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Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to
severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD),
characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood
and anxiety. In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the
USA, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related
biological processes and in their potential therapeutic application for stress-related psychopathology. Here we review the
current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature
on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related
to the pathogenesis of PTSD. Potential therapeutic implications of the reviewed literature are also discussed. Finally, we
propose that a state of endocannabinoid deficiency could represent a stress susceptibility endophenotype predisposing to the
development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses
used to explain high rates of cannabis use in patients with trauma-related disorders.
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POSTTRAUMATIC STRESS DISORDER

Posttraumatic stress disorder (PTSD), while once character-
ized as a variant of an anxiety disorder, is now explicitly
viewed as a separate entity and categorized as a trauma- or
stressor-related disorder (APA, 2013). PTSD represents a
pathological condition that emerges, sometimes after a
period of incubation, following either direct or indirect
exposure to a trauma. The original conceptualizations of
PTSD viewed the disorder as more of a normative-type

response that would occur following exposure to extremely
stressful events, although more recent statistics indicate that
it is only a proportion of individuals exposed to a trauma
that actually meet diagnostic criteria for PTSD (Kilpatrick
et al, 2013; Perkonigg et al, 2000). The biological mechan-
isms subserving the susceptibility to develop PTSD following
exposure to a trauma remain elusive, although genetic
factors, trauma load, and psychiatric co-morbidity are
established risk factors (Almli et al, 2014; Pitman et al,
2012; Ross et al, 2017; Yehuda et al, 2015b).

In addition to trauma exposure, a diagnosis to PTSD
requires presence of symptoms in four distinct clusters;
intrusion, avoidance, arousal/reactivity, and negative cogni-
tions/mood (APA, 2013; Yehuda et al, 2015b). Exposure to
trauma results in generation and consolidation of trauma
memory via association of environmental and interoceptive
cues with the negative physical and affective consequences of
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trauma exposure. Although such processes facilitate avoid-
ance of potential future harms, dysregulation of these
physiological processes are thought to be central to the
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development of PTSD. Thus, current conceptualizations
describe PTSD fundamentally as a disorder of learning and
memory processes (Bowers and Ressler, 2015b; Ross et al,
2017). Specifically, many of the predominant theories suggest
that individuals that develop PTSD either have a greater
propensity to consolidate or recall emotionally laden
memories, or have impairments in the ability to appro-
priately extinguish associations between environmental cues
and the negative effects and consequences of traumatic stress
exposure (Careaga et al, 2016; Milad et al, 2009; Orr et al,
2000; Wicking et al, 2016). In addition, impairments in
physiological habituation, or pathological sensitization me-
chanisms, are thought to contribute to the delayed onset of
PTSD that often occurs (Lissek and van Meurs, 2015). Such
dysregulations can result in intrusive re-experiencing symp-
toms in the forms of flashbacks or nightmares, and
development of avoidance behaviors to minimize exposure
to ‘triggers’, which predict danger and generate negative
affective states. Hyperarousal and negative cognitive/mood
states can be considered consequences of persistent
re-experiencing and avoidance, as well as the associated
functional decline often seen in PTSD patients. Overall,
PTSD can be a highly debilitating illness often co-existing
with anxiety disorders and substance use disorders, making
effective treatment challenging with conventional approaches
such as SSRIs and cognitive-based psychotherapies.

The biological underpinnings of PTSD have been difficult
to establish, although disturbances in a wide array of
biological systems that could contribute to the development
and maintenance of PTSD have been proposed (Horn et al,
2016; Kelmendi et al, 2016; McFarlane et al, 2017; Pitman
et al, 2012). Not surprisingly, distributed cortico-limbic
circuits important for salience attribution, cognitive pro-
cesses, and emotion generation and modulation have been
implicated in the pathophysiology of PTSD. The amygdala
represents a key structure in this regard, given its importance
in the processing of emotionally relevant information,
consolidation and extinction of emotional memories (parti-
cularly those related to traumatic stress), generation of
anxiety states, and its role in activation of the sympathetic
nervous system (SNS) in the periphery (Duvarci and Pare,
2014; Janak and Tye, 2015; LeDoux, 2007). The amygdala is
particularly relevant for both the recognition (often at a
preconscious level) of threatening stimuli in the environ-
ment, as well as the assembly of a behavioral response to
threat, such as the generation of states of vigilance (Duvarci
and Pare, 2014; Janak et al, 2015; LeDoux, 2007). With
respect to PTSD, the amygdala appears to be hyper-reactive,
exhibiting elevated metabolic activity during periods of
heightened symptom presentation and showing increased
responsiveness to emotionally salient information, even
stimuli unrelated to the trauma itself (Diamond and
Zoladz, 2016; Hughes and Shin, 2011; Sheynin and
Liberzon, 2016; Shin et al, 2006).

In addition to the amygdala, subregions of the prefrontal
cortex (PFC) are also believed to be relevant to the
development and maintenance of PTSD. Specifically, the
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ventromedial PFC (vmPFC) in humans has repeatedly been
found to be hypofunctional in individuals with PTSD
(Hughes and Shin, 2011; Pitman et al, 2012), particularly
during processing of trauma-related information and during
extinction related tasks. For example, deficient recruitment
of the vmPFC during fear extinction is believed to relate to
the impairments in extinction seen in PTSD, which is
consistent with the established role of the vmPFC in
promoting the extinction process. In fact, the reduction in
vmPFC activity inversely correlates with the severity of
PTSD symptoms (Shin et al, 2004), and there are consistent
inverse relationships between activation of the vmPFC and
amygdala, such that hyperactivity of the amygdala in PTSD
is related to hypoactivity of the vmPFC (Shin et al, 2004).
This coupling, both functional and structural, between the
vmPFC and amygdala is known to be very important for
emotional regulation, in addition to emotional memory
stability, and impaired coupling of these structures is reliably
found in individuals with PTSD or anxiety-related disorders
(Gilmartin et al, 2014; Harris and Gordon, 2015; Kim et al,
2011; Likhtik and Paz, 2015). That being said, there are
specific variants and subsets of this disease, such as those
which experience a high degree of dissociation, that may
represent as unique subtype of PTSD, which exhibits
opposite alterations in activation of these cortico-limbic
circuits (Lanius et al, 2010). As such, the proceeding
discussion more specifically relates to the classic and typical
presentation of PTSD, which is characterized by
re-experiencing and hyperarousal.

In addition to these alterations in functional patterns of
activity within cortico-limbic circuits, there are also altera-
tions in many neuroendocrine systems in PTSD. A more in-
depth discussion of these findings can be found in
(Daskalakis et al, 2013). Many of the initial studies of
neuroendocrine function in PTSD demonstrated that, while
individuals with PTSD appear to exhibit elevated levels of
catecholamines and corticotropin releasing hormone (CRH),
circulating levels of cortisol were quite surprisingly reduced
in PTSD (Yehuda et al, 1996; Mason et al, 1986; Yehuda,
2009). Since these early studies, reduced levels of cortisol
have generally been found to be a consistent and widespread
finding in PTSD patients; although it is unclear whether
reduced levels of glucocorticoids represent a cause or
consequence of the disease, or reflect early adverse
experiences impacting HPA-axis function (Daskalakis et al,
2013). There is some indication that these alterations in
cortisol levels may in fact be reflective of alterations in
regulatory components of the HPA-axis, such as FKBP5, a
chaperone protein for the glucocorticoid receptor for which
gene variants have been explicitly linked to susceptibility to
PTSD (Binder et al, 2008; Klengel et al, 2013; Yehuda et al,
2009). The current data would indicate that alterations in
glucocorticoid receptor sensitivity to cortisol could be
associated with PTSD, such that greater receptor sensitivity
could result in enhanced negative feedback and consequen-
tial reductions in circulating levels of cortisol (Binder, 2009).
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Ongoing work is attempting to further understand and
characterize the nature of these HPA-axis disturbances.

These lower-than-expected levels of cortisol have also been
found to associate with a disinhibition of SNS activity in
PTSD, which then results in persistent and steady-state
increases in catecholamine secretion (Daskalakis et al, 2013).
This chronic elevation in catecholamines, in turn, is
associated with many PTSD symptoms such as hyperarousal
and distress (Daskalakis et al, 2013; Krystal and Neumeister,
2009). Interestingly, human imaging work has found that
glucocorticoids play an important role in tempering
amygdala responses to threatening cues and can sculpt
functional connectivity between the amygdala and frontal
cortical regions during emotional processing (Henckens et al,
2010, 2012; Joels et al, 2011). Preclinical studies have
generally supported these findings, such that animal models
of traumatic stress find lower levels of HPA responses to
traumatic stressors are associated with greater long-term
maladaptive changes (Bowens et al, 2012; Krishnan et al,
2007; Whitaker and Gilpin, 2015), and that glucocorticoids
are required for normative fear extinction (Bitencourt et al,
2014; Yang et al, 2006, 2007). More so, preclinical research
indicates that glucocorticoid administration in the immedi-
ate aftermath of traumatic stress exposure can restrict the
development of long-term maladaptive changes from emer-
ging (Whitaker et al, 2016; Zohar et al, 2011), which is
paralleled by clinical evidence that elevating glucocorticoid
levels could be ameliorative in the treatment of PTSD (Aerni
et al, 2004; Yehuda et al, 2015a). As such, reduced levels of
glucocorticoids, coupled to elevated levels of catecholamines,
could very well be a primary contributing factor in PTSD,
possibly working through impairing fear extinction pro-
cesses, sensitization of the amygdala, and reduced functional
coupling of the amygdala and vmPFC.

Another recent advance in the field of PTSD is the
increased recognition of the role the immune system and
inflammatory processes could play in the development of the
disease (Michopoulos et al, 2017; Wieck et al, 2014). Elevated
markers of inflammation such as C-reactive protein and pro-
inflammatory cytokines have been identified in both the CSF
and circulation of individuals with PTSD, both at rest and in
response to an immune challenge (Michopoulos et al, 2017).
Similarly, gene network and genome wide association studies
have implicated immune-related genes in PTSD (Breen et al,
2015; Nievergelt et al, 2015; O'Donovan et al, 2011; Yehuda
et al, 2009). At a functional level, it is interesting that
cytokine signaling is known to promote emotional memory
expression and impair fear extinction (Bi et al, 2016; Yu et al,
2017). In addition, preclinical studies have demonstrated that
pro-inflammatory cytokines can facilitate glutamatergic
transmission onto, and promote activation of, amygdalar
pyramidal neurons (Chen et al, 2013; Engler et al, 2011;
Prager et al, 2013). Similarly, in humans, inflammation and
pro-inflammatory cytokines are related to enhanced activa-
tion of the amygdala in response to threatening stimuli
(Inagaki et al, 2012; Swartz et al, 2017), further implicating
immune dysregulation in the pathophysiology of PTSD.
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Taken together, these findings indicate a prominent role
of an imbalance in cortical-amygdala coupling, with
hyperactivity of the amygdala and hypoactivity of the
vmPEFC in PTSD. In addition, PTSD is associated with
reduced levels of cortisol, excess levels of catecholamines,
and a state of persistent inflammation. These processes likely
exist in a reciprocal feed-forward situation, where reduced
levels of cortisol and elevated levels of norepinephrine and
pro-inflammatory cytokines sensitize the amygdala and
impair its coupling to the vmPFC, which in turn may
provide additional drive on both the SNS and immune
system (Muscatell et al, 2015; Tawakol et al, 2017). Because
many of these biological and behavioral processes are
influenced by cannabinoids and endocannabinoid (eCB)
signaling, the overarching aim of this review is to provide a
comprehensive summary of the current state of knowledge
regarding how cannabinoids and eCB signaling influence
these processes in PTSD, and how eCB signaling could both
represent a substrate for etiology of PTSD as well as a target
for the development of novel therapeutics.

CANNABIS AND ENDOCANNABINOIDS

Cannabis is the most commonly used illicit recreational drug
around the world, and contains over 80 terpeno-phenol
molecules, which fall under the umbrella of ‘cannabinoids’
(Izzo et al, 2009). These plant-derived cannabinoids are
typically referred to as phytocannabinoids, the most well-
known of which is A9-tetrahydrocannabinol (THC), the
primary psychoactive constituent of cannabis (Izzo et al,
2009). In addition to THC, the phytocannabinoid
cannabidiol (CBD) is potentially relevant for the effect of
cannabis on PTSD. While THC is known to exert its effects
through direct activation of cannabinoid receptors, the
pharmacology of CBD is more enigmatic and involves
interactions with a series of neurochemical systems,
most notably through interactions with serotonergic and
adenosine signaling (Carrier et al, 2006; Izzo et al, 2009; Rock
et al, 2012).

Much of our knowledge of the eCB system has been
derived from pharmacological studies investigating the
mechanisms by which THC exerts its pharmacological
effects. From almost three decades of research now, we have
a firm understanding of the major components of the eCB
system and how it works (for an in-depth discussion see the
review by Marsicano and colleagues in this issue). In brief,
the eCB system is a neuromodulatory lipid system, which is
composed of two cannabinoid receptors, CB1 and CB2
(Matsuda et al, 1990; Munro et al, 1993), and two major
endogenous ligands, N-arachidonoyl ethanolamine (ananda-
mide, AEA; (Devane et al, 1992)) and 2-arachidonoyl
glycerol (2-AG; (Sugiura et al, 1995)). CB receptors couple
to Gj, proteins that function to inhibit adenylyl cyclase
activity, activate potassium channels, and inhibit voltage-
gated calcium channels (Howlett, 2002). CB1 receptors are
the most abundantly expressed G-protein coupled receptor
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in the brain and are primarily localized to axon terminals. As
such, activation of CB1 receptors results in a suppression of
neurotransmitter release into the synapse (Katona and
Freund, 2012). CBI receptors are widely expressed on almost
all neuronal types in the brain, including GABAergic,
glutamatergic, serotonergic, noradrenergic, and dopaminer-
gic terminals, but the primary effects of CBIl receptor
activation appear to be mediated by their regulation of fast
synaptic transmission and their localization to GABAergic
and glutamatergic terminals (Katona and Freund, 2012). CB2
receptors are primarily located in immune cells, although
there is emerging and controversial evidence of neuronal
expression, and when activated, can modulate immune cell
migration and cytokine release both outside and within the
brain (Atwood and Mackie, 2010). There are also non-CB
receptor targets of eCB molecules, including peroxisome
proliferator-activated receptor and transient receptor poten-
tial vanilloid type 1 (TRPV1; (Mechoulam et al, 2014)).

AEA and 2-AG are not stored in vesicles, and appear to be
synthesized on-demand from phospholipid precursors in the
somatodendritic compartment of neurons, typically in
response to calcium influx or activation of intracellular
phospholipases. In the canonical view, AEA and 2-AG signal
as retrograde transmitters, being synthesized in the post-
synaptic neuron and activating CB1 receptors on axon
terminals to modulate neurotransmitter release (Katona and
Freund, 2012). The biosynthesis of AEA is complex and
seems to involve multiple redundant pathways, whereas its
metabolism is almost entirely mediated by the enzyme fatty-
acid amide hydrolase (FAAH; (Blankman and Cravatt,
2013)). The biosynthesis of 2-AG, on the other hand, is
mediated by the conversion of diacylglycerol to 2-AG by the
enzyme diacylglycerol lipase (DAGL), and its metabolism is
primarily driven by the enzyme monoacylglycerol lipase
(MAGL; (Blankman and Cravatt, 2013)).

Generally speaking, eCB signaling at the synapse leads to
either transient or sustained suppression of neurotransmitter
release from the axon terminal. Although both AEA and
2-AG similarly act to suppress pre-synaptic transmitter
release, it has been hypothesized that these two molecules of
the eCB system operate in tonic and phasic modes,
respectively, thereby differentially regulating homeostatic,
short-term, and long-term synaptic plasticity processes
within the brain (Ahn et al, 2008; Katona and Freund,
2012). Within this conception, it is thought that AEA may
represent the ‘tonic’ signaling molecule of the eCB system,
acting to regulate basal synaptic transmission, whereas 2-AG
may represent the ‘phasic’ signal, being released during
sustained neuronal depolarization and mediating many
forms of synaptic plasticity; however, exceptions to this
dichotomy have also been proposed.

CANNABINOIDS AND PTSD

While the prevalence of PTSD is believed to be quite high in
the general population—WHO estimates an approximate 4%
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lifetime prevalence of PTSD (Koenen et al, 2017)—current
treatment approaches are only partially effective. Psychother-
apy treatments, such as exposure therapies, seem to be
limited both by logistical issues due to the regularity
required, and many individuals who undergo treatment
often don’t have sustained recovery from symptoms (Spoont
et al, 2010; Watts et al, 2014). In addition, many of the
conventional pharmacotherapeutic options for the treatment
of PTSD yield only modest clinical benefits (Hoskins et al,
2015). Interestingly, numerous case reports have emerged in
recent years, particularly from veterans in North America
and Israel, suggesting cannabis as a means to treat PTSD
symptoms. Specifically, many patients with PTSD cite
motives of self-medication for continued use of cannabis
due to its ability to promote relaxation and sleep, and reduce
anxiety symptoms and hyperarousal (Betthauser et al, 2015;
Bonn-Miller et al, 2007a; Bremner et al, 1996). While
rigorous studies regarding the efficacy of cannabis for PTSD
are lacking, there have been a series of small studies
investigating synthetic cannabinoids in the treatment of
PTSD. Nabilone, which is a synthetic analog of THC, has
been directly examined in PTSD. The first study of this kind
was an uncontrolled open-label study, where administration
of Nabilone prior to bedtime reduced nightmares in patients
with PTSD, with 34/47 patients exhibiting either total
cessation or significant reduction in nightmare occurrence
(Fraser, 2009). For several of the subjects, nightmares
occurred again almost immediately following cessation of
Nabilone treatment, and were again suppressed following
re-initiation of the drug, suggesting that these effects were
specific to cannabinoid treatment. Similarly, a retrospective
chart review of inmates at a correctional facility found that
Nabilone treatment was associated with a significant
improvement in sleep and a reduction in nightmare
severity/frequency as well as a general reduction in PTSD
symptom severity (Cameron et al, 2014). Another open-
label, uncontrolled pilot study examined the impact of
adding THC onto existing medications on PTSD symptom
severity and found that THC consumption specifically
improved sleep quality, reduced nightmares, and reduced
symptoms of hyperarousal (Roitman et al, 2014). Finally, in a
small, randomized, double-blind, placebo controlled cross-
over study, Nabilone administration again significantly
reduced the severity and frequency of nightmares, and
increased general well-being (Jetly et al, 2015). Taken
together, these studies support potential benefit of cannabi-
noids in the domains of hyperarousal, sleep, and nightmares
in PTSD; however, limitations due to study design and small
sample sizes need to be overcome before any firm
conclusions can be drawn regarding clinical efficacy of
cannabinoids for the treatment of PTSD.

Potential publication bias notwithstanding, given the
relative consistency in published reports, these findings beg
the question as to whether cannabinoids could represent a
novel treatment strategy for managing PTSD. As such, the
aim of the current review is to take a step back and ask two
questions. First, do cannabinoids and/or eCB signaling
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mechanisms modulate the biological processes relevant to
the pathophysiology of PTSD, and is the direction of
modulation consistent with a potential therapeutic benefit?
And second, given that exogenous cannabinoids interact
with the eCB signaling system, is there evidence that a
disturbance in eCB function could actually be a predisposing
factor in the development of PTSD? For example, could
deficient eCB signaling both contribute to the development
of PTSD and explain the symptom-coping motives highly
cited by PTSD patients who use cannabis (Bujarski et al,
2012)?

ENDOCANNABINOIDS, CANNABINOIDS, AND
NEUROENDOCRINE SYSTEMS

eCBs have been heavily implicated in modulation of the
physiological and behavioral sequelae of stress exposure,
particularly with respect to neuroendocrine aspects of the
stress response (for a more in-depth review on this subject see
Hillard et al (2016); Lutz et al (2015); Morena et al (2016b)).
With respect to the HPA-axis, eCB signaling appears to be an
important modulator of activation and termination of the
HPA-axis function. Specifically, studies examining the effects
of stress exposure on eCB levels have revealed two well-
established patterns of effects. First, acute and repeated stress
exposure reduce AEA levels in several limbic regions
including the amygdala, PFC, hippocampus, and hypothala-
mus (Figure 1) (Bluett et al, 2014; Dubreucq et al, 2012; Gray
et al, 2015; Hill et al, 2008a, 2009a, 2010c, 2013b; Jennings
et al, 2016; Patel et al, 2004, 2005; Rademacher et al, 2008).
This reduction in AEA signaling appears to be mediated by
CRH signaling at the CRH1 receptor (Gray et al, 2015, 2016;
Natividad et al, 2017). Interestingly, glucocorticoid hormones
have been found to increase AEA levels within areas of the
brain, such as the amygdala, in the short term (Hill et al,
2010a), a process which is thought to be involved in the
normalization of reduced AEA content following exposure to
stress (Morena et al, 2016b). The relationship between AEA
and glucocorticoids has also been found in the periphery and
in humans, whereby chronic exposure to glucocorticoids
increases circulating levels of AEA in rodents (Bowles et al,
2015), and circulating levels of cortisol in humans positively
correlate with circulating levels of AEA (Hill et al, 2013a). As
such, these data indicate that CRH signaling decreases AEA
signaling, through an increase in FAAH-mediated AEA
hydrolysis, while glucocorticoid hormones seem to increase
AFEA signaling. In addition, suppression of AEA signaling
within the amygdala has been found to correlate to the
magnitude of the HPA response to stress, and in line with this,
systemic, or intra-amygdala, inhibition of AEA hydrolysis has
been found to dampen basal or stress-induced activation of
the HPA-axis (Bedse et al, 2014; Hill et al, 2009a, 2010c; Patel
et al, 2004).

The second pattern of stress-induced changes in eCB
signaling involves a stress-induced increase in 2-AG levels,
particularly within the amygdala and PFC, after acute, and

Neuropsyohopharmacology REVIEWS

REVIEW

STRESS

\

CRH

Others FAAH activity
?

Anxiety

Baseline et TT——— =
\\ .+~ AEAlevels
A ’
Time
STRESS STRESS STRESS
Corticosterone
Oel  corr

Baseline

Time (Days)

Figure 1. Effects of stress on eCBs and the proposed link to related
physiological and behavioral processes. (Top) Stress exposure causes
CRH release, which in turn increases FAAH activity to drive down AEA
levels within cortico-limbic structures. This reduction in AEA plays a
permissive role in the expression of stress-induced anxiety-like behaviors.
Pharmacological blockade of FAAH would ‘clamp’ AEA at high levels and
thus prevent stress-induced AEA reductions and thereby prevent stress-
induced anxiety (not shown). (Bottom) Stress exposure increases 2-AG
levels in the amygdala and PFC possibly driven by stress-induced
corticosterone release. Upon subsequent stress exposures the 2-AG
response shows sensitization via a mechanism which may involve
impaired degradation (Sumislawski et al, 2011). This progressive increase
in stress-induced 2-AG release in the amygdala is correlated with
habituation of the HPA-axis response (red) to repeated homotypic stress
exposure (Hill et al, 2010c).

especially repeated homotypic stress exposure (Figure 1)
(Bluett et al, 2017; Dubreucq et al, 2012; Evanson et al, 2010;
Gray et al, 2015; Hill et al, 2008a, 2010c, 2011b; Patel et al,
2004, 2005; Rademacher et al, 2008; Wang et al, 2012). These
increases appear to be relatively short-lived and return to
baseline in many cases within hours. The primary mechan-
ism mediating these increases is the release of glucocorticoid
hormones (see Balsevich et al, 2017). Glucocorticoids
increase 2-AG release through both genomic and non-
genomic mechanisms that have yet to be fully described (Di
et al, 2005, 2016; Wamsteeker et al, 2010; Wang et al, 2012),
and acute stress-induced increases in amygdala 2-AG
positively correlate with amygdala corticosterone levels
(Bedse et al, 2017). Stress-induced increases in 2-AG are
important for several aspects of the stress response, however,
a primary function is to contribute to glucocorticoid-
mediated negative feedback termination of the stress
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response as well as the development of habituation and
adaptation under conditions of repeated exposure to
homotypic stressors (Bluett et al, 2017; Bosch-Bouju et al,
2016; Hill et al, 2010c; Patel et al, 2004, 2005). That being
said, one study has found that although pharmacological
augmentation of 2-AG signaling reduced acute stress-
induced peak corticosterone, it also prolonged the recovery
of the HPA-axis response to stress (Roberts et al, 2014).
Accordingly, disruption of this 2-AG/CB1 receptor signaling
can impede termination of the stress response and impair
normative adaptation to repeated stress exposure (Hill et al,
2010c, 2011b; Patel et al, 2005). Interestingly, in humans
acute exposure to social stress has been found to increase
circulating levels of 2-AG (Hill et al, 2009b), and a separate
report found that individuals that did not mount an increase
in 2-AG in response to parabolic flight stressor exhibited
dramatic activation of the HPA-axis (Chouker et al, 2010),
suggesting that in humans, 2-AG signaling may also relate to
tapering the magnitude of the stress response.

In addition to studies describe above, it is well established
that blockade of CB1 receptors increases stress-induced
corticosterone release (Patel et al, 2004), and CB1 receptor
KO mice exhibit higher basal, and exaggerated stress-
induced, corticosterone release (Barna et al, 2004; Cota
et al, 2007; Hill et al, 2011a; Roberts et al, 2014).
Furthermore, direct blockade of CB1 receptors in the
amygdala increases HPA-axis activity in and of itself
(Ganon-Elazar and Akirav, 2009; Hill et al, 2009a) and
blockade of CB1 receptors in the mPFC exaggerates restraint
stress-induced corticosterone release (Hill et al, 2011b).
Taken together these data suggest AEA signaling may be
involved in acute negative regulation of stress-induced
HPA-axis activation, while 2-AG signaling appears to
regulate acute termination and long-term habituation of this
system, and that the amygdala, mPFC and hypothalamus
appear to be key sites of action in eCB regulation of HPA-
axis function.

The effects of cannabinoids on stress-induced corticoster-
one release have also been well-studied in rodents. For
example, THC and synthetic cannabinoids can dose
dependently increase the activity of the HPA-axis, measured
by increases in plasma ACTH and corticosterone levels
(Johnson et al, 1978; Manzanares et al, 1999; Pertwee, 1974;
Puder et al, 1982; Zuardi et al, 1984). Similar effects have
been observed with synthetic cannabinoid agonists (Barna
et al, 2009; Marin et al, 2003; McLaughlin et al, 2009; Patel
et al, 2004; Rodriguez de Fonseca et al, 1995; Romero et al,
2002), which are likely mediated via activation of CB1
receptors (Romero et al, 2002), and may involve increases in
serotonergic and noradrenergic activity (McLaughlin et al,
2009). Moreover, THC and synthetic cannabinoid agonists
can augment stress-induced corticosterone release via a
CBl-mediated mechanism (Jacobs et al, 1979; Patel et al,
2004; Sano et al, 2009). In contrast, some studies have shown
that THC and synthetic cannabinoids, especially at low
doses, can reduce stress-induced corticosterone release
(Ganon-Elazar and Akirav, 2012; Mayer et al, 2014; Patel
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et al, 2004). These findings highlight a key difference
between eCB signaling and exogenous cannabinoids in the
regulation of HPA-axis function and related behavioral
processes such as anxiety. Specifically, eCB augmentation
approaches via FAAH inhibitors or MAGL inhibitors
generally produce dose-related decreases in these parameters,
whereas THC and exogenous cannabinoids produce biphasic
effects with low doses mimicking eCB augmentation effects
while high doses actually increase HPA-axis function and
associated anxiety-related behavioral responses (Figure 2).

With respect to the SNS, fewer studies have examined the
interaction of eCB signaling and the regulation of catecho-
lamine release. CB1 receptors are known to be localized onto
peripheral sympathetic terminals, where activation of CB1
with either THC or AEA can suppress the release of
norepinephrine either into target tissue sites (eg, heart or
lung) or into the general circulation (Ishac et al, 1996;
Molderings et al, 1999; Niederhoffer et al, 2001, 2003; Vizi
et al, 2001). Similarly, facilitation of eCB signaling reverses
CRH-mediated elevations in circulating catecholamines,
indicating that eCB signaling acts to restrict drive onto the
SNS by stress mediators (Shimizu et al, 2010). Consistent
with this, pharmacological or genetic disruptions in CB1
receptor signaling increase splenic NE levels (Simkins et al,
2014), facilitate the release of catecholamines by the SNS
induced by CRH (Shimizu et al, 2010), and induce changes
in gastrointestinal function and anxiety mediated by an
increase in SNS activity (Bellocchio et al, 2013). These data
indicate that CB1 receptors are widely expressed on
sympathetic nerve terminals and act to suppress the release
of catecholamines. Consistent with this, repeated adminis-
tration of THC to humans has been found to produce a
physiological state consistent with a reduced sympathetic
drive and an enhanced parasympathetic drive (Benowitz and
Jones, 1977).
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Figure 2. Differential dose-response relationships between cannabis/

THC and eCBs augmentation approaches in the regulation of HPA-axis
function and anxiety behaviors. THC and cannabis can reduce HPA-axis
function in response to stress and decrease anxiety at low doses,
however, at higher doses they can increase HPA-axis function and
increase anxiety-like behaviors in animals and precipitate anxiety and
panic-like symptoms in humans. In contrast, eCB augmentation via FAAH
or MAGL inhibition (FAAHI and MAGLI, respectively) generally exerts
mono-phasic dose-dependent reductions in HPA-axis activation and
anxiety-like behaviors.
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Collectively, these data present a complex story of how
eCB signaling interacts with neuroendocrine systems, and
how cannabinoid administration could modulate neuroen-
docrine function. Specifically, CRH release compromises
AFEA signaling, while glucocorticoid hormones seem to
promote the release of both AEA and 2-AG. eCB signaling
at CBI receptors, in turn, seems important to constrain
many aspects of the stress response and help promote
adaptation to repeated stress exposure. In contrast, exogen-
ous cannabinoids including THC exert opposing dose-
dependent effects on neuroendocrine activation (Figure 2).
eCB signaling at CBI1 receptors on sympathetic terminals is
also capable of dampening the release of catecholamines
from sympathetic terminals and thus reduce adrenergic
signaling in the periphery.

CANNABINOID ACTIONS WITHIN
CORTICO-AMYGDALA CIRCUITS

Given the consistent recognition of the alterations in
prefrontal and amygdalar activity and coupling in PTSD, it
is important to examine the impact eCB signaling, as well as
cannabinoids themselves, have on neural activity in these
circuits (see Gunduz-Cinar et al, 2013a; McLaughlin et al,
2014 for further discussion on how eCB signaling modulates
excitability in these structures under conditions of stress).
With respect to the amygdala, CB1 receptors are found on
both glutamatergic and GABAergic axon terminals (Katona
et al, 2001; Ramikie and Patel, 2012). Examining rapid forms
of eCB signaling within the amygdala, such as
depolarization-induced suppression of inhibition (DSI) or
depolarization-induced suppression of excitation (DSE), has
demonstrated that both DSI and DSE are found across
several sub-nuclei of the amygdala indicating that eCB
signaling can regulate both excitatory and inhibitory synaptic
transmission in this area (Katona et al, 2001; Kodirov et al,
2010; Ramikie et al, 2014; Zhu and Lovinger, 2005).
Similarly, studies employing exogenous CBl receptor
agonists have also found that activation of CB1 receptors
can suppress both glutamatergic and GABAergic synaptic
transmission (Azad et al, 2003; Domenici et al, 2006; Katona
et al, 2001). However, when looking at actual firing rates of
neurons, cannabinoids cause a reduction in neural activity
within the amygdala (Perra et al, 2008; Pistis et al, 2004),
which has led to the suggestion that activation of CB1
receptors on glutamatergic terminals in the amygdala can
override the suppression of GABA release, and thus the net
effect of CB1 receptor activation in the amygdala may be to
reduce neuronal activity (Azad et al, 2003). Neuroimaging
studies in humans have generally supported the hypothesis
that cannabinoids act to reduce neuronal activity in the
amygdala, and daily cannabis use or acute administration of
a low dose of THC to humans have both been found to
reduce amygdala reactivity in response to aversive emotional
stimuli (Cornelius et al, 2010; Gruber et al, 2009; Phan et al,
2008; Rabinak et al, 2014). Genetic variance in the eCB
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system also provides corollary evidence of how eCB signaling
can reduce amygdala neuronal activity. Specifically, a
functional polymorphism in the FAAH gene (C385A) results
in a destabilization of the FAAH protein and a subsequent
reduction in AEA hydrolysis and elevation in constitutive
AEA signaling (Chiang et al, 2004; Dincheva et al, 2015; Sipe
et al, 2002; Spagnolo et al, 2016). Humans bearing the A
allele of this polymorphism exhibit increased AEA levels and
a blunting of threat-cue-induced amygdala reactivity similar
to THC or chronic cannabis users (Demers et al, 2016;
Gunduz-Cinar et al, 2013a; Hariri et al, 2009). Consistent
with this, a mouse line bearing the C385A FAAH
polymorphism exhibits reduced neuronal activity, as deter-
mined by c-fos induction, within the amygdala following
exposure to novel environment (Dincheva et al, 2015). Taken
together, these data support the argument that both eCB
signaling and exogenous cannabinoids can reduce neuronal
activity within the amygdala under some conditions.

While the PFC has many subdivisions, particularly within
the human brain relative to the rodent brain, we will focus
our discussion on the vmPFC in humans and its putative
orthologue, the medial PFC, in the rodent brain, given their
overlap in connectivity and importance in the regulation of
stress, fear, and anxiety. With respect to eCB signaling in this
structure, there does appear to be cortical layer-dependent
differences, as well as age-dependent effects, on the ability of
eCB signaling to regulate GABAergic and glutamatergic
transmission. Specifically, in pre-pubertal animals, eCB
signaling predominately suppresses glutamatergic transmis-
sion and reduces neuronal excitability within the mPFC
(Auclair et al, 2000; Fortin and Levine, 2007; Heng et al,
2011). However, in adolescent and adult rodents, CBl1
receptor expression and function decrease on excitatory
terminals in the mPFC and have a much less significant
impact on glutamate release in the adult mPFC, relative to
the pre-pubertal mPFC (Heng et al, 2011). In the adult
mPFC, ~98% of CBI1 receptors are localized to GABAergic
terminals in layer V of the mPFC (Hill et al, 2011b), and
activation of CB1 receptors primarily acts to reduce GABA
release, dampen inhibition on principal neurons in the
mPFC, and increase the activation of these neurons (Chiu
et al, 2010; Hill et al, 2011b; Ji and Neugebauer, 2014;
Kiritoshi et al, 2016; Pistis et al, 2002; Wedzony and Chocyk,
2009). Consistent with this, THC administration increases
neural activity in the vmPFC in humans during emotionally
relevant tasks (Rabinak et al, 2014).

In addition to patterns of reactivity within the vmPFC and
amygdala, coupling between these structures also seems to be
modulated by eCB signaling and cannabinoids. For example,
both rodents and humans bearing the A allele of the C385A
FAAH polymorphism have enhanced structural and func-
tional connectivity between the vmPFC and the amygdala
(Dincheva et al, 2015; Gee et al, 2016). Similarly, acute
administration of low-dose THC increases the functional
coupling of the amygdala and the vmPFC during emotionally
salient tasks (Gorka et al, 2014).
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Taken together, these data indicate that in the adult brain,
cannabinoids have the ability to reduce neuronal activity
within the amygdala, increase neuronal activity within the
vmPFC, and increase the functional coupling of these
structures. This constellation of effects is the opposite of
the aberrant patterns of activity and coupling that have been
found in PTSD populations, supporting the hypothesis that
cannabinoids could influence PTSD symptomatology by
reducing hyperactivity of the amygdala, reversing hypoac-
tivity of the vmPFC, and increasing the top down control of
the amygdala. Although further studies are clearly required
to confirm this hypothesis, it provides a compelling heuristic
framework to guide subsequent preclinical and clinical
studies into the role of cannabinoids in the regulation of
PTSD symptomology and related underlying biological
substrates.

ENDOCANNABINOIDS, CANNABINOIDS, AND
ANXIETY

Anxiety symptoms are highly prevalent in PTSD, and up
until the latest version of the DSM, when it was moved to its
own category of trauma- and stress-related disorder, PTSD
was categorized as an anxiety disorder. As such, under-
standing the role eCB signaling plays in, and the impact of
cannabinoids have on, anxiety is germane to establishing the
effect they could have on PTSD symptoms. eCB signaling is
known to be an important regulator of anxiety, and
exogenous cannabinoids are widely accepted to have
profound effects on anxiety in both humans and rodents.
This section will summarize the current state of knowledge
regarding the role of eCB signaling, and the impact of
cannabinoids, on anxiety-related behavior (Lutz et al, 2015;
Moreira and Wotjak, 2010; Patel et al, 2017).

Initial insight into the role of eCB signaling in anxiety-like
behavioral responses was obtained through the development
of selective CB1 receptor antagonists and extensive analysis
of CB1 KO mice. Blockade of CBI receptors increases
anxiety in several measures of unconditioned or innate
anxiety (Bellocchio et al, 2013; Blasio et al, 2014; Gamble-
George et al, 2013; Haller et al, 2004; Komaki et al, 2014;
Litvin et al, 2013; Navarro et al, 1997; O'Brien et al, 2013;
Patel and Hillard, 2006; Rodgers et al, 2005; Simone et al,
2015; Sink et al, 2010; Thiemann et al, 2009), but some
studies have also found opposing results (Degroot and
Nomikos, 2004; Griebel et al, 2005; Rodgers et al, 2003).
Generally paralleling pharmacological studies, vast majority
of studies examining CB1 KO mice demonstrate increased
innate anxiety-like behaviors, especially under highly aver-
sive experimental conditions (Bowers and Ressler, 2016;
Fride et al, 2005; Hill et al, 2011a; Maccarrone et al, 2002;
Martin et al, 2002; Sanchis-Segura et al, 2004). More recently,
the development of DAGL inhibitors and DAGLa KO mice
has demonstrated increases in anxiety and depressive-like
behaviors after pharmacological and genetic depletion of 2-
AG (Bedse et al, 2017; Jenniches et al, 2016; Shonesy et al,
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2014); however these effects are not universally observed
(Powell et al, 2015). Consistent with this, local, viral-
mediated knockdown of DAGLa in the amygdala also
produces a mild anxiety-like state in mice (Bluett et al,
2017). Similarly, hippocampal overexpression of MAGL,
which decreases 2-AG levels, increases anxiety-related
behaviors (Guggenhuber et al, 2015). Importantly, recent
studies using acute pharmacological DAGL inhibition
indicate that 2-AG depletion causes anxiety-like behaviors
that can be reversed by a CB1 agonist, such as THC (Bedse
et al, 2017; Bluett et al, 2017). Similar to the 2-AG depletion
studies, PFC-specific reductions in AEA levels following
viral-mediated overexpression of FAAH also increases
anxiety-like behaviors in rats (Rubino et al, 2008). More
so, stress-induced reductions in AEA signaling, as discussed
above, are known to produce an anxiety-like state (Gray et al,
2015; Hill et al, 2013b; Lomazzo et al, 2015; Rossi et al, 2010).
Taken together, these data indicate that eCB signaling by
2-AG and AEA serve anxiolytic functions, and that depletion
of on-demand or tonic eCB signaling results in an
anxiogenic-like behavioral phenotype.

Consistent with the loss-of-function studies described
above, pharmacological and genetic augmentation of eCB
signaling via inhibition or deletion of 2-AG and AEA
degradation decreases anxiety-like behaviors in a variety of
preclinical models. For example, pharmacological inhibition
of FAAH decreases unconditioned anxiety-like behaviors
behavior in rats and mice in an array of behavioral tests
including the light-dark box, the elevated-plus maze, the
open-field test, and the novelty-induced suppression of
feeding task (Duan et al, 2016; Hill et al, 2007; Kathuria et al,
2003; Kinsey et al, 2011; Moise et al, 2008; Morena et al,
2016a; Naidu et al, 2007; Patel and Hillard, 2006; Scherma
et al, 2008). Moreover, genetic deletion of FAAH decreases
anxiety-like behaviors via a CBl-dependent mechanism
(Kathuria et al, 2003; Moreira et al, 2008). Interestingly,
these effects seem to be amplified under conditions of high
environmental averseness or after stress exposure (Haller
et al, 2009; Haller et al, 2013; Hill et al, 2013b; Naidu et al,
2007; Patel and Hillard, 2006). Furthermore, mice bearing
the C385A FAAH polymorphism exhibit reduced anxiety
(Dincheva et al, 2015; Gee et al, 2016). Similar to the effects
of AEA signaling, pharmacological augmentation of 2-AG
via MAGL inhibition produces modest reductions in
unconditioned anxiety-like behaviors under basal, non-
stressed conditions (Almeida-Santos et al, 2013; Bluett
et al, 2017; Busquets-Garcia et al, 2011; Kinsey et al, 2011;
Morena et al, 2016a; Sciolino et al, 2011), while effects under
environmentally aversive conditions appear more consistent
(Bedse et al, 2017; Sciolino et al, 2011). The anxiolytic effects
of MAGL inhibition in most cases is mediated via activation
of CB1 receptors ((Bluett et al, 2017; Morena et al, 2016a;
Sciolino et al, 2011), but see (Busquets-Garcia et al (2011))
for a potential role of CB2 receptors). While MAGL KO mice
could represent an alternative mechanism to examine the
effects of 2-AG augmentation on anxiety-like behaviors,
prolonged maximal MAGL inhibition, and sustained 2-AG
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signaling, results in compensatory CB1 downregulation
(Schlosburg et al, 2010), somewhat limiting the utility of
this model. Additional approaches to augment eCB signaling
including putative transport inhibition and COX-2 inhibition
also produce anxiolytic effects via eCB augmentation
(Bortolato et al, 2006; Campos et al, 2010; Gamble-George
et al, 2016; Hermanson et al, 2013; Naderi et al, 2008; Patel
and Hillard, 2006). Together these data strongly indicate that
eCB signaling reduces innate, unconditioned anxiety.

Exogenous cannabinoids exert a relatively similar effect to
that seen after facilitation of eCB signaling, although there
appears to be a much more sensitive dose dependency of
these effects. Low doses of CB1 receptor agonists consistently
results in a reduction of anxiety-like behavior (Haller et al,
2004; Hill and Gorzalka, 2004; Rey et al, 2012; Rubino et al,
2007), while higher doses of agonists produce an increase in
anxiety (Hill and Gorzalka, 2004; Rey et al, 2012). This
biphasic dose-dependent difference is consistent with the
impact of cannabis and THC exposure in humans, where
increasing doses of THC are associated with a greater
likelihood of developing adverse, anxiogenic response
(Figure 2)(Moreira and Wotjak, 2010).

From a cellular perspective, genetic studies have revealed
that, while global deletion of CB1 receptors increases
unconditioned anxiety, genetic reconstitution of CB1 recep-
tors within forebrain glutamatergic neurons substantially
mitigates this phenotype (Ruehle et al, 2013). Although
deletion of CB1 receptors from only forebrain glutamatergic
neurons is insufficient to increase unconditioned anxiety, the
fact that CBl receptors on glutamatergic terminals is
required for the anxiolytic effects of direct CB1 receptor
agonists (Rey et al, 2012), strongly suggests CB1 receptor
signaling within cortical glutamatergic circuits is important
for the anxiolytic effects of eCB signaling and exogenous
cannabinoids. The adverse, anxiogenic effects of higher doses
of cannabinoids appear to be mediated by CB1 receptors on
GABAergic terminals (Rey et al, 2012). Interestingly, mice
lacking CB1 expression within serotonergic neurons also
display increased anxiety and reduced sociability (Dubreucq
et al, 2012; Haring et al, 2015), suggesting a role for eCB-
mediated modulation of monoaminergic circuits could also
play a role. Studies performing site-specific manipulations of
eCB signaling highlight the importance of eCB signaling in
the mPFC and amygdala as important sites of action
mediating these effects (Bluett et al, 2017; Duan et al, 2016;
Gray et al, 2015; Morena et al, 2016a), which likely relates to
the ability of eCB signaling in these structures to regulate
excitatory and inhibitory neurotransmission (as discussed
above). Defining the precise circuit mechanisms by eCB
signaling and exogenous cannabinoids modulate anxiety-
related behaviors represents a critical area of further
investigation.

With respect to humans, it appears that eCB signaling
similarly acts to reduce anxiety. Humans bearing the C385A
FAAH polymorphism have been repeatedly found to exhibit
lower rates of anxiety (Dincheva et al, 2015; Gee et al, 2016;
Gunduz-Cinar et al, 2013b; Spagnolo et al, 2016). Similarly,
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circulating levels of AEA are negatively correlated to
increasing levels of anxiety, both at rest and in response to
stress exposure (Dlugos et al, 2012; Hill et al, 2008b).
Importantly, however, was the finding that administration of
CBI receptor antagonists to humans resulted in a significant
increase in indices of anxiety, a reported side effect in clinical
trials that contributed to the removal of CBI receptor
antagonists as a pharmacological tool to treat obesity
(Christensen et al, 2007; Moreira et al, 2009). Consistent
with this, recreational use of cannabis is often associated with
reductions in anxiety (Halikas et al, 1971). Large-scale
surveys have identified that the majority of chronic cannabis
users do so because of its stress-reducing and anxiolytic
properties (Bonn-Miller et al, 2007b; Reilly et al, 1998;
Temple et al, 2014). More so, many studies have identified
that individuals with anxiety disorders, particularly social
anxiety disorder and PTSD, use cannabis in an attempt to
regulate their anxiety symptoms (Boden et al, 2013; Buckner
et al, 2006; Buckner and Zvolensky, 2014; Buckner et al,
2012; Cougle et al, 2011; Van Dam et al, 2012). In line with
these findings, several clinical studies have found that similar
to its efficacy in PTSD, Nabilone treatment can effectively
reduce clinically relevant anxiety disorders, or suppress
experimentally induced anxiety, often to the same degree
seen with conventional anxiolytics such as benzodiazepines
(Fabre and McLendon, 1981; Nakano et al, 1978). Together,
these findings clearly demonstrate the importance of eCB
signaling in the regulation of anxiety, and highlight that low
doses of exogenous cannabinoids typically reduce anxiety in
both humans and rodents.

ENDOCANNABINOIDS, CANNABINOIDS, AND
EMOTIONAL MEMORY

Any discussion of therapeutics for PTSD has to consider the
impact the drugs have on emotional memory. As discussed
earlier in this review, the development of PTSD is believed to
be related to fundamental dysregulation in learning and
memory processes. As such, understanding the role of eCB
signaling, and the impact of exogenous cannabinoids, on
these processes is necessary in determining the role this
system may play in PTSD. In this section, we examine eCB
effects on memory consolidation, retrieval, and extinction of
emotional experiences in animal models of conditioned
learning and we make parallelism with the effects induced by
the direct agonists. For a more detailed discussion of the
impact of eCB signaling and cannabinoids on emotional
memory please refer to the recent reviews (de Bitencourt
et al, 2013; Morena and Campolongo, 2014a).

Memory Consolidation

With respect to the initial consolidation of emotionally
salient memories, although there is one report showing that
systemic administration of the FAAH inhibitor URB597
impairs the acquisition and early consolidation of contextual
fear conditioning (Burman et al, 2016), studies examining
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local manipulation of eCB signaling in the mPFC and
amygdala, as well as the hippocampus, have generally found
that eCB signaling is requisite for the consolidation of
emotionally salient memories. In this regard, de Oliveira
Alvares et al (2008) reported enhancing effects of endogen-
ous hippocampal administration of AEA after inhibitory
avoidance training. Accordingly, exogenous potentiation of
the hippocampal eCB tone by local infusion of a FAAH
inhibitor enhances memory for inhibitory avoidance training
(Morena et al, 2014b). The above described findings,
together with the observation that a CB1 receptor antagonist
impairs hippocampal memory consolidation for high
intensity contextual fear condition training (de Oliveira
Alvares et al, 2010), demonstrate that, in opportune
conditions, the eCB system in the dorsal hippocampus is
activated on demand to facilitate the consolidation of an
aversive memory. Fear memory is also impaired by blockade
of eCB transmission in another crucial brain area for
memory consolidation, the basolateral nucleus of the
amygdala (Bucherelli et al, 2006). Accordingly, potentiation
of the AEA signaling in the BLA, induced with local
administration of a FAAH inhibitor, enhanced memory for
inhibitory avoidance training (Morena and Campolongo,
2014a). Intriguingly, similar effects were seen with FAAH
inhibition inducing enhancing effects on memory for
emotional experiences (Morena and Campolongo, 2014a)
and with CBI receptor antagonism inducing impairing
effects on fear memory formation (Tan et al, 2010) when
infused in the mPFC. On the basis of the observation that
CB1 receptor activation in the BLA and PFC produces
effects going in the same enhancing direction, Draycott et al
(2014) demonstrated that CB1 receptor antagonism com-
pletely blocks the induction of LTP within the BLA-PFC
circuit at the same dose that can block the formation of
associative fear memories. Furthermore, functional discon-
nection experiments performed by contralateral blockade of
CBI receptor signaling in the BLA or PFC revealed that the
acquisition of fear memory within this pathway requires
simultaneous CB1 receptor activation in both regions
(Draycott et al, 2014).

Interestingly, the impact of exogenous cannabinoids on
consolidation of emotionally salient memories appears to be
somewhat inconsistent with what was seen with modulation
of eCB signaling. For example, it appears that systemic
administration of CB1 receptor agonists impairs consolida-
tion for emotionally salient memories (for a review see
Morena and Campolongo (2014a); Morena et al (2014b)).
Similar effects are seen if CBl receptor agonists are
administered directly into the hippocampus, with post-
training infusion of a CB1 receptor agonist producing an
impairment in memory consolidation for aversive training
(Jamali-Raeufy et al, 2011; Moshfegh et al, 2011; Zarrindast
et al, 2011). With respect to the BLA, while one report has
found that administration of a CB1 receptor agonist into the
BLA impairs consolidation of emotional memories (Kuhnert
et al, 2013), most other studies report findings more
consistent with what has been seen following facilitation of

Cannabinoids and posttraumatic stress disorder
MN Hill et af

eCB signaling. Specifically, local infusion of a CB1 receptor
agonist directly into the BLA enhances memory for
emotional arousing inhibitory avoidance training through
activation of CB1 receptors, while intra-BLA disruption of
CB1 receptor transmission impairs it (Campolongo et al,
2009). Interestingly, activation of CB1 receptors into the PFC
strongly potentiates fear memory formation in an olfactory
fear conditioning paradigm and blockade of intra-PFC
CBltransmission blocked the formation of fear memory
(Tan et al, 2010).

These findings demonstrate that appropriate emotional
processing and memory formation require integrative CB1
receptor signaling across this cortico-limbic circuit. Hyper-
or hypo-activation of the cannabinoid system within the
hippocampus, the BLA, or the PFC is sufficient to cause
pathological amplification of normally neutral stimuli, or,
alteration of emotional salience toward environmental
stimuli that would normally produce adaptive associative
memories (Morena and Campolongo, 2014a; Morena et al,
2014b; Tan et al, 2014). Global activation of CBI1 receptors
through systemic administration of exogenous cannabinoids
appears to impair consolidation, a finding which is generally
consistent with studies examining non-emotional memory
consolidation, but site-specific activation of CBI receptors in
the amygdala and mPFC still reinforce the hypothesis that
CB1 receptor activation in these sites is important for
emotional memory consolidation.

Memory Retrieval

Memory retrieval is another relevant process by which eCB
signaling or cannabinoids could influence emotional mem-
ory stability and expression. Reports on eCB effects on the
retrieval of memory for emotional learning are scarce.
Interestingly, the relationship between eCB signaling and
glucocorticoids becomes highly relevant in this context, as
the ability of glucocorticoids to impair memory retrieval of a
context-dependent emotional memory is mediated by a
recruitment of 2-AG signaling in the dorsal hippocampus
(Atsak et al, 2012). A similar effect has been found in the
Morris water maze task, where the potentiation of 2-AG
signaling within the hippocampus induces an impairment of
spatial memory retrieval, but only under conditions of
elevated stress (Morena et al, 2015). As both of these
experiments demonstrated selective elevations in 2-AG
associated with the impairing effect of stress or glucocorti-
coids, and inhibition of FAAH did not influence memory
retrieval, this suggests that it is specifically an association
between glucocorticoids and 2-AG signaling that is im-
portant for the suppression of emotionally aversive memory
retrieval. Similar effects are seen with the administration of
exogenous cannabinoids. Systemic administration of THC or
other CB1 receptor agonists impairs memory retrieval in a
step-through inhibitory avoidance task (Mishima et al,
2001), while local administration of a CBI1 receptor agonist
into the BLA or the PFC (Kuhnert et al, 2013) or the CA1l
region of the hippocampus (Atsak et al, 2012; Piri and
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Zarrindast, 2011; Segev and Akirav, 2011) impairs the
retrieval of emotionally aversive memories. The consistency
and reproducibility of these limited findings suggest that eCB
signaling and CBI receptor activation impairs the retrieval of
memory for emotional experiences.

Memory Extinction

Finally, and potentially most importantly, is the role of eCB
signaling on the extinction of emotionally aversive mem-
ories, a process known to be impaired in individuals with
PTSD and that may contribute to the indelible nature of
traumatic memories in this disease. To date, overwhelming
evidence from animal models suggest that eCB signaling is
critically involved in the extinction of emotionally aversive
memories. Both genetic and pharmacological experiments
demonstrate that potentiation of the eCB signaling and
subsequent activation of cannabinoid receptors in the
amygdala facilitate fear extinction in rodents (Chhatwal
et al, 2009; Marsicano et al, 2002). Following extinction
training, eCB levels in the amygdala, but not in the PFC, are
elevated (Marsicano et al, 2002; Gunduz-Cinar et al, 2013a,
b). In accordance with this, deletion of CB1 receptor in mice
impairs extinction of aversive memory, indicating that eCB
signaling is recruited during extinction of emotional
memories and, in turn, is essential for the appropriate
quenching of fear behaviors (Marsicano et al, 2002). This
process may relate specifically to the ability of eCB signaling
to promote habituation to fearful stimuli and thus reduce
fear expression over time (Kamprath et al, 2006) and seems
to involve CBI receptors on glutamatergic terminals
(Kamprath et al, 2009), as well as, possibly, the release of
cholecystokinin from a discrete population of interneurons
within the amygdala (Chhatwal et al, 2009). Further support
for the importance of amygdalar eCB signaling being
particularly relevant for fear extinction is that fact that local
manipulation of eCB signaling directly within the BLA
modulates fear extinction (Gunduz-Cinar et al, 2013b), as
well as the fact that alternate treatments which have been
found to enhance fear extinction, such as treatment with the
SSRI fluoxetine (Gunduz-Cinar et al, 2016) or modulation of
dietary polyunsaturated fatty acids (Yamada et al, 2014),
recruit eCB signaling within the amygdala to promote
extinction.

With regard to pharmacological studies, several reports
demonstrate that potentiation of AEA signaling, through
inhibition of FAAH or eCB uptake, enhance extinction of
contextual fear conditioning for both recent and remote
memory (Bowers and Ressler, 2015a; Gunduz-Cinar et al,
2013b; Laricchiuta et al, 2013; Pamplona et al, 2008;
Pamplona and Takahashi, 2006). Consistently, mice bearing
the FAAH C385A polymorphism exhibit accelerated fear
extinction relative to wild-type counterparts, again support-
ing the hypothesis that elevated AEA signaling enhances fear
extinction (Dincheva et al, 2015). In accordance to the
importance of eCB signaling for fear extinction demon-
strated through the impairment in this process seen in CB1
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KO mice, CB1 receptor antagonists impair extinction of
auditory (Bowers and Ressler, 2015a; Gunduz-Cinar et al,
2013b; Marsicano et al, 2002; Pickens and Theberge, 2014) as
well as contextual fear conditioning (Pamplona et al, 2008;
Pamplona and Takahashi, 2006; Reich et al, 2008; Suzuki
et al, 2004). The ability of glucocorticoids to promote fear
extinction involves a recruitment of eCB signaling, similar to
memory retrieval, as the extinction-promoting effects of
glucocorticoids are sensitive to CB1 receptor antagonism
(Bitencourt et al, 2014). These extinction-promoting effects
of eCB signaling, however, appear to be primarily mediated
by AEA and not 2-AG. Two recent reports have demon-
strated that inhibition of MAGL to enhance 2-AG signaling
impairs fear extinction and promotes fear memory expres-
sion, an effect which is believed to be mediated by CBI1
receptors on GABAergic neurons (Hartley et al, 2016;
Llorente-Berzal et al, 2015). This parallels the findings with
anxiety whereby biphasic effects of cannabinoids are
differentially mediated by CB1 on glutamatergic vs GABAer-
gic terminals.

Interestingly, administration of the CB1 receptor antago-
nist Rimonabant attenuates memory extinction in other
aversively motivated behavioral tasks as well (eg, inhibitory
avoidance and Morris water maze) but failed to affect
extinction in an appetitive-motivated operant conditioning
task (Niyuhire et al, 2007; Varvel et al, 2005, 2007). This
suggests there is specificity to eCB signaling in the extinction
of memories, which have a high emotional load associated
with them. Similar extinction-facilitating effects have also
been found following systemic or intracerebroventricular
administration of a CB1 receptor agonist (Pamplona et al,
2008; Pamplona and Takahashi, 2006). Consistent with these
global effects of CBI1 receptor activation, intra-hippocampal
administration of a CB1 receptor agonist facilitates extinc-
tion of inhibitory avoidance training (Abush and Akirav,
2010; de Oliveira Alvares et al, 2008), while CB1 receptor
antagonism impairs extinction learning when given either in
the dorsal hippocampus (Abush and Akirav, 2010) or in the
BLA (Ganon-Elazar and Akirav, 2009). Intra-CA1 infusion
of a CBI1 receptor antagonist also impaired fear extinction in
the contextual fear conditioning paradigm (de Oliveira
Alvares et al, 2008).

The effects of eCB signaling and cannabinoids on
extinction in humans nicely parallels the preclinical data
from fear conditioning and inhibitory avoidance paradigms.
Elevations in AEA signaling in humans, associated with the
FAAH C385A polymorphism, are related to more rapid fear
extinction learning curves, with no differences in initial fear
learning, relative to those possessing the prototypical
ancestral FAAH gene (Dincheva et al, 2015). Pharmacologi-
cal approaches have yielded similar findings, as studies
administrating THC to humans prior to extinction training
have found increased retention of extinction memory in
those receiving THC relative to those receiving placebo
(Rabinak et al, 2013, 2014). Similarly, the non-psychoactive
cannabinoid CBD has also been found to enhance the
consolidation of extinction memory (Das et al, 2013),
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suggesting that additional constituents of cannabis could also
promote fear extinction. Collectively, these data create a
compelling argument that cannabinoids could modulate
multiple aspects of emotional memory processes. While the
impact on initial consolidation would actually suggest eCB
signaling may promote memory consolidation, the fact that
eCB signaling can both impair retrieval and promote
extinction of emotionally aversive memories suggests that
from a therapeutic standpoint, that is once PTSD has been
established, the ability of cannabinoids to quench emotion-
ally aversive memories could be of benefit to individuals
suffering from PTSD.

ENDOCANNABINOIDS, CANNABINOIDS, AND
INFLAMMATORY PROCESSES

Given the recent findings of the relationship between
inflammatory systems and PTSD, the impact of eCB
signaling and cannabinoids on inflammatory processes is
of increasing interest. Within the context of the immune
system, the role of the CB2 receptor, as opposed to the CB1
receptor, has been the focus of the majority of research and,
as such, will be the focus of the following discussion
(see (Turcotte et al (2016)) for a more in-depth review of
CB2 and inflammatory processes).

CB2 receptors are primarily expressed on macrophage/
monocyte cells, including resident microglia in the brain, and
to a lower degree on T cells (Maresz et al, 2007; Turcotte
et al, 2016). CB2 receptor activation on immune cells
generally acts to reduce inflammatory processes, including
suppressing the release of pro-inflammatory cytokines (such
as TNF-a, IL-1b, and IL-6), inhibiting the expression of
adhesion molecules that initiate the process of leukocyte
migration, suppressing the release of chemoattractant
molecules from dendritic cells, countering NFkB-mediated
gene transcription and dampening cellular oxidative stress
(Boorman et al, 2016; Chiurchiu et al, 2015; McCoy, 2016;
Rom and Persidsky, 2013; Turcotte et al, 2016). Moreover, in
microglia, CB2 receptor activation promotes an M2 pheno-
type, which 1is characterized by the release of anti-
inflammatory cytokines and the engagement in reparative
functions (Lin et al, 2017; Mecha et al, 2015). As such, the
CB2 receptor exerts a multitude of anti-inflammatory effects
on immune cells.

Interestingly, CB2 receptor expression is inducible and
dynamic, such that expression levels of CB2 at rest, especially
on microglia, are quite low, and are rapidly induced in
response to inflammatory stimuli (Maresz et al, 2005). This
suggests that CB2 receptor activation acts more as regulatory
signal, which prevents hyperactivation of immune cells and
acts to buffer the magnitude of inflammatory processes once
the pro-inflammatory cascade has been initiated. Impor-
tantly, genetic or pharmacological disruption of CB2
receptor signaling increases the magnitude and propensity
of a host of inflammatory conditions in animal models, such
as colitis, multiple sclerosis, traumatic brain injury,
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neurodegenerative diseases, and ischemia-reperfusion inju-
ries (Batkai et al, 2007; Maresz et al, 2007; Palazuelos et al,
2008; Storr et al, 2009; Turcotte et al, 2016). Consistent with
this, activation of CB2 receptors provides some degree of
protection in limiting the magnitude or reducing the disease
expression of nearly every type of inflammatory disease
investigated to date, including all of those listed above, which
are worsened by CB2 receptor blockade (Batkai et al, 2007;
Maresz et al, 2007; Palazuelos et al, 2008; Storr et al, 2009;
Turcotte et al, 2016). In line with this, augmentation of either
2-AG or AEA signaling has been found to be protective as
well in many inflammatory conditions, such as animal
models of multiple sclerosis, colitis, and traumatic brain
injury, in a CB2 receptor-dependent manner (Alhouayek
et al, 2011; Jiang et al, 2015; Sardinha et al, 2014; Storr et al,
2008; Tchantchou et al, 2014; Wen et al, 2015). Similarly,
inhibition of FAAH or MAGL, to elevate AEA or 2-AG
signaling, respectively, can reduce the inflammatory re-
sponse, including microglial activation, after acute inflam-
mation produced by the inflammogen LPS (Grabner et al,
2016; Hernangomez et al, 2012; Kerr et al, 2012, 2013; Malek
et al, 2015; Roche et al, 2008; Tham et al, 2007). Importantly,
eCB signaling at CB2 receptors has also been found to limit
the neuroinflammatory response produced by repeated stress
exposure (Zoppi et al, 2014).

Many studies have been done in human immune cell lines
to produce comparable results, suggesting that cannabinoids
exhibit the potential to exert anti-inflammatory effects in
humans as well. This is consistent with the fact that the
most common form of disease for which someone employs
cannabis in a medical domain appears to be chronic disease
states associated with inflammatory processes, such as
multiple sclerosis, colitis, arthritis, or fibromyalgia
(Aggarwal et al, 2009; Katz et al, 2017; Weiss and
Friedenberg, 2015). More so, one study examined circulating
levels of cytokines in cannabis users with or without multiple
sclerosis and found that regardless of disease diagnosis,
individuals not naive to cannabis use exhibited lower levels
of circulating pro-inflammatory cytokines, supporting an
anti-inflammatory effect of cannabinoids in humans (Sexton
et al, 2014).

Taken together, these data indicate that eCB signaling is an
important regulator of inflammatory processes, with deficits
in eCB signaling favoring a state of hyperinflammation,
while elevations in eCB signaling confer anti-inflammatory
effects. As mentioned above, animal studies have found that
eCB signaling is important in constraining the effects of
stress on neuroinflammation, however, to date there is no
evidence linking deficient eCB signaling to hyperinflamma-
tory states (as seen in PTSD), or any clinical data indicating
that administration of cannabinoids to individuals with
PTSD has any impact on inflammatory processes. As such,
the relationship between eCB signaling and inflammation in
PTSD remains entirely speculative, but given the association
of hyperinflammatory states with PTSD, the ability to
cannabinoids to suppress the release of pro-inflammatory
cytokines could be an additional mechanism by which
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cannabinoids could be ameliorative in PTSD and should be
an area of future research.

ENDOCANNABINOIDS, CANNABINOIDS, AND
SLEEP

Sleep disturbances represent a major domain of PTSD
symptomatology, and the frequency of violent traumatic
nightmares is a significant contributor to both the progres-
sive sensitizing nature of the disease as well as significant
source of disease burden given the impairments poor quality
of sleep have on daily functioning (Ross et al, 1989). In this
regard it is interesting to note that, as described earlier, much
of the anecdotal reports of cannabis use in PTSD are
motivated by the somnogenic properties of cannabis. This is
consistent with the clinical data indicating that a primary
domain by which cannabinoids may improve general well-
being in PTSD is through a suppression of nightmares, a
reduction in arousal and an enhancement of time spent
sleeping (Cameron et al, 2014; Fraser, 2009; Jetly et al, 2015).
Interestingly, studies of sleep architecture in humans have
found that administration of cannabinoids prior to sleep can
reduce the amount of time spent in REM sleep (Feinberg
et al, 1976; Feinberg et al, 1975). The occurrence of
nightmares in PTSD is believed to occur to during REM
sleep and REM sleep phases are believed to be dysfunctional
in PTSD (Mellman et al, 1995; Ross et al, 1989, 1994;
Singareddy and Balon, 2002). This would suggest that the
ability of cannabinoids to suppress REM sleep may be the
predominant mechanism by which cannabinoids suppress
nightmares.
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Figure 3. Integrative view of eCBs and exogenous cannabinoids in the
pathophysiology and potential treatment of PTSD and related processes.
Low levels of AEA and/or 2-AG, triggered by stress or pre-existing due to
genetic factors, are associated with a myriad of adverse behavioral and
physiological consequences including an increase susceptibility to
developing trauma-related psychopathology such as PTSD. Therapeutic
eCB augmentation may be able to reverse these pre-existing or stress-
induced deficiencies via inhibition of FAAH or MAGL activity (FAAHi and
MAGLI, respectively). Similarly, this model predicts some people with eCB
deficiencies may use cannabis to self-medicate for anxiety and PTSD
symptoms. *2-AG early’ refers to early relative to stressor onset.
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These findings are generally in line with what is known
about eCB signaling and sleep (see (Prospero-Garcia et al
(2016)) for in depth review on the topic). Several reports
have suggested that AEA signaling may be involved in sleep
induction (Mechoulam et al, 1997; Murillo-Rodriguez et al,
2003; Murillo-Rodriguez et al, 2001). Similarly, augmenta-
tion of eCB signaling alters sleep architecture to promote
time spent in NREM sleep and less time in wakefulness
(Huitron-Resendiz et al, 2004; Pava et al, 2014, 2016).
Consistent with this, disruption of CB1 receptor signaling is
known to increase EEG measures of arousal, reduce time
spent sleeping, increase wakefulness, and alter sleep archi-
tecture, with some evidence suggesting that impairments in
CB1 receptor signaling favor an increase in time spent in
REM sleep (Pava et al, 2014, 2016; Santucci et al, 1996;
Silvani et al, 2014). Studies with exogenous cannabinoids in
animals have largely supported the findings that CBI1
receptor activation reduces wakefulness and arousal, pro-
motes time spent sleeping, and increases the proportion of
sleep time spent in NREM states (Pava et al, 2014, 2016).
Importantly, with respect to PTSD, inhibition of FAAH also
ameliorates sleep fragmentation and sleep reduction induced
by contextual reminders of traumatic stress in mice (Haller
et al, 2014). As such, there is clear evidence to support a
mechanism by which eCB signaling or cannabinoids could
improve sleep quality and reduce nightmares in PTSD
through a regulation of sleep states and architecture.

TOWARD AN ENDOCANNABINOID
DEFICIENCY HYPOTHESIS OF PTSD AND
CANNABINOID-BASED THERAPEUTICS FOR
PTSD

Thus far, a compelling picture emerges from the literature to
support the argument that a deficit in eCB signaling could
relate to the development of PTSD (Figure 3). First, exposure
to stress reduces AEA signaling in cortico-limbic brain
regions, and can cause a delayed onset of 2-AG deficiency
under some conditions (Hill et al, 2005; Qin et al, 2015;
Zhong et al, 2014). As described above, deficiencies in eCB
signaling can result in hyperactivity of the amygdala,
hypoactivity of the mPFC, impaired regulation of the stress
response, including heightened CRH signaling and SNS
activity, elevated levels of basal and stress-induced anxiety,
increased retrieval and impaired extinction of emotionally
aversive memories, and an increased propensity to develop a
state of inflammation. This parallels the aforementioned
biological findings derived from PTSD patient populations.
From a mechanistic standpoint, this reduction in eCB
signaling could be a consequence of reductions in gluco-
corticoid levels, or a state of glucocorticoid resistance, given
the importance of glucocorticoids in modulating eCB release
and the relationship that has been found between circulating
levels of cortisol and eCB molecules in humans (Hill et al,
2013a; Hill and McEwen, 2010b; Hill and Tasker, 2012).
More so, as the ability of glucocorticoids to exert their effects
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on many processes implicated in PTSD, such as suppression
of excitatory transmission in the amygdala (Karst et al, 2010)
and inhibitory transmission in the mPFC (Hill et al, 2011b),
inhibition of aversive memory retrieval (Atsak et al, 2012)
and promotion of fear extinction (Karst et al, 2010), an
uncoupling or deficit in the relationship between glucocorti-
coids and eCB signaling could significantly contribute to the
development of aberrations in cortico-limbic neuronal
activation and the regulation of emotional memories as seen
in PTSD. Alternately, elevations in CRH signaling have also
been found to compromise AEA signaling (Demers et al,
2016; Gray et al, 2015; Gray et al, 2016; Natividad et al,
2017), representing another mechanism that could poten-
tially contribute to deficient eCB signaling in PTSD.
Alternative non-endocrine mechanisms triggered by stress
could also contribute to eCB deficiencies.

In line with this hypothesis, there are also several findings
in humans that have implicated a deficit in eCB signaling to
PTSD. For example, reductions in the circulating levels of
both AEA (Neumeister et al, 2013) and 2-AG (Hill et al,
2013a) are documented in individuals with PTSD, although
one group reported elevations in circulating eCB levels in
PTSD (Hauer et al, 2013). Fundamental differences in the
nature of PTSD and subject samples across these studies
could account for these contradictory findings. Quite
interestingly, reductions in circulating levels of AEA in
PTSD were associated both with elevated CB1 receptors
throughout cortico-limbic structures, presumably as a
compensatory response to reduced AEA ligand availability,
and were specific to PTSD as none of these changes were
seen in trauma-exposed controls (Neumeister et al, 2013).
Negative correlations between AEA levels and the degree of
intrusive symptoms have also been reported in PTSD
patients (Hill et al, 2013a). In line with this, genetic studies
in PTSD populations have found that those individuals who
possess the FAAH C385A polymorphism exhibit less anxiety
and reduced stress reactivity than those with the ancestral
wild-type variant of FAAH, along with a specific reduction in
the hyperarousal symptoms of PTSD (Spagnolo et al, 2016).
As such, it appears that reductions in eCB signaling may
relate to specific symptom clusters within PTSD, which is
consistent with the findings of self-report where individuals
with PTSD who consume cannabis claim the greatest benefit
in the domains of hyperarousal and nightmares.

The findings from preclinical animal studies strongly
support the hypothesis that deficits in eCB signaling could
contribute to an enhanced vulnerability to the development
of pathological changes following exposure to traumatic
stress. For example, two recent studies have both demon-
strated that following exposure to traumatic stress in rodents,
animals which develop pathological changes in emotional
behavior similarly exhibit impairments in the ability to
recruit eCB signaling within the amygdala (Bluett et al,
2017), as well as the nucleus accumbens (Bosch-Bouju et al,
2016). More so, pharmacological augmentation of eCB
signaling in these studies afforded benefit to animals exposed
to traumatic stress and favored the development of a resilient
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phenotype (Bluett et al, 2017; Bosch-Bouju et al, 2016). In
agreement with these findings, disruption of eCB signaling
directly within the amygdala has explicitly been found to
impair normative adaptation to repeated stress exposure
(Hill et al, 2010c) and favor the development of a stress
vulnerable-like phenotype (Bluett et al, 2017).

An important question that arises from this hypothesis,
however, is whether a deficit in eCB signaling would be
represented as a stable trait, which renders an individual
susceptible to developing psychiatric pathologies, such as
PTSD, following exposure to a trauma but has negligible
impact on the development of psychiatric illness under
benign environmental conditions, or whether a deficit in eCB
signaling in response to a traumatic stressor compromises
the initiation of adaptive coping responses that would
normally mitigate the development of PTSD. The impor-
tance of this distinction relates to the viability of developing a
biomarker with the eCB system that would have some degree
of predictive value for understanding which individuals
would be vulnerable to PTSD prior to exposure to a trauma.
If a deficit in eCB signaling is a stable trait that is present
before exposure to a trauma, there would be significant value
in this for the development of predictive biomarkers;
however, if this deficit in eCB signaling was a latent trait
that only emerged after exposure to a trauma, this would
suggest that there would not be any predictive value in the
eCB system. Human studies, to date, have only examined
components of the eCB system in individuals once they have
developed PTSD, preventing any understanding as to
whether these changes existed beforehand. Future research
with animal studies will likely be the most realistic way to
approach this question, and comparisons of circulating levels
of eCB can be examined pre- and post-exposure to traumatic
stress to determine if there is any predictive value in resting
markers of eCB function to those that go on to develop
pathology in response to traumatic stress. These studies
would also help to determine if there are any relations
between circulating and central eCB levels. While eCBs are
lipid molecules and peripheral AEA levels, for example,
readily cross the blood-brain barrier and accumulate in the
brain (Willoughby et al, 1997), it is not known if changes in
circulating eCB are reflective of changes within the CNS. The
fact that circulating AEA levels negatively correlate with CB1
receptor binding densities in the brain (Neumeister et al,
2013) would suggest that there is some relation to central
eCB signaling, although this remains speculative. With
regard to 2-AG, global deletion of DAGLa reduced brain
but not circulating levels of 2-AG, suggesting a degree of
uncoupling between central and peripheral pools of this eCB
(Shonesy et al, 2014). That being said, given that peripheral
eCB signaling alone is capable of regulating the release of
catecholamines from sympathetic terminals and dampening
inflammatory processes, deficits in peripheral eCB signaling
could still be relevant to some biological changes associated
with PTSD even in the absence of alterations in central eCB
signaling.

Neuropsychopharmacology REVIEW.
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From a treatment perspective, the body of evidence
summarized here in support the hypothesis that augmenting
eCB signaling could be a novel therapeutic approach for
PTSD. As described in this review, pharmacological eleva-
tions in eCB signaling reduce reactivity of the amygdala,
enhance activation of the mPFC and increase its coupling to
the amygdala, reduce anxiety, suppress the recall and
enhance the extinction of emotionally aversive memories,
counter the effects of CRH signaling and produce sym-
pathoinhibition, dampen inflammatory processes, reduce the
occurrence of REM sleep and arousal to increase time spent
sleeping. These biological changes, many of which are also
produced by exogenous cannabinoid receptor agonists but in
a more dose-sensitive manner (with higher doses producing
opposing effects), are consistent with the profile one would
hope to achieve in a medication approach directed at PTSD
given that many of these effects are the opposite of the
biological abnormalities associated with the disorder.

Moving forward, how can these data and this hypothetical
model inform treatment options? Clinical trials investigating
these questions have been under development for some time,
and it is likely that data from such studies will emerge in the
near future. The development of potent and specific FAAH
inhibitors, for example, represents a class of drugs which
could potentially act as a novel therapeutic option for PTSD.
Similarly, MAGL inhibitors are currently being developed
and undergoing Phase I trials; however, no public reports
have been made as to their safety or efficacy as of yet. MAGL
as a target has some limitations, given that prolonged MAGL
inhibition, at high doses, can result in desensitization of the
eCB system (Schlosburg et al, 2010), which could limit the
utility of these drugs. Also, unlike FAAH inhibitors which
generally exhibit anxiolytic and anti-fear-like effects in
rodents, there is evidence that elevations in 2-AG signaling
could enhance fear expression (Llorente-Berzal et al, 2015)
and impair short-term fear extinction (Hartley et al, 2016),
although other studies have indicated that MAGL inhibitors
do possess anxiolytic (Busquets-Garcia et al, 2011; Morena
et al, 2016a; Sciolino et al, 2011; Sumislawski et al, 2011;
Zhong et al, 2014) and stress-resilient like properties (Bluett
et al, 2017; Bosch-Bouju et al, 2016). As such, more research
in this area is required to fully understand the potential
differential values of these two approaches for therapeutic
eCB augmentation.

An important question that would go along with this is the
nature of drug administration. For example, as preclinical
studies have highlighted the importance of eCB signaling
during fear extinction (Gunduz-Cinar et al, 2013b;
Marsicano et al, 2002), one consideration would be to
specifically examine the impact of FAAH inhibitor admin-
istration prior to cognitive therapies, such as exposure
therapy (which models the same principles as extinction
training in animals) to determine if facilitation of eCB
signaling can enhance the efficacy of cognitive interventions
having longer lasting impact and reducing the occurrence of
spontaneous relapse of disease symptomatology. As such,
clinical studies in humans at this time are absolutely essential
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in determining the therapeutic potential of eCB modulation
for the treatment of PTSD.

A final comment should also be made regarding the
influence of cannabis use on PTSD. Recent preclinical studies
have indicated that THC can reduce anxiety associated with
2-AG deficiency and can reduce stress-induced anxiety in
susceptible animals (Bedse et al, 2017; Bluett et al, 2017),
which provides some biological plausibility to the self-
medication hypothesis used to explain high rates of cannabis
use in patients with PTSD (Cougle et al, 2011) and high
degree of symptom-coping motives cited by these patients
(Bonn-Miller et al, 2007b)(Figure 3). Consistent with this
hypothesis are the anecdotal reports of cannabis use
improving quality of life and reducing symptoms in
individuals with PTSD (see above). While anecdotes do not
represent sound scientific evidence, the consistency of these
reports suggests larger-scale rigorous studies are warranted
in this area. In this regard, clinical studies into the impact of
cannabis use on PTSD symptomatology should be directly
addressed to determine if there is a significant benefit of
cannabis use in PTSD, and if so, do they outweigh the
potential adverse effects of cannabis use including depen-
dence liability. Furthermore, given the potential impact of
CBD (Blessing et al, 2015; Jurkus et al, 2016; Rossignoli et al,
2017; Stern et al, 2015), as well as THC, in PTSD, research
into the effects of cannabis with different THC : CBD ratios
would be of particular interest. However, an important
consideration, in this regard, is that the recognition of the
potential negative effects that excess, chronic cannabis use
could have on the trajectory of PTSD symptoms. For
example, excess, chronic cannabis use has been associated
with a reversible downregulation of CB1 receptors in the
brain (Ceccarini et al, 2015; Hirvonen et al, 2012), and both
animal and human studies have found that excess cannabis
use has been associated with impairments in fear extinction
(Lin et al, 2008; Papini et al, 2017), possibly related to an
impairment in the native functions of the eCB system. This is
consistent with some clinical reports that excess cannabis use
may be related to more negative, long-term outcomes in
PTSD (Boden et al, 2013; Steenkamp et al, 2017; Wilkinson
et al, 2016). As such, while cannabis use may provide benefit
for some individuals with PTSD, and should be scientifically
examined as a potential treatment approach for PTSD,
caution should be exerted with respect to the potential
adverse effects that could be associated with excess, chronic
cannabis use.

CONCLUSIONS

Here we described the biological findings associated with
PTSD, the role of eCB signaling in these biological processes,
and the impact cannabinoids have on these processes.
Together, these data create an evidence-based rationale
implicating the eCB system as a potential candidate system,
whose impairment could be a substrate for the etiology of
PTSD, as well as a target for the development of a novel class
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of drugs that could be used to treat symptoms of PTSD. The
overall picture that emerges from this summary is that
disturbances in neuronal, hormonal, and inflammatory
systems that have been found in PTSD, and are believed to
subserve the genesis of this disease, are all potentially
modifiable by eCB signaling and exogenous cannabis
products. However, there remains a critical need for high-
quality research focused on determining the clinical efficacy
of eCB modulation and cannabis-related products in the
treatment and course of PTSD.
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