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Dynamical control of interference using voltage
pulses in the quantum regime
Benoit Gaury1 & Xavier Waintal1

As a general trend, nanoelectronics experiments are shifting towards frequencies so high

that they become comparable to the device’s internal characteristic time scales, resulting in

new opportunities for studying the dynamical aspects of quantum mechanics. Here we

theoretically study how a voltage pulse (in the quantum regime) propagates through an

electronic interferometer (Fabry–Perot or Mach–Zehnder). We show that extremely fast

pulses provide a conceptually new tool for manipulating quantum information: the possibility

to dynamically engineer the interference pattern of a quantum system. Striking physical

signatures are associated with this new regime: restoration of the interference in presence of

large bias voltages; negative currents with respect to the direction of propagation of the

voltage pulse; and oscillation of the total transmitted charge with the total number of injected

electrons. The present findings have been made possible by the recent unlocking of our

capability for simulating time-resolved quantum nanoelectronics of large systems.
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T
he quantum dynamics of discrete levels is by now so well
understood that systems of several qubits (and photonic
modes) are routinely engineered and addressed using

microwave signals. In contrast, very little is known about the
continuum, that is, the dynamics of degrees of freedom, which are
allowed to propagate inside a system. A few works propose setups
for ‘flying qubits’1–6 that encode the quantum information into
the paths taken by the electrons. Those systems could be realized
in Mach–Zehnder interferometers in the quantum Hall regime7–9

or Aharonov–Bohm geometries10. Before designing any of those
circuits, however, a necessary step is the understanding of the
basic, potentially new, physics associated with the time-resolved
dynamics in delocalized nanoelectronic systems.

Two competing kinds of dynamical excitations have emerged
to inject electrons in nanoelectronic devices. In the first, one fills
up the state of a small quantum dot and then rapidly increases its
energy to release the electron inside the system11. This setup
allows the electrons to be injected one by one with a rather well-
defined energy, but badly defined releasing time. In the second—
on which we shall focus—one simply uses an Ohmic contact to
apply a voltage pulse V(t) to the device (well defined in time but
ill defined in energy). In a single-mode device, such a voltage
creates a current I(t)¼ (e2/h)V(t) which injects

�n¼
Z

dt
eVðtÞ
h

ð1Þ

electrons inside the system. A voltage pulse will be said to be in
the quantum regime when roughly �n � 1 electron is injected and
the electronic temperature is smaller than the energy scales
associated with the height VP and duration tP of the pulse ‘=tPð Þ.

In a series of seminal works, Levitov and colleagues12–15 studied
the properties of pulses of Lorentzian shape. While they found a
featureless time-dependent current, they predicted that, in
contrast, the current noise could oscillate with the amplitude of
the pulse, with the possibility to build noiseless quantum
excitations for the particular Lorentzian shape. Recent
experiments are beginning to address these proposals16–18. In
particular, the quantum regime was reported recently by Dubois

et al.18 Here we report on the new non-trivial physics that emerges
when those voltage pulses are used to inject charge excitations
in an electronic interferometer. We find that ultra-fast pulses
permit the dynamical control of the relative phases of the
different paths taken by the electrons, therefore providing means
to dynamically engineer the coherent superposition of the
travelling waves. We first focus on a simple Fabry–Perot
interferometer in one dimension followed by full-scale
simulations of a two-dimensional Mach–Zehnder interferometer
in the quantum Hall regime.

Results
Fabry–Perot cavity. Figure 1a,b shows our model Fabry–Perot
system: it consists of a quantum wire connected to two metallic
electrodes. The quantum wire is made into a Fabry–Perot inter-
ferometer by means of two barriers (A and B), which can be
defects in the wire, gates (as in the sketch) or simply the Schottky
barriers that naturally form at the wire–electrode interfaces. Such
Fabry–Perot interferometers are standard devices of nanoelec-
tronics and their DC properties have been extensively mea-
sured19–21. The basic properties of this interferometer can be
understood within an elementary theory. Each barrier A (and B)
is described by the amplitude of probability dA (rA) for an
incident electron to be transmitted (reflected). Summing up the
probability amplitudes for all the trajectories (direct transmission:
dBdA, one back and forth bouncing: dBrArBdA...), the total
amplitude of probability for an electron to be transmitted reads,

dABðEÞ ¼
dAdB

1� rArBz
: ð2Þ

The factor z corresponds to the phase z¼ ei2kL accumulated by
the electron during the time between two collisions (L distance
between the scatterers, k electron momentum). z can also be
rewritten as z ¼ ei2tFE=‘ , where tF is the time of flight between A
and B, and E is the incident energy (our analytical treatment
ignores the small energy dependence of tF, dA,dB but our
numerics fully account for it). When E is at resonance with the
eigenenergies En¼ ndþ eVg of the cavity formed by A and B
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Figure 1 | Schematic of the Fabry–Perot cavity and of the main physical mechanism. (a,b) Schematic of our setup, a quantum wire connected to two

electrodes. Two barriers A and B separated by a distance L are placed along the wire and a Gaussian voltage pulse V(t) is sent from the left. The barriers are

characterized by the barrier heights (VA and VB) or equivalently by their reflection and transmission amplitudes denoted, respectively, rA,rB and dA,dB. A

gate voltage Vg allows one to shift the position of the resonant levels of the cavity. The mean level spacing between the discrete levels of the cavity is

d ¼ h= 2tFð Þ where tF is the ballistic time of flight from A to B. (c) Schematic of the physical mechanism for the dynamical control of the interference: as the

pulse propagates along the different trajectories, a phase difference 2p�n appears between the front (blue) and the rear (red) resulting in a modification of

the interference pattern. (d) Graphical representation of equation (5) that gives the structure of a voltage pulse in terms of a ‘phase domain wall’.
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d ¼ h= 2tFð Þð : mean level spacing; eVg: potential shift due to a
nearby electrostatic gate), dAB shows a sharp peak and reaches
perfect transmission.

Let us now apply a voltage pulse V(t) of duration tP and
maximum intensity VP to the left electrode. Defining the trans-
mitted current It(t) just after the second barrier, the observable of
interest to us will be the total number nt¼

R
It(t)dt/e of electrons

transmitted through the system. nt can be directly measured
experimentally and requires much less effort than, for example,
noise measurements. In an actual experiment, one would measure
the DC current Idc on sending periodic trains of pulses through
the system. Indeed, by periodically applying the above pulse with
a period Y44tP, one simply finds Idc¼ ent/Y.

The limit of long pulses tP44tF is rather trivial: as V(t) varies
very slowly, at each instant the current follows the DC I–V
characteristics of the system: It(t)¼ Idc[V(t)] (adiabatic limit) that
can be obtained from the Landauer formula. In this limit, VPood
(linear regime) leads to nt¼ dABðEFÞj j2�n (EF: Fermi level), while
for large voltages VP44d (classical limit) the interference pattern
is washed out and one obtains nt¼Dcl

AB�n, where the classical (or
incoherent) probability nt¼Dcl

AB corresponds to the addition law
of the probabilities associated with the different paths22,

Dcl
AB¼

DADB

1�RARB
ð3Þ

(capital letters D or R correspond to the probabilities associated
with the respective amplitudes so that DA¼ |dA|2). Equation (3) is
essentially identical to equation (2) on replacing amplitudes by
probabilities. So far, we have made rather standard predictions

that are easily reproduced by our numerical simulations: the
blue symbols in Fig. 2 show that nt oscillates with the gate voltage
Vg (Fig. 2a) and increases monotonously with VP (Fig. 2b).
Figure 2a has been calculated with an intermediate value of
VPE0.5d so that the contrast of the interference pattern is not
very large.

Having established the adiabatic limit, we can now turn to the
more interesting limit of short pulses tPootF for which a proper
time-resolved quantum theory is compulsory. Let us make a naive
guess: a very short pulse can be viewed as a very localized
perturbation that will propagate ballistically through the wire.
Monitoring the current after the barriers, one observes a narrow
peak when the perturbation has propagated up to the observation
point. 2tF later one observes a second peak corresponding to
trajectories with one reflection on each barrier, new peaks (of
increasingly smaller amplitudes) arrive sequentially every 2tF. As
the perturbations coming from different trajectories do not
coincide in time, they cannot interfere and one expects to observe
the ‘classical’ addition law nt ¼ Dcl

AB�n. The argument can also be
made in the energy domain: a fast pulse excites electrons to a
large spread in energy that results in an effectively random phase
z and the interference pattern gets washed out. A rapid glance at
the numerics does indeed confirm this picture: Fig. 3b shows the
monitored current It(t) that clearly shows the peaks described
above. Perhaps more transparent is the corresponding colour
map of the local current I(x,t) (Fig. 3a) where the different
trajectories with multiple reflections are clearly visible. In
contrast, long pulses (not shown) have an essentially featureless
current It(t) of the same shape as the voltage pulse.
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Figure 2 | Total charge transmitted nt. (a) nt as a function of gate voltage eVg/d. ( b,c) nt as a function of total injected charge �n. The symbols correspond

to numerical data for short (blue, tP ¼ tF=7) and long (red, tP ¼ 3tF) pulses while the full lines correspond to the analytical results for tP � tF (blue)

and tP � tF (red). (a) VP¼0.5d and DA¼DB¼0.5. (b,c) System at resonance and VP is varied with DA¼DB¼0.5 (b), and DA¼DB¼0.1 (c). Dashed

lines: nt ¼ DAB�n (green) and nt ¼ DCl
AB�n (magenta).
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Figure 3 | Propagation of the voltage pulse. (a) Local current It(x,t) as a function of space (in unit of the length L of the cavity) and time (in unit of tF) for
VP¼ 1.5d, tP ¼ tF=3:5 and the cavity is at resonance. The dashed lines indicate the positions of the barriers. (b) It(x0,t) for x0¼ 2.5L on the right

of the second barrier B. In orange: VP ¼ 1.5d, in purple: VP ¼4.5d and tP ¼ tF=3:5. The black cross (� ) marks the time associated with Fig. 1c.
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The story could end here: slow pulses allow one to observe the
interference effects (wave aspect of quantum mechanics) while
fast pulses give access to the ballistic propagation and reflection/
transmission of the charges injected by the pulse (particle aspect
of quantum mechanics). A deeper look at the numerics reveals,
however, a handful of rather counter-intuitive physical effects.
First, one observes in the It(t) plot of Fig. 3b that the current does
not vanish in between consecutive peaks. Second, Fig. 2 shows
that the total number of transmitted electrons in fact oscillates
strongly with the gate voltage (Fig. 2a) in total contradiction with
the above picture. Indeed, on using faster pulses, one actually
restores the interference pattern that was somewhat smeared in
the long-pulse case. Third, and even more striking, is Fig. 2b,c,
which shows that the number of transmitted electrons actually
oscillates with the number of injected electrons �n. Figure 2c is
particularly intriguing: for �n¼0:8, nt, for example, the DC current
for a train of pulses, is negative. In other words, one raises the
energy of the electrons on the left and the electrons flow towards
the left electrode.

Dynamical control of the interference pattern. To understand
this regime of fast pulses, one needs to develop a proper
representation of what a fast voltage pulse really does to the
electronic wave function. The naive image where a voltage pulse
generates some sort of localized wave packet that propagates
through the system is, to a large extent, wrong. In contrast,
stationary delocalized waves already exist before the pulse.
Ignoring for a moment the presence of the interferometer
(barriers), the stationary wave function is a simple plane wave
Cðx; tÞ¼eikx� iEt . On applying a voltage pulse V(t)y(� x) (we
suppose that the voltage drop is very abrupt spatially for the sake
of the argument, y(x) is the Heaviside function), the energy of the
wave is increased and the wave function starts to accumulate
an extra phase fðtÞ¼

R t
�1 du eVðuÞ=‘ for x o0. Noting that

limt!1 fðtÞ¼2p�n, one finds that the wave function after the
pulse takes the form

Cðx; tÞ¼e� i2p�nþ ikx� iEt=‘ for xo0
Cðx; tÞ¼eþ ikx� iEt=‘ for x40:

ð4Þ

The effect of a voltage pulse is therefore to generate a kink in the
phase of the electronic wave function Cðx; tÞ (see Fig. 1d for a
schematic). In other words, what propagates is essentially a
‘phase’ domain wall between two regions, which are characterized
by an ei2p�n phase difference. Phases in quantum mechanics can-
not be observed directly and one has to resort to interferences
between different paths to observe them. The role of the elec-
tronic interferometers used in this study is to introduce these
different paths. While the argument above is very naive, it cor-
rectly captures the main feature of the wave function that reads
(for a linearized spectrum),

Cðx; tÞ ¼ e� ifðt� x=vÞþ ikx� iEt=‘ ð5Þ

where v¼ (1/‘ )qE/qk is the group velocity.
Let us now return to our Fabry–Perot cavity. In this case, the

stationary wave is not a simple plane wave but a superposition of
several waves corresponding to the different paths that the
electrons can take (with zero, one, two... reflections) as shown in
Fig. 1c. When a voltage pulse is sent through this superposition of
paths, it propagates through the various paths. Figure 1c
corresponds to a snapshot at a particular time where the pulse
has emerged from the direct path (path 1 of stationary amplitude
dBdA) but not yet from the longer trajectories with multiple
reflections (path 2 of amplitude dB(rArB)dA, path 3 of amplitude
dB(rArB)2dAy). The time at which this snapshot is taken
corresponds to the cross in the It(t) plot of Fig. 3b. If one looks

at the wave function just after the barrier B at that particular time,
one finds that the amplitude of path 1 has an extra phase ei2p�n

compared with its stationary value (rear of the pulse as compared
with paths 2, 3,... that are still in the front of the pulse). Therefore
at this particular time, the total amplitude is
ei2p�ndBdA þ dB rArBð ÞdA þ dB rArBð Þ2dA::: and is dynamically mod-
ified with respect to its stationary value. As time increases, the
pulse will emerge from path 2, path 3...and the factor ei2p�n will
progressively spreads to all trajectories until one recovers the
stationary amplitude (up to a now irrelevant global ei2p�n phase
factor). The above argument explains the origin of the plateaus
observed in Fig. 3b. The value of the current at these plateaus
obviously oscillates with 2p�n, which consequently explains the
oscillations of nt. This mechanism, to which we refer to as the
dynamical control of the interference pattern, is the main new
concept of this paper.

In order to make the above argument quantitative, and in
particular properly take into account the Fermi statistics for the
filling of the stationary states, we perform the analytical
calculation of nt with a ‘photo-assisted tunnelling’ formula
(Eq. (95) of ref. 23),

nt ¼
Z

dE
2p

dE0

2p
j dvðE0 �EÞdABðE0Þ j2 ½f ðEÞ� f ðE0Þ� ð6Þ

where dv(E0 �E) is the amplitude of probability for an electron
with energy E to be transferred to the energy E0 by the pulse
and f(E) the Fermi function. dv(E0 � E) is essentially the Fourier
transform of the phase e� if(t). The calculation of nt for fast
pulses yields (see the Methods section),

nt ¼ Dcl
AB �nþ ½DABðVgÞ�Dcl

AB�
sinð2p�nÞ

2p

� 2DABðVgÞDcl
ABrArB

pDADB
sin2ðp�nÞsinð2pVg=dÞ:

ð7Þ

Equation (7) contains two contributions of different kind: the first
term, ‘particle’-like, accounts for the ballistic propagation of the
pulse while the second and third terms, ‘wave’-like, corresponds
to the dynamical modification of the interference pattern
discussed above, which originates from the difference of phase
between the front and the back of the pulse. This interference
effect dominates for a resonant Fabry–Perot in the tunnelling
regime (DA, DBoo1), where the ‘particle’ term vanishes and one
observes a purely oscillating signal nt ¼ sin 2p�nð Þ½ �= 2pð Þ, see the
right panel of Fig. 2. In particular for �n¼3=4, one finds a negative-
transmitted charge nt¼ � 1/(2p), which is a pure interference
effect: the ei3p/2 phase of the pulse dynamically brings the Fabry–
Perot cavity out of resonance and as a result, the particles coming
from the left are temporarily blocked. The electrons coming from
the right, on the contrary, are not affected by the pulse. Therefore
the current compensation between left and right is temporarily
withstood and one observes a negative net current (see the purple
line in Fig. 3b for instance).

Discussion
The requirements to observe the above predictions experimen-
tally are threefold. (i) One needs a device where Fabry–Perot
interferences can be observed at DC, which implies that the
temperature kBT is smaller than the mean level spacing d ¼
h=2tF of the cavity. (ii) One needs values of tF long enough
compared with the speed of available pulse generators. (iii) An
important ingredient of the modelling is that the voltage drop
needs to be spatially abrupt (with respect to the distance L
between the two barriers A and B). The spatial shape of the
voltage drop is controlled by the ratio between the electric C
and quantum e2r capacitances of the system, as discussed in
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section 8.4 of ref. 23. In order to obtain a large ratio C/(e2r) one
needs a very small density of state r and/or to use nearby metallic
gates in order to obtain an efficient screening of the charges inside
the device. Requirement (iii) requires some care but various
strategies can be used to enforce it, such as depositing screening
gates close to the electron gas or using systems with extremely low
density of states. One needs dZ10kBT in order to fulfil (i) with a
good contrast that translates into tF � 250ps for a typical dilution
fridge temperature of 10mK. This in turn imposes a pulse
duration tP � 100ps to enter the regime of fast pulses. Such
requirements are stringent but definitely within grasp of current
technology.

There are many possible systems where the above physics
could be measured. Recent progress on terahertz detection were
made with carbon nanotubes17, for instance, although these
objects are rather small (which implies small time of flight hence
the terahertz physics). In the rest of this article, we explore an
implementation, perhaps the simplest one, where the
interferometer is constructed out of the edge states of a
two-dimensional electron gas in the quantum Hall regime19.
The one-dimensional edge states have very low density of states
and can be further screened by nearby metallic gates or other
nearby edge states (at filling factor two). With drift velocities
vDE104–105m s� 1 and a phase coherence length8 LfE20mm at
20mK, one finds that a rather large system of length of a few
micrometres should meet the requirements.

We simulated an electronic analogue of a Mach–Zehnder
interferometer as sketched in the inset of Fig. 4. The device is
close to the ones measured experimentally for example, in ref. 8
(although smaller owing to computational limitations) and
simulated in DC in ref. 24. It consists of a two-dimensional gas
under magnetic field with three terminals and two quantum point
contacts (QPCs), which serve as beam splitters. This device differs
from the Fabry–Perot in two ways: first it is simpler conceptually as
only two paths contribute to the transport. Second, these two paths
can be resolved spatially (the edge states being chiral, transmitted
and reflected waves propagate on different edge states).

Figure 4 shows the result of the simulation for a 2 mm2

sample with a density of ns¼ 1011 cm� 2, mobility m¼ 2�
106 cm2V� 1 s� 1 under a magnetic field B¼ 1.8T. The velocity is
measured to be v¼ 7� 104m s� 1 with an abrupt confinement of
the electrons so that the difference of time of flight between the
two paths is tF ¼ 64ps. Fast pulses of duration tP ¼ 12ps were
applied to electrode 0 to obtain the fast-pulse limit. The system
was discretized on a 3-nm mesh so that around 105 sites were
used in the simulation. The results of Fig. 4 confirm the
oscillations of the transmitted charge with �n: the dynamical
control of the phase between the two arms of the interferometer
stands in this experimentally accessible geometry.

Figure 5c shows the current arriving in the electrode 1 as a
function of time, in direct analogy with Fig. 3b: the two peaks
correspond respectively to the arrival of the pulse from the lower
arm and upper arm of the interferometer while the plateau in
between corresponds to the dynamical control of the interference
pattern. We show for completeness the actual value of these
currents at the first peak (t¼ ta) and on the plateau (t¼ tb) in
Fig. 5a,b, respectively. We find, as expected, that the first
contribution increases with �n; while the latter oscillates as
sin 2p�nð Þ. The lower inset of Fig. 4 contains a schematic of a
snapshot of the interference pattern at t¼ tb.

Experiments have now reached the technological threshold
where they can be made fast and cold enough for the physics
of this proposal to be accessible in the lab18. As the available
measuring apparatus are getting faster every day, many other
nanoelectronics systems will reveal intriguing new physical
effects when probed with very fast pulses. In particular, the
concept of dynamical control of the interference pattern
developed here is very generic and could be extended beyond
the physics of electronic interferometers. For instance, Andreev
resonant states, which form on the boundary of super-
conductors or the oscillatory magnetic exchange interaction in
magnetic multilayers, are closely related to the Fabry–Perot
physics discussed here, and could be addressed in a similar
way. The capability to simulate such time-resolved quantum

0.4

0.3

0.2
0V(t) 1

2

A B

0.1

0.0

–0.1

n 1
–n

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A

n

B
Path 2
Path 1

1.6 1.8

Figure 4 | Voltage pulse in a Mach–Zehnder interferometer in the

quantum Hall regime. Main figure: difference n1� n2 between the

transmitted charge into contact one and two as a function of the total

injected charge �n. The full line corresponds to the analytical calculation

n1 � n2 ¼ 0:12�nþ0:14 sin 2p�nð Þ (see Methods section). Upper inset:

schematic of the system with the electron gas (light grey), the three

contacts 0, 1 and 2 (yellow), the two semi-transparent quantum point

contacts A and B and the effective chiral edge states (blue arrows). Lower

inset: schematic of the two paths that contribute to the stationary wave

function. As the pulse propagates along the different trajectories,

a phase difference 2p�n appears between the front (blue) and the rear (red)

of the pulse.

0.08

0.06

0.04

0.02

0.00

0.005

0.004

0.003

0.002

0.001

0.000

0.0 0.5 1.0 1.5 2.0

ta tb

I 1
(t

a)
 (

e
/�

F
)

I 1
(t

b)
 (

e
/�

F
)

I 1
 (

e
/�

F
)

0.0
n

0.5 1.0 1.5 2.0

–0.001

0.000

0.001

0.0

n

0.5 1.0 1.5 2.0

t/�
F

Figure 5 | Current I1 at contact 1 for the Mach–Zehnder interferometer.

(a,b) Amplitude of I1(ta), I1(tb), as a function of the number of injected

particles �n. Symbols are numerical data. The line in (b) corresponds

to I1 tbð Þ ¼ 0:001 sin 2p�nð Þ. (c) Transmitted current I1(t) as a function of time

for �n ¼ 0:2.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4844 ARTICLE

NATURE COMMUNICATIONS | 5:3844 | DOI: 10.1038/ncomms4844 |www.nature.com/naturecommunications 5

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


nanoelectronic circuits, demonstrated here, should play a key role
in proposing and analysing these upcoming experiments.

Methods
Model for the Fabry–Perot geometry. We model the Fabry–Perot cavity with a
one-dimensional Hamiltonian

ĤðtÞ ¼
Z

dx� ‘ 2

2m
cyðxÞDcðxÞ

þ EðxÞcyðxÞcðxÞþ yð� xÞeVðtÞcyðxÞcðxÞ
ð8Þ

where the field operator cðxÞ (cyðxÞÞ destroys (creates) an electron at position x,
V(t) is the voltage pulse applied on the left electrode (xo0) and E(x) the static
potential that defines the Fabry–Perot (for x40). We discretize the model on a
lattice with lattice distance a and get,

ĤðtÞ ¼ 2gþ
XN þ 1

i¼1

Eic
y
i ci � g

Xþ1

i¼�1
c
y
iþ 1ci

� g½eifðtÞ � 1�cy1 c0 þ h:c:

ð9Þ

where g¼‘ 2= 2ma2ð Þ and f tð Þ ¼
R t

�1 dt0 eV t0ð Þ=‘ (a standard gauge transfor-
mation has been applied to transform the time-dependent potential
for ir0 into a time-dependent hopping between sites 0 and 1). The operator ci ðc

y
i Þ

destroys (creates) an electron on site i. Ei defines the Fabry–Perot cavity
of size L¼Na: E1¼VA, ENþ 1¼VB and Ei¼ �V0þVg in the central region i¼
A{2,3,yN}. We use Gaussian voltage pulses of width tP and maximum
voltage VP,

V tð Þ ¼ VP exp � 4 log 2ð Þ t
2

t2P

� �
ð10Þ

for which �n ¼ keVPtP=‘ where k ¼ 1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p log 2ð Þ

p
� 0:17. Note that contrary to

the noise properties13–15, the total number of transmitted electrons is to a wide
extent insensitive to the precise shape of the pulse.

Numerical method. The DC numerical simulations were performed with the
Kwant software package25. The time-dependent simulations were performed
using the WF-D method of ref. 23, which is summarized below. The method
consists of three steps. First, we start by solving the stationary problem for times
before the pulse. We obtain the two scattering states Cst

aE ið Þ of the system for
electrons coming from the left a¼ L and from the right a¼R for incident energy E.
Solving the scattering states of a time-independent Hamiltonian is a well-studied
problem for which efficient techniques have been developed26. Second, once the
pulse starts (say at t0o0), we simply integrate the time-dependent Schrodinger
equation with CaEði; t0Þ¼Cst

aEðiÞ. More specifically, we introduce the deviation
�Cði; tÞ from the stationary wave function CaE i; tð Þ ¼ �C i; tð Þþ e� iEtCst

aE ið Þ, which
satisfies �C i; t0ð Þ ¼ 0. The finite system of N sites is then embedded into a larger
finite system of 2M sites (with typically M¼ 1.5N) and �C tð Þ satisfies,

i@t �Cði; tÞ ¼ � g½ �Cðiþ 1; tÞþ �Cði� 1; tÞ�þ ð2gþ EiÞ �Cði; tÞ
� gdi;0½eifðtÞ � 1�½e� iEtCst

aEð1Þþ �Cð1; tÞ�
� gdi;1½e� ifðtÞ � 1�½e� iEtCst

aEð0Þþ �Cð0; tÞ�
þ di;�M þ di;þM
� �

� Eð Þ �C i; tð Þ

ð11Þ

where the non-Hermitian term � Eð Þ ¼ E� 2gð Þ=2g2 � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=g3 � E2=4g4

p
is the so-

called self-energy of the wire. The integration of equation (11) for different energies
is done in parallel on different processors using a third-order Adams–Bashforth
scheme. In the last step, the results are integrated over the different energies to
obtain the observables. In particular the current at site i reads,

I i; tð Þ ¼ 2
eg
‘
Im

X
a

Z
dE
2p

f Eð ÞC	
aE i; tð ÞCaE iþ 1; tð Þ ð12Þ

where f(E) is the Fermi function at temperature T for the Fermi energy EF. This
method allows one to study systems with 104–105 sites on a simple cluster and is
expected to scale beyond 106 sites on a supercomputer.

Parameter set for the Fabry–Perot geometry. Most of the data presented here
were obtained with the following set of parameters: N¼ 70 and EF¼g so that
tF � 35g� 1 and d � 0:09g. Various durations of the pulses were used from
tP ¼ 5g� 1 to tP ¼ 100g� 1. We found that tP 
 5g� 1 is necessary to enforce
‘=tP � EF and get rid of spurious effects associated with the band width of the
model. The values of VA and VB are given in Fig. 6b while V0¼ � 1.068.

A comment on electron–electron interactions. A common difficulty encoun-
tered in time-dependent transport, which was pointed out by Buttiker et al.27

some years ago, is the crucial role of electrostatics in restoring a gauge invariant,
current-conserving theory. Indeed, in the non-interacting theory used here, the

conservation equation for the charge reads,

@trðx; tÞþ @xIðx; tÞ¼0 ð13Þ
where r(x,t) is the charge density and I(x,t) the local current. In presence of time-
dependent perturbations (such as the voltage pulse), the current is not conserved
and a finite charge density temporary accumulates in the system. An accumulation
of charge costs, however, a tremendous amount of electrostatic energy so that in
real systems, this charge density is screened by image charges in nearby gates.
Those image charges result in a displacement current Id¼ qtr(x,t) flowing in those
electrodes. Only once this displacement current is taken into account does one
recover current conservation. As a result of the presence of this time-dependent
charge density, one should, at the mean field level include the corresponding time-
dependent potential created by these charges into our time-dependent Schrodinger
equation. Let us make four specific remarks for the situation studied in this article.
First, we study situations with a small number of injected particles �n, therefore one
should be very careful with the mean field approach as one wants to avoid spurious
self-interacting terms present at the Hartree level. Second, all our calculations are
done for a non-interacting model, and are therefore a priori expected to be valid in
presence of metallic gates in close proximity to the quantum wire. Third, while the
displacement currents and corresponding time-dependent potentials can modify
the AC properties of the system, the total transmitted charge nt shall not be affected
by treating explicitly the electrostatic problem. Indeed, the total number of
transmitted and reflected electrons form conserved and gauge invariant quantities
(in the sense defined by Buttiker et al.27) and therefore do not suffer from the flaws
of their AC counterparts. In plainer words, the integral (over time) of the
displacement currents as well as the corresponding time-dependent potentials is
zero, therefore their presence do not modify nt. Finally, recent experiments18 with
fast voltage pulses indicate that the non-interacting theory works remarkably well
for those systems. A longer discussion of current conservation and gauge
invariance can be found in ref. 23.

Note that beside the above mentioned aspects, the electrostatics remain crucial
in the determination of the spatial profile of the voltage drop created by the voltage
pulse. In order to observe the effects discussed in this article, one needs to be able to
create spatially localized voltage drops that can subsequently propagate inside the
interferometer. The corresponding condition has been discussed in section 8.4 of
ref. 23 that we refer to.

Calibration of the Fabry–Perot geometry. Figure 6 shows the DC characteristics
that were used to calibrate our device. Figure 6a,b shows the transmission prob-
ability of a single barrier, say A, as a function of the Fermi energy (a) and VA.
Figure 6c shows the transmission probability (conductance in unit of e2/h) of the
full Fabry–Perot cavity as a function of the gate voltage Vg from which we can
extract the peak-to-peak mean level spacing d¼ 0.09g.

Figure 7a shows the resonant and off resonance signal nt=�n as a function of the
maximum voltage VP/d for both the short and long pulses. As the visibility of the
fast pulses is sensitive to �n and not to VP/d (equation (7)), we find that the system
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can retain a high visibility for VP4d while the interference pattern of the long
pulse is totally smeared out. We study in Fig. 7b the temperature dependence of nt
at and off resonance. We find that a low kBTr0.1d temperature is needed to
observe interferences with a good visibility. This requirement is as stringent as the
DC requirement but not more, so that temperature should not be a restriction for
the observation of the effects predicted in this work.

Last, Fig. 8 presents the number of transmitted electrons as a function of the
injected one for two different pulse shapes: a Gaussian pulse (equation (10)) and
a Lorentzian one V tð Þ ¼ VP= 1þ 4t2=t2P

� �� �
. We find, as expected from the

analytical calculation, that the results are insensitive to the shape of the pulse in the
fast pulse limit and we recover the oscillating behaviour with respect to �n. We
emphasize that this is in sharp contrast with the current noise in the single-barrier
case studied in ref. 14

Analytical technique for the calculation of nt. Our starting point for the
calculation of nt is Eq. (95) of ref. 23,

nt¼
Z

dE
2p

dE0

2p
dðE0;EÞj j2½f Eð Þ� f ðE0Þ� ð14Þ

where d(E0 ,E) is the amplitude of probability for an incident electron coming from
the left with energy E to be transmitted with energy E0 . d(E0 ,E) can be further
decomposed into

dðE0; EÞ ¼ dvðE0 � EÞdABðE0Þ ð15Þ

where the first (inelastic) term originates from the voltage drop while the second
comes from the (elastic) Fabry–Perot cavity. In order to derive equation (14), we
have made use of the fact that the transmission amplitude d0v E0 � Eð Þ for electrons

coming from the right is given by d0v E0 � Eð Þ ¼ d	v E� E0ð Þ. Note that equation (14)
as a whole is a perfectly convergent integral whose integrand is concentrated
around the Fermi level (assuming the voltage pulse is slow enough compared with
‘ /EF). However, each of its two sub terms spread over the entire band of the model,
so one should refrain from calculating these two terms separately, if possible.
Equation (14) has a nice straightforward interpretation: one simply sums over the
(incoherent) incoming states and calculate their total transmission probabilities
regardless of the final energy. In the absence of voltage pulse, the vanishing nt
comes from the compensation between electrons coming from the left and from
the right.

Our model for the Fabry–Perot transmission amplitude has been given in the
core of the text. To calculate dv(E0 �E), one defines the scattering states on both
sides of the voltage drop:

CL n; tð Þ ¼ 1ffiffiffiffiffiffiffiffiffi
v Eð Þ

p eikðEÞn� iEt þ
Z

dE0

2p
rvðE0;EÞ 1ffiffiffiffiffiffiffiffiffiffi

v E0ð Þ
p e� ik E0ð Þn� iE0 t ð16Þ

on the left and

CR n; tð Þ ¼
Z

dE0

2p
dvðE0; EÞ 1ffiffiffiffiffiffiffiffiffiffi

vðE0Þ
p eikðE

0 Þn� iE0t ð17Þ

on the right (with v(E)¼ qE/qk the velocity associated with the dispersion relation
E¼ 2g cos k). By ‘matching’ the left and right waves across the voltage drop (see
ref. 23), one obtains a set of equations for dv and rv. In the limit where the pulse is
slow tP � ‘=EF, and VPooEF/e is low compared with the Fermi energy, (the case
of interest for our nanodevices), we can linearize the dispersion relation and we
simply recover the result of ref. 14,

dvðE0 � EÞ¼
Z

dteiðE
0 � EÞt e� ifðtÞ ð18Þ

with rv¼ 0. To proceed, we expand dAB(E) in terms of the different paths,

dAB Eð Þ ¼
X1
n¼0

dAdB rArBð Þne2itFðEþ eVgÞn ð19Þ

and introducing E¼ E0 �E, we get,

nt¼
Z

dE
2p

dE
2p

X
n;m

jdvðEÞ j 2 DADBðrArBÞnþm

�e2itFðEþ eVgÞðn�mÞ f ðE� EÞ� f Eð Þ½ �
ð20Þ

we can now perform the integration over E (at zero temperature), which binds
together the two parts of the integral. The terms n¼m and nam need to be
considered separately, and we get,

nt¼Dcl
AB

Z
dE
2p

j dvðEÞ j2 Eþ
Z

dE
2p

j dvðEÞ j2
DADB

2p

�
X
n 6¼m

rArBð Þnþm eiagðn�mÞ

i2tFðn�mÞ ðe
i2tFEðn�mÞ � 1Þ

ð21Þ

with ag¼ 2tF EF þ eVg
� �

=‘ . We can now replace dv(E) by its expression
equation (18) and performing the integral over E, we arrive at

nt¼Dcl
ABnþ

X
n

X
m 6¼ n

DADB

2p
rArBð Þnþm eiagðn�mÞ

i2tFðn�mÞ

�
Z

dt e� ifðtÞeifðtþ 2tFðn�mÞÞ � 1
h i ð22Þ

Equation (22) applies for all pulses, short and long. Assuming an infinitely
short pulse fðtÞ¼yðtÞei2p�n , we obtain after integration and resummation of the
geometric series,

nt jshort ¼Dcl
AB �nþðDABðVgÞ�Dcl

ABÞ
sinð2p�nÞ

2p

� 2DABðVgÞDcl
ABrArB

pDADB
sin2ðp�nÞsinð2pVg=dÞ

ð23Þ

In the case of very long pulses, f(t) evolves very slowly with respect to tF so that
one expands fðtþ atFÞ � fðtÞþ atFeVðtÞ=‘ . In this limit, equation (22) allows
one to recover the adiabatic result,

nt jlong ¼
Z

dt
ZE

F
þV tð Þ

EF

dE
2p

DAB Eð Þ ð24Þ

The calculation for the Mach–Zehnder geometry proceeds along the same lines,
and is even simplified by the presence of only two paths contributing to the
transmission amplitude of the device. The transmission probabilities from lead
0 to 1 (2) reads,

S010ðEÞ
�� ��2¼DADB þRARB þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DADBRARB

p
cosðfþ tFðE� EFÞÞ; ð25Þ

S020 Eð Þ
�� ��2¼DARB þRADB � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DADBRARB

p
cosðfþ tFðE� EFÞÞ; ð26Þ

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

n t
/n

0.4

0.2

0.0

n t
/n

eVp/� kBT/�
210 1.00.750.50.25
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with f the total magnetic flux through the central depleted region (in unit of ‘ /e)
and tF the extra time needed for the upper paths with respect to the lower one.
After following the same steps as for the Fabry–Perot geometry, one obtains (in the
limit of short pulses) the number of particles transmitted to contact 1 (2),

n1¼ DADB þRARBð Þ�nþ 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DADBRARB

p
sinðp�nÞcosðp�nþfÞ ð27Þ

n2¼ DARB þRADBð Þ�n� 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DADBRARB

p
sinðp�nÞcosðp�nþfÞ ð28Þ

Model for the Mach–Zehnder geometry. We consider a two-dimensional
electron gas made from a two-dimensional GaAs/AlGaAs heterostructure with
high mobility m¼ 2� 106 cm2V� 1 s� 1, an electronic density ns¼ 1011 cm� 2 and
a perpendicular magnetic field B¼ 1.8T (corresponding to filling factor one,
first Hall plateau). The three-terminal electronic Mach–Zehnder interferometer is
sketched in Fig. 9.

The system is modelled within the effective mass approximation in presence of
a small static disorder. The Schrodinger equation is discretized on a mesh with a
step a¼ 3 nm much smaller than both the Fermi wave length lF¼ 79 nm and
magnetic length lB¼ 19 nm of the system. The magnetic field is accounted through
a standard Peierls’ substitution. The model and its DC characterization (with a
slightly different geometry) were discussed in ref. 24.

In the simulations, contacts 1 and 2 are grounded, while a voltage pulse is
applied on contact 0 (same pulse as equation (10)). The injected current follows the
edge state and is split into two parts as it reaches the first QPC. Both QPCs are set
to be semi-transparent DA¼DB¼ 0.5 and consequently act as beam splitters. The
two parts of the initial current are recombined at the second QPC. Figure 9 actually
corresponds to a snapshot of the simulation at an intermediate time t¼ 46 ps: the
colour code indicates the deviation of the local electronic density with respect to
the equilibrium value. At this intermediate time, the pulse has already passed
through the first QPC and is split into two parts. The lower (transmitted) part is
reaching the electrodes 1 and 2 while the upper (reflected) part is travelling along
the longer arm of the interferometer.
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