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Chromatin architecture reorganization
during stem cell differentiation
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James A. Thomson*?''° & Bing Ren'"!!

Higher-order chromatin structure is emerging as an important regulator of gene expression. Although dynamic chromatin
structures have been identified in the genome, the full scope of chromatin dynamics during mammalian development and
lineage specification remains to be determined. By mapping genome-wide chromatin interactions in human embryonic
stem (ES) cells and four human ES-cell-derived lineages, we uncover extensive chromatin reorganization during lineage
specification. We observe that although self-associating chromatin domains are stable during differentiation, chromatin
interactions both within and between domains change in a striking manner, altering 36 % of active and inactive chromo-
somal compartments throughout the genome. By integrating chromatin interaction maps with haplotype-resolved epigenome
and transcriptome data sets, we find widespread allelic bias in gene expression correlated with allele-biased chromatin
states of linked promoters and distal enhancers. Our results therefore provide a global view of chromatin dynamics and a
resource for studying long-range control of gene expression in distinct human cell lineages.

Three-dimensional genome organization is in-
creasingly considered an important regulator
of gene expression' ™. Recent high-throughput
studies of chromatin structure have begun to
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and chromatin structure. This represents the most
extensive data set generated to date, to our know-
ledge, for the analysis of higher-order chromatin
structure, allele-specific chromatin structure and

shed light on the global organization of our
genome™'°. For instance, we and others recently discovered that inter-
phase chromosomes are partitioned into megabase-sized topological
domains and smaller sub-domains (also known as topologically assoc-
iated domains or TADs)*®. These TADs form the basis for higher-level
structures referred to as the ‘A’ and ‘B’ compartments>. The A and B
compartments are closely linked to other functional partitions of the
genome, such as early or late DNA replication timing and nuclear lamina
association'"'?. Despite these advances, our understanding of the dynamic
nature of chromatin architecture across human cell types and its effect
on cellular identity is incomplete. Here we analyse genome-wide higher-
order chromatin interactions in H1 human ES cells and four human ES-
cell-derived lineages, mesendoderm (ME), mesenchymal stem (MS) cells,
neural progenitor (NP) cells and trophoblast-like (TB) cells*’. These line-
ages represent extra-embryonic and embryonic lineages at early stages of
development and have been extensively characterized by the Epigenome
Roadmap project”, with data sets including mRNA-seq, ChIP-seq for
13-24 histone modifications, base-resolution methylC-seq and DNasel
hypersensitivity (DHS) in each lineage™*'*. As such, this experimental sys-
tem provides an opportunity to compare variability in higher-order
chromatin structure with underlying gene expression and chromatin
state in a genome-wide manner. Further, using a newly developed me-
thod to phase two parental alleles into chromosome-span haplotypes from
high-resolution chromosome conformation capture (Hi-C) data®, we
have phased the H1 genome to allow for analysis of allele-specific activity

state, and allele-specific gene expression.

Data generation and validation

We performed Hi-C experiments’ in two biological replicates in H1
human ES cells and each of the four H1-derived lineages, generating
a total of 3.85-billion unique read pairs (Supplementary Table 1). We
normalized the intrinsic biases in Hi-C data'®, and confirmed the high
reproducibility and accuracy of our Hi-C data sets using several metrics
(Extended Data Fig. 1a-d, Supplementary Information and Supplemen-
tary Table 2).

Extensive A/B compartment switching

Hi-C interaction maps provide information on multiple hierarchical
levels of genome organization®. Previous studies demonstrated that the
genome is organized into A and B compartments, containing relatively
active and inactive regions, respectively>''. Currently, it is unclear if the
A and B compartments change during differentiation and how this relates
to lineage specification. We observe a large degree of spatial plasticity in
the arrangement of the A/B compartments across cell types, with 36% of
the genome switching compartments in at least one of the lineages ana-
lysed (Methods; Fig. 1a and Extended Data Fig. 2a—c). Many of the A/B
compartment transitions are lineage-restricted (Fig. 1b). Notably, there
appears to be a large expansion of the B compartment upon differenti-
ation of human ES cells to MS cells or in IMR90 fibroblasts. These two cell
types have previously been shown to undergo an expansion of repressive
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Figure 1 | Dynamic reorganization of chromatin structure during
differentiation of human ES cells. a, First principal component (PC1) values
and Hi-C interaction heat maps in H1 ES cells and H1-derived lineages. PC1
values are used to determine the A/B compartment status of a given region,
where positive PC1 values represent A compartment regions (blue), and
negative values represent B compartment regions (yellow). Dashed lines
indicate TAD boundaries in ES cells. b, K-means clustering (k = 20) of PC1
values for 40-kb regions of the genome that change A/B compartment status in

heterochromatin modifications during differentiation'*". In this regard,
there appears to be a similar redistribution of the spatial organization of
their genomes as well. We observe that the regions that change their A/B
compartment status typically correspond to a single or series of TADs
(Fig. 1a, c and Extended Data Fig. 2d, e), suggesting that TADs are the
units of dynamic alterations in chromosome compartments. Consis-
tent with previous studies of individual loci'*"*°, we found that genes
that change from compartment A to B tend to show reduced expression,
whereas genes that change from B to A tend to show higher expression
(Fig. 1d). In addition, lineage-restricted compartment A regions tend
to include more lineage-restricted genes compared to other regions
(Extended Data Fig. 3a). Although statistically significant, the overall
patterns of change in expression are subtle. Reasoning that this modest
correlation may be due to the possibility that only a subset of genes
may be affected by compartment changes, although most genes remain
unaffected, we identified a subset of 718 genes with co-variation between
gene expression and compartment switching (Fig. le, Extended Data
Fig. 3b, ¢, and Methods). These genes were enriched for low CpG con-
tent promoters (21.8% versus 15.6% for non-concordant genes, P value
8 X 107", Fisher’s exact test), and several significant Gene Ontology
(GO) terms, most notably related to extracellular proteins and extra-
cellular matrix (Supplementary Table 3). Taken together, these results
indicate that at a global level, there is a high degree of plasticity in the A
and B compartments, yet relatively subtle corresponding changes in
gene expression, indicating that the A and B compartments have a con-
tributory but not deterministic role in determining cell-type-specific
patterns of gene expression.

Domain-level chromatin dynamics

We next examined higher-order chromatin structure at a sub-chromosomal
scale. Previous studies indicated that chromosomes are composed of cell-
type-invariant TADs®®. Across the six lineages analysed in this study, we
observe that although the positioning of TADs remains stable between cell
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at least one lineage. ¢, K-means clustering of PC1 values surrounding TAD
boundaries (‘D" denotes boundary location). d, Distribution of fold-change in
gene expression for genes that change compartment status (‘A to B’ or ‘Bto A’)
or that remain the same (‘stable’) upon differentiation (***P <2.2 X 10716,
P values by Wilcoxon test; whiskers correspond to interquartile range).

e, Genome browser for two genes of which one (OTX2) shows concordance
between expression and PC1 values, whereas a second (TMEM260) does not.

types (Fig. 2a), numerous changes in chromatin structure occur within
domains. We observed a phenomenon that within some domains, a large
portion of the interactions appears to increase or decrease across the entire
domain between cell types (Fig. 2b). This suggests that a subset of TADs
in a given lineage undergo concerted, domain-wide changes in interaction
frequency. Hundreds of TADs underwent such alterations in each lineage
(Fig. 2b and Extended Data Fig. 3d), with the changes in interaction fre-
quency correlated positively with active marks such as DHS, H3K27ac and
with CTCF binding, and negatively correlated with repressive chromatin
modifications such as H3K27me3 and H3K9me3 (Fig. 2¢, see Methods
for details). TADs that have a concerted increase in intra-domain inter-
action frequency tend to shift from the B to A compartments, while
domains that have a concerted decrease in interaction frequency tend
to shift from A to B (Extended Data Fig. 3e, f). Consistent with the changes
in chromatin state activity, genes within domains that have increased
intra-domain interaction frequency tend to be upregulated, while genes
within domains that decrease intra-domain interaction frequency tend
to be downregulated (Extended Data Fig. 3g, h).

Chromatin state and dynamic interactions

In order to understand the relationship between chromatin dynamics
and other genomic and epigenomic features, we performed integrative
analysis of the Hi-C data along with the histone modifications, DHS, and
CTCEF binding data in the six lineages. Specifically, we asked if particular
chromatin state patterns predict changes in chromatin interaction fre-
quency. We divided the genome into 40-kb bins and computed changes
in chromatin features in each bin upon differentiation. We then built a
Random Forest classification model based on chromatin features to clas-
sify local interacting bins as having either increased or decreased inter-
action frequency (see Methods for details). The model was able to classify
regions of the genome that increased or decreased interaction frequency
with 73% accuracy (Fig. 2d, 100% graph; Extended Data Fig. 4a), which
increased to over 80% when we consider only the highest confidence
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Figure 2 | Domain-wide alterations in chromatin interaction frequency
and chromatin state. a, Chromatin interaction heat maps in HI lineages
and IMROO0 fibroblasts. Also shown are domain calls in ES cells and the
directionality index (DI) in each lineage. b, Changes in interaction frequency
between ES and MS cells. Regions with higher interaction frequency in ES
cells are shown in blue, while regions with higher interaction frequency in MS
cells are shown in yellow. TADs having a concerted increase or decrease in
intra-domain interaction frequency are labelled yellow or blue, respectively,
with the fraction of the domain showing increased or decreased interaction
frequency listed. Domains that do not show a concerted change are shown in
grey. ¢, Boxplots of Pearson correlations coefficients between interaction
frequency changes and chromatin mark changes across TADs for each
chromosome (1 = 23). Whiskers correspond to the highest and lowest points
within 1.5X the interquartile range. d, Classification accuracy of the
Random Forest model in predicting whether a bin increases or decreases in
interaction frequency (n = 768,793), tested on 10 randomly selected subsets of
Hi-C data. Accuracy was also checked using actual data (blue), circularized
permutation (green) and a random permutation (yellow) of the data. As
expected, randomly permuting the data yields 50% accuracy. Accuracy was
also assessed considering the top 30, 40, 50% or all predictions based on

vote frequency difference (error bars show the standard deviation of
accuracies from the 10 randomly selected data subsets). e, Ranked chromatin
features shown according to importance in classification as boxplots of the
mean decrease in Gini index from 10 randomly selected data subsets.
Whiskers correspond to the highest and lowest points within 1.5X the
interquartile range.
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predictions as based on the vote frequency difference (Fig. 2d, 30% graph).
The Random Forest model not only indicates that chromatin state features
provide information on changes in interaction frequency, it also allows us
to determine which chromatin marks are most predictive. Specifically, the
‘mean decrease’ of the Gini index for each chromatin mark indicates the
importance of a given feature during classification. In this regard, we
found that change in H3K4mel density is the most important feature in
predicting changes in long-range chromatin interactions (Fig. 2e and Ex-
tended Data Fig. 4b, c). As H3K4mel is present mostly at poised or active
enhancers*"??, and as enhancers are known to engage in looping interac-
tions that exist in a cell-type-specific manner®, these results suggest
that enhancer dynamics may play a role in regulating local interaction
changes during lineage specification. Consistent with this hypothesis,
40-kb regions with increased interaction frequency tend to have in-
creased enhancer density (Extended Data Fig. 4d, e).

Allele-specific chromatin organization

Normal diploid human cells contain two copies of each chromosome.
The collection of variants on a given parental chromosome (also known
as the parental haplotype) can be used to determine functional differ-
ences between two homologous chromosomes. Previous studies have
revealed substantial differences between alleles in gene expression, DNA
methylation, and chromatin states®*°. Apart from studies of individual
loci in the genome™, little is known about the variability in higher-
order chromatin structure between homologous chromosomes. Recent
work from our laboratory'® has demonstrated that Hi-C data can be
re-purposed to reconstruct chromosome-span haplotypes, which allows
for the study of chromatin state and gene expression as a true diploid.
We generated chromosome-span haplotypes incorporating ~93.5% of
all heterozygous variants for HI from a combination of Hi-C data sets,
whole genome sequencing, and local conditional phasing'® (Fig. 3a).
We observe a high level of concordance among the predicted haplo-
types and paired sequence reads from data sets with ‘long insert’ sizes
(Extended Data Fig. 5a), indicating that the reconstructed haplotypes
are of high quality. Next, we re-analysed data sets from Hi-C, mRNA-seq,
ChIP-seq, methylC-seq, and DNase-seq experiments and determined
from which parental haplotype each sequence read was derived (arbi-
trarily termed the ‘p1” and ‘p2’ allele, as we cannot determine which
is the maternal or paternal copy from sequence information alone)
(Fig. 3b and Extended Data Fig. 5b).

From the haplotype-resolved A and B compartment patterns across
the p1 and p2 alleles in each lineage, we found that homologous chro-
mosomes have highly similar A/B compartment patterns (Fig. 3c and
Extended Data Fig. 5c—e), with only 0.6-2.3% of the genome having
different A/B compartments between alleles in any given cell type (Ex-
tended Data Fig. 5f). Notably, rare regions of the genome do show changes
in A/B compartment status between alleles (Fig. 3d), but are not enriched
for either allele-biased or known imprinted genes (Extended Data
Fig. 5g, h). On the contrary, regions of the genome containing allele-
biased or imprinted genes have a subtle but statistically significant increase
in the variability of A/B compartment scores between alleles (Fig. 3e).
Likewise, the genomic regions with allelic chromatin states have greater
variability in A/B compartment scores (Fig. 3f). This indicates that
although most allele-biased and imprinted genes do not have differen-
tial compartment status between alleles, there may be subtle differences
in higher-order chromatin structure between homologous chromo-
somes at allele-biased regions, reflecting their underlying allele biases in
activity. Lastly, similar to A/B compartment patterns, topological domain
patterns appear consistent between alleles (Extended Data Fig. 6a, b).
Together, these results suggest that the global folding patterns of homol-
ogous chromosomes are highly similar.

Allelic imbalances in gene expression

Previous studies of allele-resolved gene expression have identified wide-
spread imbalances in gene expression between different alleles™ ",
However, it remains unclear to what degree allele-biased gene expression
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Figure 3 | Haplotype-resolved chromatin organization in H1 lineages.

a, Variants per megabase for all (green), phased (orange) and unphased variants
(purple) along chromosome 1. The inset zooms in on a ~1 Mb region,

where the presence of a variant at each base is indicated by a value of 1.

b, Genome browser image of allele specific chromatin features and strand-
specific nRNA sequencing. ¢, Genome browser image of PC1 values along
chromosome 2 for the p1 and p2 allele. d, Allele specific compartment A/B
patterns and mRNA-seq surrounding the imprinted ZDBF2 gene. e, Boxplots of
the difference between alleles of PC1 values. Regions with imprinted genes
(P =0.003) and allelic genes (P = 0.002) have more variable PC1 values
(Kolmogorov-Smirnov (KS) test). Whiskers correspond to the highest and
lowest points within 1.5X the interquartile range. f, Similar to e, but for regions
with differential allelic chromatin activity (the number of allelic biased
variants per 200-kb bin). Regions in the top 0.1% of differential allelic activities
(orange) show greater differences in PC1 values compared other regions
(P=1.6X%X10"°%and P=0.0015, respectively, KS test).

varies among different lineages of a single individual. To address this, we
re-analysed haplotype-resolved mRNA-seq data and identified allelic
biases in gene expression across the five H1 lineages. A total of 1,787
genes showed allelic bias in gene expression in one or more lineages
studied here, representing ~24% of all testable genes (false discovery rate
(FDR) 10%, Fig. 4a). Most allelic differences in expression are not ‘on/off’
events, but instead reflect biases in the level of expression from each allele
(Fig. 4b). Further, allele-biased genes include both lineage-specific and
constitutively expressed genes (Extended Data Fig. 6¢, d), and patterns of
allelic bias can also be constitutive or cell-type variable (Fig. 4c, d). Only
in rare cases do genes switch expression from one allele to the other
between cell types.

As expected, genes subject to genomic imprinting are enriched among
genes with allelic biases in expression (Fig. 4e), though these represent
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Figure 4 | Allelic biases in gene expression in H1 lineages. a, Proportion of
genes with detectable allelic expression with statistically significant allelic bias.
b, Density plot of the absolute value of the fold change in expression (log,)
between alleles. ¢, Heat map showing k-means (k = 20) clustering of the allelic
expression ratios (log,) at genes with constitutively testable expression

(a minimum of 10 reads in each lineage). d, Genome browser image of variable
allelic expression of the PARP9 gene. e, Fraction of imprinted genes among
allele-biased genes and other genes. (P =4.4 X 107>, Fisher’s exact test).

f, Fraction of allele-biased genes that are known imprinted genes. g, Cumulative
density plot of distances from variants to the nearest allele-specific gene.
Allele specific variants are defined using histone acetylation, H3K9me3,
H3K27me3, DHS and H3K4me3 (n = 3,920, P<2.2X 10" '% KS test).

h, Number of allele-biased genes showing consistent allele specific chromatin
states in their promoter regions. Active variants are defined by H3K4me3,
DHS or histone acetylation. Inactive promoter variants are defined by DNA
methylation and H3K9me3/27me3. i, Genome browser image of mRNA-seq
and chromatin features surrounding the TDG gene.

~1% of allele-biased genes (Fig. 4f). Although imprinted genes often
occur in clusters, the majority of allele-biased gene expression is not
clustered in the genome (Extended Data Fig. 6e). Taken together, these
data suggest that most instances of allele-biased gene expression are due
to mechanisms other than genomic imprinting. One possible regulatory
mechanism that could give rise to allele-biased expression would be
allelic bias in activity of cis-regulatory elements near these genes. Indeed,
regions of the genome that show allele bias in histone acetylation, histone
methylation, CTCF binding, and DHS are closer to allele-biased genes
than randomly selected genomic regions (Fig. 4g). Furthermore, allelic
gene expression is strongly correlated with DNA methylation or chro-
matin modification state at promoters (Fig. 4h, i). Of the 247 genes that
contain heterozygous variants in their promoter regions and display
biased transcription in at least one lineage, a majority exhibit allele-
biased chromatin modifications or DNA methylation at the promoter
(Fig. 4h). Interestingly, 29% of the testable genes that have allele-biased
expression show no evidence of allelic bias in chromatin state or DNA
methylation at the promoter (Fig. 4h), raising the possibility that elements
outside of promoters may be responsible for the allelic gene expression.

We identified 726, 969, and 5,769 allelic enhancers' that showed allele
bias in histone acetylation, DHS, and DNA methylation, respectively
(Fig. 5a). We observed a general concordance in allelic biases between
enhancers exhibiting allelic histone acetylation and enhancers showing
allelic DHS (Fig. 5a). However, we observe only modest concordance
between DHS or acetylation defined enhancers with those identified
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Figure 5 | Allele biases at enhancers in H1 lineages. a, Enrichment of
acetylation (top row), DHS (middle) and DNA methylation (bottom) at
enhancers defined as allelic by acetylation (left column), DHS (middle), or
DNA methylation (right). The active allele is in blue, inactive allele in red.
b, The distance between allelic genes and enhancers as defined by allelic histone
acetylation (purple) compared with randomly selected enhancers (grey).
Random enhancers were selected to match the read coverage of allele-biased
enhancers. ¢, Number of allele specific genes linked to concordantly biased
allele specific enhancers. Genes linked by ‘long-range enhancers’ are defined
using Hi-C interaction frequencies, whereas ‘short-range enhancers’ are
defined as any enhancer less than 20 kb from a genes transcription start

site. d, Boxplots of the Pearson correlation coefficients between allelic
gene-enhancer pairs defined by acetylation (left, n» = 1,388) or DHS (right,

based on allelic DNA methylation (Fig. 5a). This may reflect greater
power in identifying differentially methylated regions between the two
alleles. Alternatively, this may reflect the presence of ‘poised’ enhancers,
where there is not a strict relationship between differences in DNA meth-
ylation and enhancer or DHS state***. Enhancers with allele-biased
acetylation are generally located closer to genes that also show allele-biased
expression when compared with enhancers that lack allele bias (Fig. 5b
and Extended Data Fig. 6f). A majority (66%) of the 640 allelic genes
that display strong Hi-C interactions with allelic enhancers also show
concordant allelic activity between the enhancer and promoter (Fig. 5c,
Extended Data Fig. 7, and Methods). Additionally, enhancer-gene pairs
linked by relatively strong Hi-C interactions show greater correlation
between allelic enhancer activity and allelic gene expression compared
with pairs linked by weaker Hi-C interactions (Fig. 5d). To test if allelic
enhancers indeed form specific contacts with allele-biased genes, we
performed 4C-seq®* with 6 allele-biased enhancers and identified that
4 out of these 6 allelic enhancers showed specific 4C interactions with a
nearby allele-biased gene (Fig. 5¢, Extended Data Fig. 8 and Supplemen-
tary Table 4). Taken together, our results strongly support that allele-
biased enhancer activity is a possible mechanism underlying allele-biased
gene expression.

To determine if part of the mechanism of regulation by allele-biased
enhancers also involved allelic chromatin looping between distal enhancers
and putative target genes, we tested for the presence of allele-biased Hi-C
reads at allele-biased enhancers throughout the H1 genome by aggre-
gating all Hi-C reads between allelic enhancers and the promoters of
nearby allelic genes. We observed that alleles containing enhancer activity
generally have higher numbers of chromatin interactions with the tar-
get promoters (Extended Data Fig. 9a). This result is confirmed by re-
analysis of previous high-resolution 4C-seq results®". Two loci (HAPLNI
and MANICI) show a similar trend between allele bias in enhancer-
promoter interactions with the allelic enhancer acetylation and gene
expression levels (Fig. 5f and Extended Data Fig. 9), though the trend in
the allelic 4C-seq does not meet statistical significance. The remaining
two loci (FAM65B, PXK) appear to have nearly equal interaction fre-
quencies with the target promoters. Taken together, these results suggest
that the allele-biased enhancers can impart allele-biased gene expression
either through stable higher-order DNA looping between the two alleles
or through potential allele-specific enhancer-promoter interactions.

n = 1,601). Gene-enhancer pairs are grouped into strongly interacting (top
30%), weakly interacting (bottom 30%), and intermediately interacting pairs
(others) based on Hi-C interaction frequency (P values using Welch’s ¢-test).
Whiskers correspond to the highest and lowest points within 1.5X the
interquartile range. e, Normalized 4C-seq interaction frequencies near the
HAPLNI gene. The 4C-seq bait region is in an allele-biased enhancer near the
3’ end of the EDIL3 gene. Specific interactions called by the LOWESS
regression model are shown in black as ‘bait interacting regions’ (BIRs).

f, Allele-biased expression of the two alleles of the HAPLNI gene, histone
acetylation levels at the nearby interacting allele-biased enhancer and allele
resolved 4C-seq data (4C-seq P value from t-test, n = 2 for p1 allele, n = 2 for
p2 allele).

Discussion

We have presented genome-wide chromatin interaction maps in H1
human ES cells and four H1-derived lineages. We observed dynamic re-
organization of higher-order chromatin structure during ES cell differ-
entiation at multiple hierarchical scales. We found extensive switching
between the A and B compartments during ES cell differentiation, and
observed that distinct subsets of genes have concordant A/B compart-
ments status and expression levels. In this regard, these results are similar
to what has been seen with nuclear lamina tethering studies*>*’~*°, where
the expression of only a subset of genes is affected by compartment changes,
while other genes remain unaffected. Changes in compartment status may
influence the accessibility of genomic regions to transcription factors or
other regulatory proteins, which may be particularly important for certain
subsets of genes.

In addition, we have observed local alterations in chromatin interaction
frequency within TADs. These local changes are best predicted by changes
inlevels of H3K4mel and the density of enhancer elements. This is in agree-
ment with recent 5C studies demonstrating that cell-type specific inter-
action regions are enriched for Smc1, mediator, and transcription factor
binding sites’. Taken together, these results suggest that enhancer elements
likely play an important role in shaping local higher-order chromatin
structure throughout the genome. In addition, by analysing patterns of
chromatin interactions on each parental allele, we observe relatively minor
global changes in higher-order chromatin structure between alleles.

The chromatin interaction maps generated in this study also allowed
the reconstruction of chromosome-span haplotypes for the H1 genome.
This data set represents one of the first studies of allele-biased expression
across multiple cell types of a single individual, as well as analysis of chro-
matin state at the linked cis regulatory elements. Our data set will serve as a
valuable tool for the community to better understand the gene regulatory
networks controlling pluripotency and differentiation of human embry-
onic stem cells.

Online Content Methods, along with any additional Extended Data display items

and Source Data, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS

Cell culture and previous data sets analysed. H1 human ES cells and H1-derived
cells were cultured as previously described'®. ChIP-seq experiments for CTCF were
performed using previously published methods and antibodies'**’. Hi-C libraries
were generated as previously described®. Two biological replicates of Hi-C data
were generated for each lineages in order to assess the reproducibility of the data.
Hi-C and ChIP-seq libraries were sequenced on the Illumina Hi-Seq 2000 and Hi-
Seq 2500 platforms. mRNA-seq, ChIP-seq for histone modifications and methylC-
seq data sets have been previously published"’. DNase-seq experiments have been
previously described elsewhere'*.

Sequence read alignment. The following description applies for the alignment of
DNA methylation, ChIP-seq and DNase-seq data sets. Single-end sequencing data was
mapped to a variant masked reference genome (hg18) using Novoalign. Unmapped
and non-uniquely mapping reads were removed, and PCR duplicate reads were
removed with Picard. Reads were processed with the Genome Analysis Toolkit
(GATK)". Specifically, reads underwent indel recalibration and variant realignment.
Lastly, reads that overlapped with variant loci were split into the ‘p1” and ‘p2’ allele
according to whether the base in each sequencing read matched the sequence from
either the p1 or the p2 alleles.

For Hi-C data sets, read pairs were mapped independently to the variant masked
genome using Novoalign. Reads were then manually paired using in house scripts.
Non-uniquely mapping, unmapped reads and PCR duplicate read pairs were removed.
Reads pairs were then split into single reads and processed through the same GATK
pipeline described above including indel re-alignment and variant recalibration. Finally,
read pairs were manually re-paired using in house scripts.

For mRNA-seq, we mapped the paired-end data to a variant masked reference. We

used Useq software to first process the variant masked genome to create a splice
junction reference. Reads were then mapped to the Useq processed reference genome
using Novoalign. Lastly, we converted the read alignment locations from the Useq
processed genome back to hg18 coordinates using Useq.
Whole-genome sequencing, genotyping and haplotyping. Whole genome sequen-
cing (WGS) data for the H1 genome was downloaded from the Sequence Read
Archive database (SRA049981). Reads were mapped to the hgl8 reference genome
using Novoalign. Unmapped and non-uniquely mapping reads were removed using
in house scripts. PCR duplicate reads were removed using Picard. The data was
processed through the Genome Analysis Toolkit (GATK) best practices guidelines.
We performed indel recalibration, variant realignment, variant calling using the
Unified Genotyper, and variant recalibration.

Haplotyping was performed using the previously described HaploSeq method"*.
Briefly, Hi-C reads from each of the H1 derived lineages were used as input sequencing
into the HapCUT software* in order to generate haplotype predictions. For final
haplotype calls, Hi-C data was combined with WGS mate-pair data for the H1 gen-
ome. HapCUT generates several ‘blocks’ for each chromosome. The vast majority of
variants on each chromosome are in the ‘most variants phased’ (MVP) block. The
MVP block for each chromosome was used as a ‘seed haplotype’ for local conditional
phasing using population sequencing data from the 1000 genomes project using the
Beagle v.4.0 software®. This generates two haplotypes for each chromosome, one for
the maternal allele and one for the paternal allele. As we do not have information
regarding the parent of origin in the H1 genome, we arbitrarily define each allele as the
pl or p2 allele (p1 and p2 for parent 1 and 2, respectively). The p1 and p2 allele for
different chromosomes are not necessarily derived from the same parent, as this
information is only accessible if the sequence of H1’s parents were also available.
Haplotype alignment bias. Although we mapped the ChIP-seq, DNase-seq, Hi-C
and DNA methylation data sets to a variant masked genome, we recognize that
there could still be local alignment biases favouring a given allele. To account for
this, we performed a two-step filtering process. First, we generated simulated reads
that span each position surrounding a variant location in the genome. SNPs and
indels that showed >5% and >10% biases, respectively, were excluded from all
downstream analyses, as these variants show an inherent mapping bias. Second,
for each variant in the genome, we calculated the coverage over the variant based
on WGS data. Based on the WGS data, we expect each variant to have near equal
coverage between the two alleles. Any variant that had sequencing coverage greater
than 3 standard deviations above the mean for each haplotype along a chromo-
some was excluded, as were variants that showed a Benjamini corrected binomial
P value of =0.05 when comparing the WGS read coverage on each allele. Lastly,
analysis of allele-biased coverage at a SNP level can be very sensitive to genotyping
errors, in particular if a homozygous variant is erroneously called as heterozygous.
To account for this we made a null hypothesis that all called heterozygous variants
were actually homozygous. We excluded any heterozygous variant with a GATK
derived genotype P value of greater than 0.05 (after Benjamini correction). This
excluded roughly 2% of all heterozygous SNPs in the genome as having genome
sequencing coverage that could be expected for a homozygous variant.
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Estimation of random collision events in Hi-C data. We estimated random col-
lision events by calculating the intermolecular ligation rate between a nuclear chro-
mosome (chrN) and the mitochondrial chromosome (chrM). The interacting space
between chrN and chrM can be defined by multiplying (roughly 16 kb per chrM X
number of chrM per chrN) and (roughly 6.16 Gb per diploid nucleus). The number
of chrM per chrN was calculated from ChIP-seq input sequencing data.

Number of chrM per chrN = Number of read counts for chrM/number of read
counts for chrN X 6.16 Gb per chrN X 16 kb per chrM.

The number of random collision events between any given two loci (40-kb bin
size) was estimated as following.

Number of random collision events per 40 kb2 = number of intermolecular inter-
actions between chrN and chrM/interacting space between chrN and chrM X 40 kb2.

The estimated random collision events are summarized in Supplementary Table 2.
Topological domain calling. We systemically identified topological domains based
on the directionality index (DI) score and a Hidden Markov Model (HMM) as pre-
viously described®. The number of identified topological domains across human
genome was 2,468, 2,489, 2,202, 2,144 and 2,407 for ES, ME, MS, NP and TB cells,
respectively. According to the topological domain patterns, genomes were partitioned
into domains, boundaries and unstructured regions as previously described.
Identification of A and B compartments. Identification of A and B compartments
was performed conceptually similarly to what has been previously described’, though
with several modifications. We used the normalized 40-kb interaction matrices for
each cell type and calculated the expected interaction frequency between two 40-kb
bins given the distance separating them in the genome. We used a sliding window
approach with a bin size of 400 kb and a step size of 40-kb to generate an observed/
expected matrix. The observed frequency was the sum of all observed interaction
frequencies of the 40-kb bins making up the larger 400-kb bin. Likewise, the
expected frequency was the sum of the expected frequencies of each of the 40-
kb bins making up the larger 400kb bin. This value was used to generate the
observed/expected. This was then converted to a Pearson correlation matrix and
subsequently used for principal component analysis as previously described’. Speci-
fically, we used the ‘cov’ function in R to generate a covariance matrix from the Pearson
correlation matrix, and then we used the ‘eigen’ function in R to generate Eigen vectors
and Eigen values from the covariance matrix. The first principal component for each
chromosome was used to identify regions of the genome as belonging to either the A or
B compartment. The direction of the Eigen values is arbitrary, and therefore positive
values were set to ‘A’ and negative values were set to ‘B’ based on their association with
gene density.

To identify regions of the genome that switched A/B compartment status with
differentiation, we first identified regions with statistically significant variability in
PCl1 values across all cell types using ANOVA. Second, we considered only regions
where both biological replicates showed changes in PC1 values from positive to
negative or vice versa. This allowed us to define the 36% of the genome that changes
compartment status in at least one lineage.

Identification of genes with concordant expression and A/B compartment status.
To define genes with concordant changes in expression and compartment status,
we calculated the covariance between the vector of the log, of gene expression values
and vector of PC1 values for each gene across the six lineages analysed. We use this
calculated covariance as a metric to quantitatively define ‘concordance’. To calcu-
late a Pvalue for the covariance for each gene, we compared these observed covari-
ance values to a random background distribution. The background distribution
was generated by randomly shuffling the vector of log, of gene expression for each
gene and then calculating the covariance between the random gene expression
vector and the PC1 values. This was repeated 1,000 times for each gene, and a rank-
based P value could then be calculated for the observed covariance values. These
genes were shown to be enriched for low CpG content promoters, which is defined
here by an observed/expected CpG content of <0.35. GO terms analysis of this
subset of genes was performed using the DAVID GO terms website.
Identification of A and B compartments in each allele. Identification of A and B
compartments in each allele was performed similarly as described in the above sec-
tion, though with several modifications. Due to the low density of Hi-C interaction
frequencies in each allele, we used a sliding window approach with a bin size of
1-Mb and a step size of 200-kb to generate an observed/expected matrix. The first
principal component in each allele was used to identify regions of the genome as
belonging to either the A or B compartment. The direction of the Eigen values is
arbitrary, and therefore the direction was determined according to the correlation
coefficient values with the PC1 values generated in the above section.

Changes in intra-domain interaction frequency. To compute the change in inter-
action frequency between cell types, we first merged the Hi-C data between two
replicates for each cell type. The merged, normalized interaction matrices were quan-
tile normalized between all lineages to accommodate for differences in frequency
strictly due to sequencing depth. The differences between cell types were computed
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by simply subtracting the interaction frequency of each bin I;; of ES cells from the
differentiated cell types (as shown in Fig. 2b).

To assess for concerted domain-wide changes in interaction frequency, we calcu-
lated two values for each domain: the fraction of interacting bins in the domain that
showed an increase in interaction frequency and the fraction of bins that showed a
decrease in interaction frequency. To compare these numbers to what would be
expected at random, we calculated the same two values for each domain where the
bins of the domain where made up of randomly selected intra-domain interacting
bins from throughout the genome, keeping the portion of bins in each domain
separated by a given genomic distance constant. This randomization was performed
10,000 times for each domain. At random, each domain on average had roughly 50%
of bins that increased in interaction frequency and 50% that decreased in interaction
frequency. By seeing deviations from these expected values, we could assess for ‘con-
certed” changes in interaction frequency. We assigned a rank-based P value of the
degree of ‘concertedness’ for each domain by comparing the actual observed portion of
the domain that was either increased or decreased in interaction frequency with what
was observed at random for each domain. These P values were adjusted for multiple
testing using Benjamini correction, and we considered any domain as having under-
gone a concerted change if the final corrected P value was less than 0.001 (0.1% FDR).
Changes in intra-domain interaction frequency between alleles. Domain-wide
interaction frequency differences between alleles were calculated by using the
same approach described in the above section. If the domain-wide average inter-
action frequency difference between alleles was significantly more than randomized
data (P value 0.001), the corresponding domains are considered as having allele
specific domain-wide interaction frequency changes.

Correlation coefficient between domain-wide interaction frequency changes
and modification changes. The domain-wide correlations shown in Fig. 2c between
changes in interaction frequency and various chromatin marks were calculated as
follows. For each domain, the intra-domain interaction frequency differences between
ES cells and each differentiated lineage was calculated for each 40-kb interacting
bin of the domain (where we define a single ‘interacting bin’ as being formed by the
interaction of two underlying 40-kb genomic bins). These values were considered
as the first vector for the correlations. The vector of histone modification values
was calculated as follows. For each 40-kb interacting bin, the enrichment of a given
chromatin mark in the two 40-kb bins that compose the interaction was averaged.
The average enrichment was then multiplied by a weight proportional to the genomic
distance between the two 40-kb bins. This weight was based on the global average
of Hi-C interaction frequencies from six lineages analysed between loci separated
by a given genomic distance. The two vectors were used to calculate a Pearson cor-
relation in each chromosome, which reflects how change in domain-wide inter-
action frequency correlates with domain-wide chromatin mark changes.

The Random Forest classification model. We built a Random Forest model to
better understand which chromatin modifications may be most predictive of changes
in interaction frequency between any two given loci. The aim of the Random Forest
model was to classify 40-kb interacting bins as either increased or decreased in inter-
action frequency given information about the enrichment of various chromatin marks,
DHS and CTCF binding sites. The utility of the Random Forest model is twofold: first,
by assessing the accuracy of the model using observed data, we can learn whether the
information supplied to the model (in this case the chromatin state, DHS and CTCF
data) is predictive of the outcome, namely changes in interaction frequency. The
second powerful aspect of the model is that it allows us to assess which input data
supplied to the model is most informative, allowing us to determine which chromatin
state features may be most predictive of changes in higher-order chromatin structure.

The model was built as follows: 40-kb interacting bins in the genome were classified
into two groups, ones that increased in interaction frequency, and ones that decreased
in interaction frequency. These changes were defined if the 40-kb based interaction
frequencies increased or decreased more than twofold in the differentiated lineage
compared to those in H1 ES cells. We only considered interacting bins separated by
less than 2 Mb. We added a pseudocount value to the average interaction frequencies
when we calculate fold changes to allow for comparison of zero values. The resulting
criteria yielded 768,793 interacting bins as either losses or gains. Chromatin state
changes of H3K4mel, H3K4me3, H3K9me3, H3K27ac, H3K27me3, H3K36me3,
DHS signal, and CTCF were also calculated. For each 40-kb bin, RPKM values for
each chromatin mark were calculated. Fold changes of RPKM values were calculated
by comparing with RPKM values in H1 ES cells. Those 8 chromatin marks were
assigned to each interacting region, thus for each interaction (consisting of two inter-
acting 40-kb bins) we can construct a 1 by 16 feature vector.

Using those feature vectors, we built a classification model between gain and loss of
interactions using a Random Forest R package with default parameters except for
specifying the model to use 500 trees. The performance was measured according to two
criteria, the out-of-back error rate achieved from the Random forest model and the
tenfold cross validation. We compared out-of-back error rate to tenfold cross valid-
ation and observed very similar results (shown in Extended Data Fig. 4a).

As a final result, the Random Forest model gives vote frequencies for predicting
whether a given interaction is increased or decreased. The difference in vote frequency
between the two states reflects the confidence of the model in a given prediction, with a
larger vote frequency difference indicating a higher degree of confidence. The sum of
the vote frequencies is equal to 1. As an example, in the case where the model could not
predict any changes in interaction frequency, the vote frequencies would be expected
to both equal 0.5. If the vote frequency for the Toss of interaction’ class was greater than
0.5, the interacting bin would be classified as having undergone a loss of interaction.
Likewise, if the ‘gain of interaction’ vote frequency was greater than 0.5, the bin was
classified as a gain of interaction. Again, the difference in vote frequencies between the
two classes reflects the degree of confidence of the model in a given prediction.

When we built the classification model, the balance for the number of inputs
between two classes is important. If the model includes more gain of interaction fea-
tures rather than loss of interaction features, the model is more likely trained to predict
a gain of interactions. To avoid this issue, we randomly selected the same number of
gain of interaction and loss of interaction feature vectors while building the classifica-
tion model.

The Random Forest model also provides a measure of the importance of each
variable during classification as the ‘mean decrease’ metric of the Gini index. Fora
given variable, higher the mean decrease in Gini index, the more important the
variable is during classification.

Identification of allelic biased genes, enhancers and SNPs

Allelic genes. We considered the two replicates of mRNA-seq data and used a
negative binomial distribution (10% FDR) to calculate significantly biased genes
between the two alleles, where genes are defined by merging isoforms (from RefSeq).
We used the edgeR software package in R for calculating the P values.

Allelic SNPs. We estimated if a SNP is allele-biased on different types of readouts.
In particular, we used ChIP-seq, DHS, and CTCF data sets independently to obtain
readouts of each SNP between the two alleles. We then used a binomial statistic
(with an expectation P = 0.5) to identify significantly biased SNPs for a given data
set. FDR was based on 1,000 random permutations.

Differential methylation among alleles (DMRs). Bisulfite sequencing reads were
mapped using Novoalign methylation aligner to an H1 variant masked hg18 ref-
erence genome. Duplicated and poorly mapped reads were removed, and the reads
that contain SNPs were retained for downstream analyses. Reads were then assigned
to either the p1 or the p2 allele on the basis of the SNPs present in each read. During
this assignment, certain SNPs could not be resolved between the two alleles because
of considerations of bisulfite conversion. Specifically, when a SNP is C/T (or listed
as A/G on the reverse strand), the conversion of methyl-C to T by bisulfite will
make it impossible to distinguish whether a given read is a methylated cytosine
from one allele or a thymidine from the other allele. In these cases, these SNPs were
excluded from distinguishing from which allele a given read was derived. After resolv-
ing into each allele, CpGs were called and nearby CpG were merged (within 100 bp).
Of note, in instances where a SNP contains a cytosine, it would be impossible to
distinguish whether a difference between two alleles is due to the polymorphism
or due to the change in methylation. As such, any position in the genome with a
SNP was excluded from our calculation of the percentage methylation over a given
window. We called ASM in each of these CpGs using Fisher’s exact test with 10%
FDR after multiple testing correction as a threshold for significance. We randomly
shuffled the methylation and unmethylation values for a given haplotype (for a
CpG) and used these random estimates to obtain FDR.

Allelic enhancers. To study allele bias at enhancers, we first calculated the com-
bined coverage of whole genome sequencing data and bisulfite sequencing (without
regard for methylation status). Any enhancer where one of the two alleles con-
tained less than 35% of the total allele resolved reads at the enhancer was excluded
as having an inherent bias in mapping between the two alleles. To systematically
study allelic enhancers, we combined several enhancer marks to obtain a combined
acetylation bam file. This combined bam file gives us the required coverage in an
allelic context to perform an in-depth analyses. In particular, we combined data from
H4K8ac, H4K91ac, H2BK120ac, H3K18ac, H3K23ac, H3K27ac, H3K4ac, H2AK5ac
and H3K9ac marks. Using this combined bam file, we examined allelic SNPs described
as above. For evaluating allelic enhancers, we obtained readout for enhancers defined
in ref. 13 (* 2.5kb from enhancer peaks) between the two alleles. Then we used
binomial to obtain significance at an FDR of 10%, as evaluated by the random per-
mutation analyses (1,000 permutations). The same analysis was used to call allele-
biased enhancers based on DHS data. For the analysis of allele bias in DNA methylation
at enhancers, we considered any enhancer as having allele-biased DNA methyla-
tion if at least one ASM bin overlapped with the enhancer. If more than one bin of
ASM overlapped an enhancer, we checked to see whether the patterns of ASM were
concurrent between all bins. If there were divergent patterns between ASM bins at
an enhancer, these enhancers were excluded.

Distance of allelic enhancers to allelic genes. We compared the distance between
allele-biased enhancers, as identified by histone acetylation levels with randomly

©2015 Macmillan Publishers Limited. All rights reserved



selected enhancers, to test the hypothesis that if allele-biased enhancers regulate
allele-biased genes, they should generally be closer to allele-biased genes than should
randomly chosen enhancers (Fig. 5b). This analysis was complicated by the fact that
the rates of heterozygous SNPs near allele-biased genes are higher than for non-
allele-biased genes in the genome (Extended Data Fig. 6f). This creates a situation
of possible ascertainment bias, owing to the fact that enhancers near allele-biased
genes will therefore tend to have slightly higher allele-resolved read coverage as
compared with randomly chosen enhancers throughout the genome. To account
for this, when comparing the distance of allele-biased enhancers to allele-biased
genes with randomly chosen enhancers, we selected random enhancers to match
the coverage profile of allele-biased enhancers. This was accomplished by binning
all enhancers into increments of 50 sequencing reads, from 0 to 49, 50 to 99, etc, up
to 1,700 reads. For each identified allele-biased enhancer, we selected 100 random
enhancers from the same coverage bin. This limits the effects of local variation in
heterozygosity rates throughout the genome on the likelihood of identifying allele-
biased enhancers near allele-biased genes. As such, the results in Fig. 5b are probably
not due to the possibility of having greater statistical power for calling allele-biased
enhancers near allele-biased genes (because of greater heterozygosity rates and higher
numbers of allele-resolved reads).

Enhancers, gene expression levels, lineage-specific genes, housekeeping genes
and imprinting genes. The enhancer regions were defined as previously described*.
Briefly, enhancer chromatin signatures were trained for p300 binding sites in H1
ES cells using RFECS algorithm based on H3K4mel, H3K4me3 and H3K27ac sig-
nals at 100-bp bin size. Next, these modification signals in all cell lines were tested
to predict enhancers. The predicted enhancers that overlap with H3K4me3 peaks
or within 2.5 kb of the transcription start site were removed. Enhancers were merged
from all cell types if they are located close to each other (<2 kb) by taking the mid-
point at the centre of the new enhancer.

For the gene list, gene expression levels, housekeeping genes and lineage-specific
genes we used the same data set as described in ref. 13. For imprinting genes, we
obtained known imprinted genes downloaded from publicly available imprinting
gene database (http://www.geneimprint.com/).

Linking between allelically expressed genes and allele-biased promoter activ-
ities. To investigate how many allele-biased gene promoter activities are consistent
with allelic gene expression levels, first we selected allelic genes that contain at least one
allelic SNP in their promoter regions (1.5kb upstream and downstream from tran-
scription start site). We only considered allelic SNPs defined by DHS, H3K4me3,
histone acetylation, combined H3K9me3 and H3K27me3, and DNA methylation
because the signatures of those chromatin marks at the promoter regions are well
defined. If promoters are marked by allelic SNPs from H3K9me3/H3K27me3 or DNA
methylation and the allelic gene expression levels are consistent with the allele-biased
promoter activities, the genes can be explained by allelic repressive marks. If promoters
are marked by allelic SNP from histone acetylations, H3K4me3, and DHS, and allelic
gene expression levels are consistent with the allele-biased promoter activities, the
genes can be explained by allelic active marks.

Identification of enhancer-promoter interactions. To investigate the linking
between allelic genes and allelic enhancers we first defined enhancer-promoter inter-
actions using Hi-C interaction frequency data. Hi-C interaction frequencies were
calculated in terms of 5-kb windows and normalized using HiCNorm. After that,
we considered all pairs of promoters and enhancers in each chromosome. Pro-
moter regions were fixed as * 5kb surrounding transcriptional start sites and
enhancer regions were defined by using different window sizes as: 5kb, 10kb,
20 kb, 30 kb, 40 kb, 50 kb, 75 kb, 100 kb, 300 kb and 500 kb surrounding the centre
of each enhancer (Extended Data Fig. 7). The interaction frequencies between a
promoter and an enhancer at a certain window size were calculated as (interaction
frequency / window size of an enhancer) X 5 kb. Final interaction scores were de-
fined as summation of interaction frequencies between promoter and enhancer
with multiple window sizes. To calculate significance of each enhancer—promoter
interaction, we generated a random interaction frequency score by randomly permu-
tated interaction frequencies between the promoter and enhancer in each window size.
The distribution of random interaction frequency scores was fit to Weibull distribution
and then P values of the interaction frequency in each enhancer—promoter pair were
calculated. Ata given P value cutoff, we defined enhancer—promoter interactions. At a
P value cutoff of 1 X 10>, more than 80% of interactions are reproducible between
two biological replicates (Extended Data Fig. 7b). By taking this P value cutoff, we
defined 339,761, 354,529, 319,169, 158,453, 250,495, and 210,010 enhancer—promoter
interactions for ES, ME, MS, NP, TB and IMR90 cell lines between 103,982 enhancers
and 18,532 promoter regions. These enhancer—promoter interaction numbers can be
changed according to cutoff P values.

Comparison of enhancer-promoter interaction with other experiments. To
validate predicted enhancer—promoter interactions we compared the interaction fre-
quency scores to 5C scores and DNasel quantitative trait loci (dsQTL) informa-
tion. 5C is a chromosome conformation capture (3C)-based approach to measure
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the interactions of all versus all targeted regions. For the H1 ES cell lines, we down-
loaded previously generated 5C data™ and compared this to our interaction frequency
between enhancers and promoters. We observe very strong correlative patterns
between 5C and our interaction frequency scores (Extended Data Fig. 1b). We can
also observe that interacting pairs tend to show higher 5C scores compared to non-
interacting pairs.

We also compared interaction frequency scores to dsQTL relationships. dsQTL
data provide functional relationships between DHS and their target promoters based
on QTL information®. We calculated enhancer-promoter interactions scores again
for all pairs of DHS and promoter regions based on dsQTL data. Interactions defined
by dsQTL were considered as target relationships, otherwise off-target relationships.
According to interaction distance, enhancer—promoter interaction scores were calcu-
lated between target and off-target gene relationships. We observe that target gene
relationships tend to have higher interaction frequency scores (Extended Data Fig. 7d).
Pearson correlation coefficient between allele-biased gene-enhancer pairs. We
calculated Pearson correlation coefficients between allele-biased gene-enhancer pairs.
First we generate 1 by 10 vectors for each allelic gene and allelic enhancer using the
data from H1 human ES cells and the four H1-derived lineages. For each lineage,
we assigned log, (p2 allele read counts / p1 allele read counts) and log, (p1 allele
read counts / p2 allele read counts) values as allelic bias information. After con-
structing two 1 by 10 vectors for both allelic gene and allelic enhancer, we calcu-
lated the Pearson correlation coefficient between them.

Identification of allelic Hi-C interactions. We investigated allelic Hi-C inter-
actions for allelic gene-enhancer pairs. We considered allelic interactions between
10-kb surrounding regions for both the transcription start site and enhancer, respec-
tively. Many of allelic gene-enhancer pairs do not have any allelic interactions, but
allelic gene-enhancer pairs show concordance if they are connected by allelic Hi-C
interactions.

4C-seq experiments and data analysis. 4C seq was performed essentially as described
previously®. Six bait regions were chosen at allele-biased enhancer elements con-
taining SNPs that would allow for performance of allele specific 4C-seq, as has been
previously described®. Primers were designed such that the first read of a paired-
end read would sequence the primer sequence derived from the bait region and
read into the target region of interest. The second read in the pair would read a
portion of the bait region containing the SNP of interest (see Extended Data Fig. 8
for a diagram of the experimental strategy). The primers were designed to include
the Illumina adaptor sequences necessary for sequencing as well as the presence of
barcodes derived from Illumina’s TruSeq adaptors that allowed for multiplexing of
4C-seq reactions. We used two 4 base cutters, NlalIl and DpnlI, for the first or
second restriction enzyme digestion, depending on the locus in question (See Sup-
plementary Table 4). 4C-seq templates were prepared as previously described™. 16
PCR reactions using 200 ng of 4C template were performed for 30 cycles for each
bait region and pooled together. The PCR reactions underwent a final purification
step using AMPure beads (Beckman-Coulter) according to the manufacturer’s instruc-
tions (using a bead-to-sample ratio of 1.8). The concentrations of each 4C library
were calculated using the KAPA qPCR system using a standard curve. The libraries
were then combined and spiked in with other non-4C sequencing libraries for
sequencing on the Illumina Hi-Seq 2500 machine.

Sequence reads were processed as follows. For each read, the first and second
sequencing reads were checked to identify the presence of the primer sequences and
any expected portion of the bait region. Any sequence with greater than 20% mis-
matches to the expected bait region was discarded. The reads were trimmed such that
each read was represented as a 36-mer, with 20 bp derived from the bait region and the
subsequent 16 bp, presumably containing the target region of interest. Based on the
SNP identified in the second sequencing read derived from the bait region, each of
these files were split into allele specific 4C-seq FASTQ files for further analysis.

4C-seq data was mapped to a version of the hg18 genome with known SNPs in the
H1 genome masked to N, similar to other the strategy of mapping other sequence read
data sets performed in this study. Custom indexes for this H1-masked hgl8 genome
were built using the 4cseqpipe “-build_re_db” command. The reads were mapped
using the 4Cseqpipe software “-map” command to custom built indexes. Normalized
contact intensities were derived using the 4seqpipe “-nearcis” command for a 1-Mb
region upstream and downstream of the bait locus. We then took the normalized
fragment level interaction frequency tables and removed any fragments where a SNP
either could create or disrupt a potential restriction enzyme site between the two alleles.
In addition, given the short sequencing read length, any fragment with an insertion or
deletion mapping within 16 bp of the fragment end was removed. These final filtered
sets of normalized fragment level interaction frequencies were then processed using a
sliding window approach with the window size of 5 kb and step size of 1 kb using the
average fragment interaction frequency over the 5-kb window. These sliding inter-
action frequency files were then quantile normalized across all replicates in order for
comparison between experiments using the “normalize.quantiles.robust” function
(with use.median = TRUE) in the “preprocessCore” library in R. For display purposes,
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the average of two replicates was converted to bedGraph format and displayed in the
UCSC genome browser.

To identify regions that showed specific interactions with the bait region con-
trolling for the genomic distance between loci, we developed a LOWESS regression
model. We pooled the sliding window interaction frequency files from each of the
4C-seq replicates and performed LOWESS regression in R with the function “low-
ess” (with f=0.01) on the log;, transformed interaction frequencies controlling
for the distance between the bait and potential interaction locus. We considered
any region as showing ‘specific’ interactions if it showed an increase in interaction
frequency greater than 2.5-fold over expected given the distance between the bait
and target loci. These were considered to be the bait interacting regions.

To test for any allelic bias in 4C-seq interaction frequencies, the average nor-
malized fragment level interaction frequency was calculated for each allele of each
replicate over the bait interacting regions nearest to the transcription start site
(TSS) of the putative target gene. A t-test was performed using these average values
(n =2 for each allele) to determine statistical significance.

The primers used for each 4C-seq experiment are listed in Supplementary
Table 5 (please see Supplementary Table 4 for information regarding the bait regions

for each experiment). In Supplementary Table 5, the Illumina barcode adaptors
are shown in red, with the region matching the bait region shown in blue. There is
also an additional variable region in the Illumina TruSeq adaptors that has been
incorporated and shown in green. The phosphorothioate bond is indicated by an
asterisk.
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Fraction of reproducible boundaries

Extended Data Figure 1 | Reproducibility of Hi-C data. a, Scatter plots
showing the correlation of Hi-C interaction frequencies between two biological
replicates for H1 ES cells and H1-derived lineages. The Pearson correlation
coefficient between replicates is shown in each plot. b, Heat maps showing
interaction frequencies of Hi-C and 5C data over the chromosome 7 ENCODE
loci. Pearson correlation coefficients between heat maps are shown together.
The correlation coefficients between Hi-C data and 5C data (PCC 0.72, 0.71,
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0.58, 0.57) are similar to the correlation coefficient between two biological
replicates of 5C data (PCC 0.68). ¢, Bar plots showing the fraction of topological
domain boundaries that are reproducible between biological replicates over
H1 and H1-derived lineages (x axis). d, Scatter plot showing the PC1 values
derived from compartment A/B analysis between biological replicates. PC1
values are used to determine the A and B compartments in each cell type. The
Pearson correlation coefficient is shown in each graph.
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Extended Data Figure 2 | A/B compartments changes are concordant with
topological domain boundaries. a, Genome browser image of the A/B
compartments determined using the previously described 1-Mb bin algorithm
(1-Mb track) compared with the 40-kb sliding window approach used in

our analysis (40-kb sliding window track). b, Pie-charts demonstrating the
fraction of the genome in the A (blue) or B (yellow) compartments in each
of the six lineages studied. Shown in black are regions with a PC1 of zero,
often corresponding to centromeric and telomeric regions of the chromosomes.
¢, Percentage of the genome that changes A/B compartment upon
differentiation of ES cells into each of the five differentiated lineages.

d, Cumulative density plot of the distance between topological domain
boundaries and transition points between the A and B compartments. The red
line represents the observed distances and the grey line represents distances for

Boundary

Boundary Boundary

Boundary Boundary

randomly generated topological domain boundaries. Domain boundaries are
closer to A/B compartment transitions when compared with random (P value
2.2 X 107", Wilcoxon rank sum test). e, K-means clustering of PC1 values in
human ES cells and differentiated lineages surrounding topological domain
boundaries. Similar to Fig. 1¢, domain boundaries correspond to the transition
points between the A/B compartments, and changes in A/B compartments that
occur during differentiation tend occur at domain boundaries. Regions that
stay as A or B compartment are termed stable A or stable B. Regions that stay as
A/B compartment switching are labelled as stable switch. Regions where the
boundary becomes a new switching point for the A/B compartment are labelled
new switch. Regions that previously were A/B compartment switching but are
no longer after differentiation are labelled switch loss. Regions that entirely
switch from A to B or vice versa are labelled as switch A/B.
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Extended Data Figure 3 | A/B compartment changes and gene expression.
a, Fraction of lineage-restricted genes in lineage-restricted compartment A
regions and other remaining regions. If only one or two cell lines are assigned as
compartment A across the six lineages, the region is defined as a lineage-
restricted compartment A region. For all six lineages, lineage-restricted genes
tend to be enriched in lineage-restricted compartment A regions compared to
other genomic regions (P values <0.05, Fisher’s exact test). b, Empirical
cumulative density plot of covariance values between gene expression and
PCI1 score across the 6 lineages analysed. Shown in red are the observed
covariance values, while in grey are covariance values calculated after randomly
shuffling the vector of gene expression values for each lineage. The slight shift of
the red curve to the right indicates that the observed data has a subset of
genes with higher covariance values than would be expected at random,
indicating that a subset of genes have concordant gene expression and PC1
values. ¢, Histogram of P values for the covariance between gene expression and
PCI1 values for each gene. To calculate the P value, a random background
distribution of covariance values was generated by calculating the covariance
between the PCI values and a randomly shuffling of the vector of gene
expression values for each gene. This shuffling was performed 1,000 times. The
actual observed covariance can then be assigned a rank based P value given the
random background distribution for that gene. The plot shows that a subset
of genes is enriched for having low P values, consistent with the idea that a
subset of genes shows concordant gene expression and compartment status.
d, Pie charts showing the fraction of domains that are identified as having a
concerted increase (yellow) or decrease (blue) in intra-domain interaction
frequency between H1 human ES cells and the five lineages analysed.

e, Relationship between A/B compartment and intra-domain interactions.

2 X 2 tables for each lineage (or for all lineages combined, labelled as total) for
domains that show a concerted increase or decrease in interaction frequency
and whether they show a change from A to B or B to A compartments. Domains
are considered to undergo a compartment change if >80% of individual

bins within the domain change compartment. Odds ratio (OR) for each lineage
and the total are listed, as are P values for the association (Fisher’s exact test).
f, Box plots showing the average difference of intra-domain interaction
frequencies between H1 human ES cells and the five lineages analysed. Regions
that change from compartment B to A (blue) tend to show increased intra-
domain interaction frequencies compared to regions that change from
compartment A to B (orange). P values are less than 2.2 X 10~ ' for all lineages
(KS test). g, Box plots of the fold-change in gene expression of genes located
in domains that have a significant increase (+), decrease (—), or no change (0)
in intra-domain interaction frequency between ES cells and each of the
differentiated lineages specified. The fold-change in expression is the log, of the
expression of a gene in the differentiated cells over ES cells (P values from
Wilcoxon rank-sum test). h, Box plots showing Z-scores of intra-domain
interactions between lineage-restricted genes and other remaining genes.

The average intra-domain interaction frequency was calculated for each
domain in six lineages analysed and converted to a Z-score. The Z-score of each
gene was assigned by the Z-score of corresponding domain that includes the
gene. Lineage-restricted genes tend to reside in domains with higher Z-scores
compared to other remaining genes. The P values were less than 1 X 10™*
from the KS test.
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Extended Data Figure 4 | Random Forest model to predict Hi-C interaction
changes. a, Comparison of the classification accuracy between tenfold cross
validation and the out-of-back (OOB) error rates. The two methods show
similar classification accuracies at each vote frequency threshold. b, Heat map
showing the difference of normalized interaction frequencies between H1
and MS cells. The boxes indicate the regions with relatively strong higher
interaction frequencies in H1 ES cells. H3K4mel and CTCF ChIP-seq signals
are also shown together. H3K4mel ChIP-seq signals are highly correlated with
changes of interaction frequency. ¢, Similar to Fig. 2e, ranked Gini index of
different chromatin features of the Random Forest model when using
randomized data. The red line represents the centre of the Gini index.

. Loss of interaction

d, Box plots demonstrating the difference in the number of enhancers in each
40-kb bin that undergoes a gain of interactions (GOI) or loss of interactions
(LOI) upon differentiation. We observe that regions that are involved gain of
interactions tend to contain more enhancers in differentiated lineages
compared to HI cells. We only considered regions containing more than

10 enhancers in total for H1 and differentiated cell lines (***P value

<2.2X 1074 KS test). e, Histogram showing the fraction of interactions
classified as GOI (orange) or LOI (blue) according to the difference of the
number of lineage-specific enhancers between differentiated lineages and H1
ES cells. The regions with more lineage-specific enhancers in differentiated
lineages are enriched by gain of interactions.

©2015 Macmillan Publishers Limited. All rights reserved



ARTICLE

a b
O oo ™ S - TS HITeTooTes
99.06% concordance 98.85% concordance CG CCATAAGATCAGATGAGTCA
p1 TCCCCGGTTGGGGCCATAAGATCAGAT! TC,
AGTTCCCCGGTTGGGGCCATAAGATCAGATGAGTCA
CTGAGTCAGTTCCCCGGTTGGGGCCATAAGATCAGA
CNGAGTCAGTTCCCCGGTTGGGGCGATAAGATCA
TGCGCNGAGTCAGTTCCCCGGTGGGGGCCATAAGA
TCTTGCGCTGAGTCAGTTCCCCGGTTGGGGCCATAA
TCTTGCGCTGAGTCAGTTCCCCGGTTGGGGCCATAAGATCAGATGAGTCAGTTTATTGATCTGGGTGG
Hablot dant read 2 TGGGGCCATGAGATCAGATGAGTCAGTTTATTGATC
W Haplotype concordantreads P GTCAGTTCCCCGGTTGGGGCCATGAGATCAGATG
I8 Haplotype disconcordant reads TCTTGCGCTGAGTCAGTTCCCCGGTTGGGGCCATGAGATCAGATGAGTCAGTTTATTGATCTGGGTGG
c
- ES p1 allele — ME p1 allele - MSC p1 allele NPC p1 allele - TB p1 allele
IS ° S] } = Z 5
o
< < o o
° |° ° S °
8 |- - 8 -
s | St ? <
% -0.1 0.0 0.1
g —  MEp2allele
o . - -
7] Sl r=0.92 =}
O
o o o
o IS]
S S
0.1
PC1 score of replicate 1
d 100 Mo } | hg18 chr2
50,000,000 | 100,000,000 | 150,000,000 | 200,000,000 |
ES total PC1 | T T M bl A L O ik l & ARy N - . .—j
ES p1 allele PC1 & b b s il . mboamts bk _albibo den b s o & i ) Al m b
ES p2 allele PC1 [, 4 dhon. o ik . s ;i T WY N . - e  aa & amd
ME total PC1 - % R IT PR A T 1] [V R T R | TR PR L — .
ME p1 allele PC1 il lllne 0 ae . s il dha bl . mdlh e PP A Y itk ﬂ
ME p2 allele PC1 il [ TR N T Y Ao e . gl A . aa M : Mna  alh il
MSC fotal PC1 bl i B Gl B hlallah 0 L &\ 0 A o G @ s, Bl
MSC p1 allele PC1 | S B WY WY W P Y~ NN TV S VY T WP WO
MSC p2 allele PC1 | S P WY WY ™ P N T — Al B . M M B
NPC total PC1 Juinu ~ . F il [ N T N T, . F B, il Loy
NPC p1 allele PC1 st alla. . iy, PP Y S B, athi . bl & e . - Al . (" il
NPC p2 allele PC1 Jomillills. il [T - P ) A ek . e ) . B - - " Sl . ) - e, [ il
TB total PC1 F oo i DN T T [ R ] Y ™ adiin. il F "y i, i,
T8 p1 allele PC1 i S oy U " S i om il . il b
1B 2 allsle PG1 PR " P o P U S ) A i e
e g h
Allele-Biased Genes Imprinted Genes
- co Other Genes Other Genes
O E=Ne)) £ 03
a 3 5 s 2
< o= w S
0] c O 8 <
ﬁ [0} = c O 2
O O =
N e g 65
=3 5} -
- £ o E
€ ® 2t 1
[T c ®©
O £ g
o f=
-0.1 0.0 0.1 &8 2380
p1 allele PC1 ES ME MS NP TB ES ME MS NP TB
f 1.3% 0.6% 2.3%

1.9% ‘I.(\S%

. Compartment A/B changes between alleles

©2015 Macmillan Publishers Limited. All rights reserved

. Same compartment A/B patterns between alleles



Extended Data Figure 5 | Allele-specific chromatin structure. a, Validation
of haplotypes by (i) RNA-sequencing (i) and whole-genome sequencing (WGS)
(ii). Shown in dark blue is the percentage of reads connecting variants in the
same predicted haplotype, while in light blue is the percentage of reads
connecting variants predicted to be on different haplotypes. b, Inset labelled
with an asterisk is from Fig. 3b showing DHS sequencing reads over a SNP
upstream from the SNRPN gene, demonstrating how different chromatin
features can be assigned to a given haplotype. ¢, Scatter plots showing the
correlation coefficient of PC1 values obtained from compartment A/B analysis
between the two biological replicates for each allele. Despite the reduction in
reads when Hi-C data are split into two alleles, the PC1 scores were highly
reproducible between replicates. d, Shown is a genome browser image of PC1
values in chromosome 2 for the p1 allele, p2 allele, and for all Hi-C reads
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without resolving the two alleles. PC1 scores are highly consistent, suggesting
that homologous chromosomes fold in highly similar patterns. e, Scatter plot of
PC1 values between the p1 and p2 alleles in H1 and H1-derived lineages.
The Pearson correlation coefficient value is 0.96. f, Fraction of the genome that
shows changes in A/B compartment status across alleles. For ES, ME, MS,
NP and TB cells, 1.3%, 0.6%, 1.9%, 2.3% and 1.6% of total genomic regions
shows allelic compartment A/B patterns, respectively. g, Percentage of
allele-biased (purple) or non-allele-biased (grey) genes that have different A/B
compartment status in each lineage. Only in ES cells is there a significant
association between allele-biased genes and regions with variable A/B
compartment between alleles (Fisher’s exact test). h, Similar to g, but showing
the association between imprinted genes and changes in A/B compartment
between alleles. No lineage shows a significant association.
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Extended Data Figure 6 | Domain-wide structural changes and allele-biased
genes. a, Scatterplot showing domain ‘intactness’ between the p1 and p2 alleles.
Domain intactness is defined as the log, ratio of the total number of intra-
domain interactions versus total number of inter-domain interactions for each
topological domain. The highly correlated domain intactness scores between
the p1 and p2 alleles support the similar topological domain patterns
between two homologous chromosomes. b, Pie charts showing the fraction of
domains that are identified as having a concerted p1 allele specific increase
(blue) or p2 allele specific increase (yellow) in interaction frequency. Grey in the
pie charts indicates the fraction of domains that do not show allele specific
patterns compared to the random model (P value cutoff is 0.001). ¢, Heat map
showing K-means clustering (k = 12) of gene expression levels of allele-biased
genes across each of the five H1 lineages. The expression levels are shown as
the fold-change of expression in each lineage relative to the average expression

ARTICLE

level across each of the five lineages. Allele-biased genes consist of both cell-type
specific and constitutively expressed genes. d, Fraction of housekeeping genes
and lineage-restricted genes that show allele-biased expression. There is no
statistically significant enrichment between allele-biased genes (orange) and
non-allele-biased genes (blue) among housekeeping or lineage-restricted genes.
e, Empirical cumulative density plot of the distance between each allele-biased
gene and the nearest allele-biased gene (purple) as compared with randomly
chosen genes (yellow). The difference from an allele-biased gene to the
nearest allele-biased gene is less than what would be expected at random

(P = 0.0482, Wilcoxon rank sum test), however, the difference is subtle,
indicating that most allele-biased expression does not occur in clusters. f, Rate
of heterozygous SNPs near both allele-biased (gold) and non-allele-biased
(black) genes. See Supplementary Information for further details.
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Extended Data Figure 7 | Identification of enhancer-promoter
interactions. a, Shown is the Hi-C interaction frequency between the IDO1
gene promoter regions and = 1 Mb surrounding regions. Each entry in the heat
map of Hi-C inter. freq. indicates Hi-C interaction frequency between the
promoter and the surrounding regions. Each row indicates the Hi-C interaction
frequencies for a given window size. The heat map of random permutation
was generated by randomizing each row in Hi-C interaction frequency. The
sum (Hi-C) and sum (random) indicate summation of Hi-C interaction
frequencies for each 5-kb window. Predicted enhancers, H3K27ac, RNA-seq,
and RefSeq gene information are shown together. b, Box plots showing the
reproducibility of predicted enhancer-promoter interactions between two
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biological replicates for each chromosome with different P value cutoffs. If the
P value is less than 0.001, the reproducibility between replicates is over 80%.
¢, Distribution of 5C signals between interacting pairs (interaction) and non-
interacting pairs (others) defined by Hi-C interaction frequency score with
different P value cutoffs. Interaction pairs defined by Hi-C interactions are also
strongly enriched by 5C signals at both P value cutoffs (1 = 11,461 for 1 X 10>
and n=1,841 for 1 X 10" %). d, Relationship between Hi-C interaction
frequency scores and dsQTL target-gene pairs according to distance between
gene and its target DHS regions. Target-gene relationships tend to show higher
Hi-C interaction frequency scores compared to off-target-gene relationships.
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Extended Data Figure 8 | 4C-seq between allelic enhancers and allelic genes.
a, Diagram of experimental design for 4C-seq and allelic 4C-seq. The orange
region depicts the 4C bait locus, and the green region is the interacting

target region. Primers containing the Illumina adaptor sequences and a
bait-specific sequence are used for inverse PCR of the target region. Barcodes
based on the Illumina TruSeq adaptors are incorporated into the primer
sequences to allow for multiplexing. The second primer will read a sequence
from the bait region with a SNP that determines the allele from with the bait was
derived. b, Pearson correlation coefficients between replicates for each of the
loci tested. Also shown is the Pearson correlation coefficient between replicates
after log-transformation of the interaction frequency. ¢, Scatter plot of
LOWESS regression of 4C-seq data. The x axis shows the genomic distance
between the bait region and the putative target region. The y axis is the log;, of
the quantile normalized interaction frequencies. LOWESS was performed to
generate an expected interaction frequency at each genomic distance (green
line). A cut off of 2.5-fold over expected (shown in the red dashed line) is used to
determine if a region shows specific interactions, so-called bait interacting

regions (BIRs). d, Normalized 4C-seq interaction frequencies surrounding a
bait region located in an allelic enhancer near the FAM65B gene. The
location of the bait is labelled as 4C bait. Regions with significant interactions
according to the LOWESS regression model are labelled as black lines in the
track marked bait interacting regions. Shown to the right is the level of
mRNA-seq data for each allele of the FAM65B gene, the level of histone
acetylation at the allelic enhancer bait region. Significance for mRNA-seq data
was calculated using the edgeR software package in R. Acetylation P values
were calculated using a binomial test. e, Similar to d, but for a 4C seq bait located
in the MANICI gene. £, Similar to d, but for an allelic enhancer located in the
PXK gene. g, Similar to d, but for an enhancer located in near the GCLM
gene. Of note, this allele-biased enhancer forms no specific contacts with any
allelic genes. h, Similar to d, but for an enhancer located near the MT2A
gene. There are no specific interactions between the allelic enhancer and the
MT2A gene. There are specific interactions between the allelic enhancer and the
MTIH and MTIG genes. However, neither gene has an exonic SNP and
therefore we cannot determine if these genes have allele-biased expression.
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Extended Data Figure 9 | 4C-seq interacting regions from allelic enhancers.
a, Allelic Hi-C interaction reads shown for allelic gene-enhancer pairs defined
using either allelic histone acetylation, DHS or DNA methylation. Odds ratios
(OR) and P values (Fisher’s exact test) are shown. For enhancers defined by
histone acetylation and the pooled set of enhancers, a statistically significant
association between allele-biased Hi-C reads and allele-biased enhancer activity
is observed. b, Normalized 4C-seq interaction frequencies surrounding a bait
region located in an allelic enhancer near the HAPLNI gene. The blue line
shows the interaction frequency for the p1 allele and the red line shows
interaction frequencies for the p2 allele. The shaded regions represent 95%

confidence intervals for the interaction frequency. Shown to the right are the
allele-specific normalized 4C interaction frequencies for each allele. 4C-seq
interaction frequencies for each allele were computed over the significant bait
interacting regions nearest to the target gene TSS. Significance testing for
allelic 4C-seq data was performed by t-test (n = 2 for each allele). Black bars
below the plot indicate regions identified as bait-interacting regions (BIRs).
Of note, the panel to the right is the same as that found in Fig. 5f. ¢, Similar to
b, but for an allelic enhancer located in the MANICI gene. d, Similar to b, but
for a 4C seq bait located in the FAM65B gene. e, Similar to b, but for an
enhancer located in near the PXK gene.
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