ‘‘-nearcis’’ command for a 1-Mb
region upstream and downstream of the bait locus. We then took the normalized
fragment level interaction frequency tables and removed any fragments where a SNP
either couldcreateordisrupt apotential restrictionenzymesite between the twoalleles.
In addition, given the short sequencing read length, any fragment with an insertion or
deletion mapping within 16bp of the fragment end was removed. These final filtered
sets of normalized fragment level interaction frequencies were then processed using a
sliding window approach with the window size of 5 kb and step size of 1 kb using the
average fragment interaction frequency over the 5-kb window. These sliding inter-
action frequency files were then quantile normalized across all replicates in order for
comparison between experiments using the ‘‘normalize.quantiles.robust’’ function
(withuse.median5TRUE) in the ‘‘preprocessCore’’ library inR.Fordisplaypurposes,
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the average of two replicates was converted to bedGraph format and displayed in the
UCSC genome browser.
To identify regions that showed specific interactions with the bait region con-

trolling for the genomic distance between loci, we developed a LOWESS regression
model. We pooled the sliding window interaction frequency files from each of the
4C-seq replicates and performed LOWESS regression in Rwith the function ‘‘low-
ess’’ (with f5 0.01) on the log10 transformed interaction frequencies controlling
for the distance between the bait and potential interaction locus. We considered
any region as showing ‘specific’ interactions if it showed an increase in interaction
frequency greater than 2.5-fold over expected given the distance between the bait
and target loci. These were considered to be the bait interacting regions.
To test for any allelic bias in 4C-seq interaction frequencies, the average nor-

malized fragment level interaction frequency was calculated for each allele of each
replicate over the bait interacting regions nearest to the transcription start site
(TSS) of the putative target gene. A t-test was performed using these average values
(n5 2 for each allele) to determine statistical significance.
The primers used for each 4C-seq experiment are listed in Supplementary

Table 5 (please see SupplementaryTable 4 for information regarding thebait regions

for each experiment). In Supplementary Table 5, the Illumina barcode adaptors
are shown in red, with the regionmatching the bait region shown in blue. There is
also an additional variable region in the Illumina TruSeq adaptors that has been
incorporated and shown in green. The phosphorothioate bond is indicated by an
asterisk.
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Extended Data Figure 1 | Reproducibility of Hi-C data. a, Scatter plots
showing the correlation of Hi-C interaction frequencies between two biological
replicates for H1 ES cells and H1-derived lineages. The Pearson correlation
coefficient between replicates is shown in each plot. b, Heat maps showing
interaction frequencies of Hi-C and 5C data over the chromosome 7 ENCODE
loci. Pearson correlation coefficients between heat maps are shown together.
The correlation coefficients between Hi-C data and 5C data (PCC 0.72, 0.71,

0.58, 0.57) are similar to the correlation coefficient between two biological
replicates of 5C data (PCC0.68). c, Bar plots showing the fraction of topological
domain boundaries that are reproducible between biological replicates over
H1 and H1-derived lineages (x axis). d, Scatter plot showing the PC1 values
derived from compartment A/B analysis between biological replicates. PC1
values are used to determine the A and B compartments in each cell type. The
Pearson correlation coefficient is shown in each graph.
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Extended Data Figure 2 | A/B compartments changes are concordant with
topological domain boundaries. a, Genome browser image of the A/B
compartments determined using the previously described 1-Mb bin algorithm
(1-Mb track) compared with the 40-kb sliding window approach used in
our analysis (40-kb sliding window track). b, Pie-charts demonstrating the
fraction of the genome in the A (blue) or B (yellow) compartments in each
of the six lineages studied. Shown in black are regions with a PC1 of zero,
often corresponding to centromeric and telomeric regions of the chromosomes.
c, Percentage of the genome that changes A/B compartment upon
differentiation of ES cells into each of the five differentiated lineages.
d, Cumulative density plot of the distance between topological domain
boundaries and transition points between the A and B compartments. The red
line represents the observed distances and the grey line represents distances for

randomly generated topological domain boundaries. Domain boundaries are
closer to A/B compartment transitions when compared with random (P value
2.23 10216, Wilcoxon rank sum test). e, K-means clustering of PC1 values in
human ES cells and differentiated lineages surrounding topological domain
boundaries. Similar to Fig. 1c, domain boundaries correspond to the transition
points between the A/B compartments, and changes in A/B compartments that
occur during differentiation tend occur at domain boundaries. Regions that
stay as A or B compartment are termed stable A or stable B. Regions that stay as
A/B compartment switching are labelled as stable switch. Regions where the
boundary becomes a new switching point for theA/B compartment are labelled
new switch. Regions that previously were A/B compartment switching but are
no longer after differentiation are labelled switch loss. Regions that entirely
switch from A to B or vice versa are labelled as switch A/B.
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Extended Data Figure 3 | A/B compartment changes and gene expression.
a, Fraction of lineage-restricted genes in lineage-restricted compartment A
regions and other remaining regions. If only one or two cell lines are assigned as
compartment A across the six lineages, the region is defined as a lineage-
restricted compartment A region. For all six lineages, lineage-restricted genes
tend to be enriched in lineage-restricted compartment A regions compared to
other genomic regions (P values,0.05, Fisher’s exact test). b, Empirical
cumulative density plot of covariance values between gene expression and
PC1 score across the 6 lineages analysed. Shown in red are the observed
covariance values, while in grey are covariance values calculated after randomly
shuffling the vector of gene expression values for each lineage. The slight shift of
the red curve to the right indicates that the observed data has a subset of
genes with higher covariance values than would be expected at random,
indicating that a subset of genes have concordant gene expression and PC1
values. c, HistogramofP values for the covariance between gene expression and
PC1 values for each gene. To calculate the P value, a random background
distribution of covariance values was generated by calculating the covariance
between the PC1 values and a randomly shuffling of the vector of gene
expression values for each gene. This shuffling was performed 1,000 times. The
actual observed covariance can then be assigned a rank based P value given the
random background distribution for that gene. The plot shows that a subset
of genes is enriched for having low P values, consistent with the idea that a
subset of genes shows concordant gene expression and compartment status.
d, Pie charts showing the fraction of domains that are identified as having a
concerted increase (yellow) or decrease (blue) in intra-domain interaction
frequency between H1 human ES cells and the five lineages analysed.

e, Relationship between A/B compartment and intra-domain interactions.
23 2 tables for each lineage (or for all lineages combined, labelled as total) for
domains that show a concerted increase or decrease in interaction frequency
andwhether they show a change fromA toB orB toA compartments. Domains
are considered to undergo a compartment change if .80% of individual
bins within the domain change compartment. Odds ratio (OR) for each lineage
and the total are listed, as are P values for the association (Fisher’s exact test).
f, Box plots showing the average difference of intra-domain interaction
frequencies between H1 human ES cells and the five lineages analysed. Regions
that change from compartment B to A (blue) tend to show increased intra-
domain interaction frequencies compared to regions that change from
compartment A to B (orange). P values are less than 2.23 10216 for all lineages
(KS test). g, Box plots of the fold-change in gene expression of genes located
in domains that have a significant increase (1), decrease (2), or no change (0)
in intra-domain interaction frequency between ES cells and each of the
differentiated lineages specified. The fold-change in expression is the log2 of the
expression of a gene in the differentiated cells over ES cells (P values from
Wilcoxon rank-sum test). h, Box plots showing Z-scores of intra-domain
interactions between lineage-restricted genes and other remaining genes.
The average intra-domain interaction frequency was calculated for each
domain in six lineages analysed and converted to aZ-score. The Z-score of each
gene was assigned by the Z-score of corresponding domain that includes the
gene. Lineage-restricted genes tend to reside in domains with higher Z-scores
compared to other remaining genes. The P values were less than 13 1024

from the KS test.

RESEARCH ARTICLE

Macmillan Publishers Limited. All rights reserved©2015



d

Gain of 

interaction

***

e

0.2

0.1

0.0

0.3

0.4

Gain of interaction
Loss of interaction

-1-2-3-4-5 54321-5

0

5

Loss of 

interaction
Mean decrease Gini index

DHS

H3K4me3

H3K9me3

H3K27ac

CTCF

H3K4me1

H3K27me3

H3K36me3

6000 64006200

R
an

ke
d 

va
ria

bl
es

 in
 ra

nd
om

iz
ed

 d
at

a

c

Sorted by vote frequency difference
30% 40% 50% 100%

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 

be
tw

ee
n 

LO
I a

nd
 G

O
I (

40
kb

) 

0.0

0.2

0.4

0.6

0.8

OOB (Out-of-back)
10-fold cross validation

a

∆ 
N

um
be

r o
f e

nh
an

ce
rs

(d
iff

 - 
E

S
 p

er
 4

0k
b)

∆ Number of lineage specific
enhancers (diff - ES per 40kb)

b

ES

MSC

30

0

-30∆ 
N

or
m

al
iz

ed
In

te
ra

ct
io

n 
Fr

eq
.

ES

MSC

ES

MSC

10

10

10

10

200kb

chr14

H
3K

4m
e1

C
TC

F
56,200,000 56,600,000

Fr
ac

tio
n 

of
 in

te
ra

ct
io

ns

ExtendedData Figure 4 | RandomForestmodel to predict Hi-C interaction
changes. a, Comparison of the classification accuracy between tenfold cross
validation and the out-of-back (OOB) error rates. The two methods show
similar classification accuracies at each vote frequency threshold. b, Heat map
showing the difference of normalized interaction frequencies between H1
and MS cells. The boxes indicate the regions with relatively strong higher
interaction frequencies in H1 ES cells. H3K4me1 and CTCF ChIP-seq signals
are also shown together. H3K4me1 ChIP-seq signals are highly correlated with
changes of interaction frequency. c, Similar to Fig. 2e, ranked Gini index of
different chromatin features of the Random Forest model when using
randomized data. The red line represents the centre of the Gini index.

d, Box plots demonstrating the difference in the number of enhancers in each
40-kb bin that undergoes a gain of interactions (GOI) or loss of interactions
(LOI) upon differentiation. We observe that regions that are involved gain of
interactions tend to contain more enhancers in differentiated lineages
compared to H1 cells. We only considered regions containing more than
10 enhancers in total for H1 and differentiated cell lines (***P value
, 2.23 10216, KS test). e, Histogram showing the fraction of interactions
classified as GOI (orange) or LOI (blue) according to the difference of the
number of lineage-specific enhancers between differentiated lineages and H1
ES cells. The regions with more lineage-specific enhancers in differentiated
lineages are enriched by gain of interactions.
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Extended Data Figure 5 | Allele-specific chromatin structure. a, Validation
of haplotypes by (i) RNA-sequencing (i) andwhole-genome sequencing (WGS)
(ii). Shown in dark blue is the percentage of reads connecting variants in the
same predicted haplotype, while in light blue is the percentage of reads
connecting variants predicted to be on different haplotypes. b, Inset labelled
with an asterisk is from Fig. 3b showing DHS sequencing reads over a SNP
upstream from the SNRPN gene, demonstrating how different chromatin
features can be assigned to a given haplotype. c, Scatter plots showing the
correlation coefficient of PC1 values obtained from compartment A/B analysis
between the two biological replicates for each allele. Despite the reduction in
reads when Hi-C data are split into two alleles, the PC1 scores were highly
reproducible between replicates. d, Shown is a genome browser image of PC1
values in chromosome 2 for the p1 allele, p2 allele, and for all Hi-C reads

without resolving the two alleles. PC1 scores are highly consistent, suggesting
that homologous chromosomes fold in highly similar patterns. e, Scatter plot of
PC1 values between the p1 and p2 alleles in H1 and H1-derived lineages.
The Pearson correlation coefficient value is 0.96. f, Fraction of the genome that
shows changes in A/B compartment status across alleles. For ES, ME, MS,
NP and TB cells, 1.3%, 0.6%, 1.9%, 2.3% and 1.6% of total genomic regions
shows allelic compartment A/B patterns, respectively. g, Percentage of
allele-biased (purple) or non-allele-biased (grey) genes that have different A/B
compartment status in each lineage. Only in ES cells is there a significant
association between allele-biased genes and regions with variable A/B
compartment between alleles (Fisher’s exact test). h, Similar to g, but showing
the association between imprinted genes and changes in A/B compartment
between alleles. No lineage shows a significant association.
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ExtendedData Figure 6 | Domain-wide structural changes and allele-biased
genes. a, Scatterplot showing domain ‘intactness’ between the p1 andp2 alleles.
Domain intactness is defined as the log2 ratio of the total number of intra-
domain interactions versus total number of inter-domain interactions for each
topological domain. The highly correlated domain intactness scores between
the p1 and p2 alleles support the similar topological domain patterns
between two homologous chromosomes. b, Pie charts showing the fraction of
domains that are identified as having a concerted p1 allele specific increase
(blue) or p2 allele specific increase (yellow) in interaction frequency.Grey in the
pie charts indicates the fraction of domains that do not show allele specific
patterns compared to the randommodel (P value cutoff is 0.001). c, Heat map
showing K-means clustering (k5 12) of gene expression levels of allele-biased
genes across each of the five H1 lineages. The expression levels are shown as
the fold-change of expression in each lineage relative to the average expression

level across each of the five lineages.Allele-biased genes consist of both cell-type
specific and constitutively expressed genes. d, Fraction of housekeeping genes
and lineage-restricted genes that show allele-biased expression. There is no
statistically significant enrichment between allele-biased genes (orange) and
non-allele-biased genes (blue) among housekeeping or lineage-restricted genes.
e, Empirical cumulative density plot of the distance between each allele-biased
gene and the nearest allele-biased gene (purple) as compared with randomly
chosen genes (yellow). The difference from an allele-biased gene to the
nearest allele-biased gene is less than what would be expected at random
(P5 0.0482, Wilcoxon rank sum test), however, the difference is subtle,
indicating that most allele-biased expression does not occur in clusters. f, Rate
of heterozygous SNPs near both allele-biased (gold) and non-allele-biased
(black) genes. See Supplementary Information for further details.
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Extended Data Figure 7 | Identification of enhancer–promoter
interactions. a, Shown is the Hi-C interaction frequency between the IDO1
gene promoter regions and6 1Mb surrounding regions. Each entry in the heat
map of Hi-C inter. freq. indicates Hi-C interaction frequency between the
promoter and the surrounding regions. Each row indicates theHi-C interaction
frequencies for a given window size. The heat map of random permutation
was generated by randomizing each row in Hi-C interaction frequency. The
sum (Hi-C) and sum (random) indicate summation of Hi-C interaction
frequencies for each 5-kb window. Predicted enhancers, H3K27ac, RNA-seq,
and RefSeq gene information are shown together. b, Box plots showing the
reproducibility of predicted enhancer–promoter interactions between two

biological replicates for each chromosome with different P value cutoffs. If the
P value is less than 0.001, the reproducibility between replicates is over 80%.
c, Distribution of 5C signals between interacting pairs (interaction) and non-
interacting pairs (others) defined by Hi-C interaction frequency score with
different P value cutoffs. Interaction pairs defined by Hi-C interactions are also
strongly enriched by 5C signals at bothP value cutoffs (n5 11,461 for 13 1023

and n5 1,841 for 13 1024). d, Relationship between Hi-C interaction
frequency scores and dsQTL target-gene pairs according to distance between
gene and its target DHS regions. Target-gene relationships tend to show higher
Hi-C interaction frequency scores compared to off-target-gene relationships.
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ExtendedData Figure 8 | 4C-seq between allelic enhancers and allelic genes.
a, Diagram of experimental design for 4C-seq and allelic 4C-seq. The orange
region depicts the 4C bait locus, and the green region is the interacting
target region. Primers containing the Illumina adaptor sequences and a
bait-specific sequence are used for inverse PCR of the target region. Barcodes
based on the Illumina TruSeq adaptors are incorporated into the primer
sequences to allow for multiplexing. The second primer will read a sequence
from the bait regionwith a SNP that determines the allele fromwith the bait was
derived. b, Pearson correlation coefficients between replicates for each of the
loci tested. Also shown is the Pearson correlation coefficient between replicates
after log-transformation of the interaction frequency. c, Scatter plot of
LOWESS regression of 4C-seq data. The x axis shows the genomic distance
between the bait region and the putative target region. The y axis is the log10 of
the quantile normalized interaction frequencies. LOWESS was performed to
generate an expected interaction frequency at each genomic distance (green
line).A cut off of 2.5-fold over expected (shown in the reddashed line) is used to
determine if a region shows specific interactions, so-called bait interacting

regions (BIRs). d, Normalized 4C-seq interaction frequencies surrounding a
bait region located in an allelic enhancer near the FAM65B gene. The
location of the bait is labelled as 4C bait. Regions with significant interactions
according to the LOWESS regression model are labelled as black lines in the
track marked bait interacting regions. Shown to the right is the level of
mRNA-seq data for each allele of the FAM65B gene, the level of histone
acetylation at the allelic enhancer bait region. Significance for mRNA-seq data
was calculated using the edgeR software package in R. Acetylation P values
were calculatedusing a binomial test. e, Similar tod, but for a 4C seqbait located
in theMAN1C1 gene. f, Similar to d, but for an allelic enhancer located in the
PXK gene. g, Similar to d, but for an enhancer located in near the GCLM
gene. Of note, this allele-biased enhancer forms no specific contacts with any
allelic genes. h, Similar to d, but for an enhancer located near theMT2A
gene. There are no specific interactions between the allelic enhancer and the
MT2A gene. There are specific interactions between the allelic enhancer and the
MT1H andMT1G genes. However, neither gene has an exonic SNP and
therefore we cannot determine if these genes have allele-biased expression.
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Extended Data Figure 9 | 4C-seq interacting regions from allelic enhancers.
a, Allelic Hi-C interaction reads shown for allelic gene-enhancer pairs defined
using either allelic histone acetylation, DHS or DNAmethylation. Odds ratios
(OR) and P values (Fisher’s exact test) are shown. For enhancers defined by
histone acetylation and the pooled set of enhancers, a statistically significant
association between allele-biasedHi-C reads and allele-biased enhancer activity
is observed. b, Normalized 4C-seq interaction frequencies surrounding a bait
region located in an allelic enhancer near the HAPLN1 gene. The blue line
shows the interaction frequency for the p1 allele and the red line shows
interaction frequencies for the p2 allele. The shaded regions represent 95%

confidence intervals for the interaction frequency. Shown to the right are the
allele-specific normalized 4C interaction frequencies for each allele. 4C-seq
interaction frequencies for each allele were computed over the significant bait
interacting regions nearest to the target gene TSS. Significance testing for
allelic 4C-seq data was performed by t-test (n5 2 for each allele). Black bars
below the plot indicate regions identified as bait-interacting regions (BIRs).
Of note, the panel to the right is the same as that found in Fig. 5f. c, Similar to
b, but for an allelic enhancer located in theMAN1C1 gene. d, Similar to b, but
for a 4C seq bait located in the FAM65B gene. e, Similar to b, but for an
enhancer located in near the PXK gene.
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