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CRAF gene fusions in pediatric low-grade gliomas define a
distinct drug response based on dimerization profiles
P Jain1,2,3, TM Fierst3,4, HJ Han1,3, TE Smith3, A Vakil3, PB Storm1,3,5,6, AC Resnick1,3,5,6,7,10 and AJ Waanders5,6,8,9,10

Pediatric low-grade gliomas (PLGGs) are commonly associated with BRAF gene fusions that aberrantly activate the mitogen-
activated protein kinase (MAPK) signaling pathway. This has led to PLGG clinical trials utilizing RAF- and MAPK pathway-targeted
therapeutics. Whole-genome profiling of PLGGs has also identified rare gene fusions involving another RAF isoform, CRAF/RAF1, in
PLGGs and cancers occuring in adults. Whereas BRAF fusions primarily dysregulate MAPK signaling, the CRAF fusions QKI-RAF1 and
SRGAP3-RAF1 aberrantly activate both the MAPK and phosphoinositide-3 kinase/mammalian target of rapamycin (PI3K/mTOR)
signaling pathways. Although ATP-competitive, first-generation RAF inhibitors (vemurafenib/PLX4720, RAFi) cause paradoxical
activation of the MAPK pathway in BRAF-fusion tumors, inhibition can be achieved with ‘paradox breaker’ RAFi, such as PLX8394.
Here we report that, unlike BRAF fusions, CRAF fusions are unresponsive to both generations of RAFi, vemurafenib and PLX8394,
highlighting a distinct responsiveness of CRAF fusions to clinically relevant RAFi. Whereas PLX8394 decreased BRAF-fusion
dimerization, CRAF-fusion dimerization is unaffected primarily because of robust protein–protein interactions mediated by the
N-terminal non-kinase fusion partner, such as QKI. The pan-RAF dimer inhibitor, LY3009120, could suppress CRAF-fusion
oncogenicity by inhibiting dimer-mediated signaling. In addition, as CRAF fusions activate both the MAPK and PI3K/mTOR signaling
pathways, we identify combinatorial inhibition of the MAPK/mTOR pathway as a potential therapeutic strategy for CRAF-fusion-
driven tumors. Overall, we define a mechanistic distinction between PLGG-associated BRAF- and CRAF/RAF1 fusions in response to
RAFi, highlighting the importance of molecularly classifying PLGG patients for targeted therapy. Furthermore, our study uncovers
an important contribution of the non-kinase fusion partner to oncogenesis and potential therapeutic strategies against
PLGG-associated CRAF fusions and possibly pan-cancer CRAF fusions.
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INTRODUCTION
Pediatric low-grade gliomas (PLGGs) represent a heterogeneous
group of commonly diagnosed brain tumors in children,1 with
histologies ranging from pilocytic astrocytomas (PAs; WHO grade
I) to diffuse fibrillary astrocytomas (WHO grade II). Alterations in
the mitogen-associated protein kinase (MAPK) pathway are
frequent in PLGGs, specifically KIAA1549-BRAF gene fusion in
PAs2,3 and BRAF-V600E mutation mostly in Pleomorphic
Xanthoastrocytomas.4 Comprehensive whole-genome sequencing
studies have discovered a diversity of novel RAF-fusion gene
combinations. In particular, multiple gene fusions harboring CRAF
(or RAF1), a serine/threonine kinase first discovered as the v-raf
oncogene in transforming mouse sarcoma virus,5 have been
reported in PLGGs. QKI-RAF1 and FYCO-RAF1 have been identified
as rare alterations in PAs using whole-genome sequencing,6

whereas SRGAP3-RAF1 was first reported as a tandem duplication
event.7,8 Recently, ATG7-RAF1 fusions were reported in anaplastic
Pleomorphic Xanthoastrocytomas without BRAF-V600E.9 Although
SRGAP3-RAF1 was shown to activate the MAPK pathway, no
further studies with RAF1 fusions have been reported.

Interestingly, several adult cancers such as prostate cancer,10,11

breast cancer,12 pancreatic cancer13 and thyroid cancer12 also
harbor CRAF fusions. However, the true prevalence, oncogenic
mechanism and sensitivity of pan-cancer CRAF fusions to targeted
therapeutics remain unknown.
The prevalence of RAF fusions in PLGGs led to studies

examining the therapeutic efficacy of RAF inhibitors (RAFi). ATP-
competitive, first-generation RAFi, such as vemurafenib (research
analog PLX4720), have been FDA-approved for BRAF-V600E
malignant melanoma14 but were found to be ineffective in
targeting BRAF fusions because of paradoxical activation of the
MAPK pathway.3 Interestingly, second-generation RAFi PLX8394
could successfully target BRAF fusions, hence termed 'paradox
breaker'.3,15 These studies highlight the differential sensitivity of
RAF mutations. While ATP-competitive RAFi inhibits wild-type
BRAF and CRAF kinase activity at similar IC50 in vitro,15 the effect of
RAFi on CRAF fusions versus BRAF fusions is yet to be clinically
defined.
Despite recent focus on the kinase fusion partner in fusion-

driven cancers, the non-kinase partner is increasingly recognized
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as important to oncogenesis. The N-terminal fusion partners of
CRAF fusions, such as in QKI (QKI-RAF1) and SRGAP3 (SRGAP3-
RAF1), have been previously implicated in cancers. QKI is an RNA-
binding protein that regulates glial development and central
nervous system myelination.16,17 We previously identified QKI’s
contribution as a fusion partner in MYB-QKI fusion in angiocentric
gliomas,18 corroborating previous findings that QKI deletions are
oncogenic in cancers such as glioblastomas,19,20 prostate cancer,21

lung cancer22 and gastric cancer.23 SRGAP3, which is a member of
the SLIT-ROBO Rho-GTPase-activating protein (srGAP) family
regulating actin cytoskeleton dynamics,24 has been reported as
a tumor suppressor-like gene in breast cancer.25 These studies
suggest the potential involvement of QKI and SRGAP3 in CRAF-
fusion-driven tumors.
To address these questions, we performed cellular, molecular

and in vivo assays to test oncogenic mechanisms and therapeutic
response of two PLGG-associated CRAF fusions, QKI-RAF1 and
SRGAP3-RAF1. We found that CRAF fusions activated both the
MAPK and the phosphoinositide-3 kinase/mammalian target of
rapamycin (PI3K/mTOR) pathways and were unresponsive to
'paradox-breaker' RAFi. We identified robust, RAFi-resistant dimer-
ization mediated by the non-kinase fusion partner in CRAF fusions.
To overcome this RAF-directed therapeutic challenge, we char-
acterize other potential targeting approaches for CRAF-fusion-
driven tumors including the pan-RAFi LY3009120 and combina-
torial targeting of the MAPK and PI3K/mTOR pathways.

RESULTS
QKI-RAF1 and SRGAP3-RAF1 are oncogenic fusions that activate
the MAPK and PI3K signaling pathways
Similar to most BRAF fusions, QKI-RAF1 and SRGAP3-RAF1 lack the
N-terminal non-catalytic, inhibitory domain of RAF but retain the
functional kinase domain (Figure 1a). Loss of N-terminal domains
of CRAF can activate oncogenic properties,26,27 but such studies
on PLGG CRAF fusions are limited to a single report on SRGAP3-
RAF1.8 QKI-RAF1 contains QKI exons 1–3 encoding QKI homo-
dimerization domain and part of its RNA-binding domain
(Figure 1a). In SRGAP3-RAF1, SRGAP3 exons 1–10 encode the Fes-
CIP4-homology domain and a coiled-coil domain (together called
F-BAR domain) with dimerization properties,28 but the central
Rho-GAP and C-terminal SH3 domains are lost (Figure 1a).
Although CRAF fusions are rare events in PLGGs compared with

BRAF fusions, the overall prevalence in childhood cancers is
unknown because of lack of genomic studies to enrich for such
fusions. Nonetheless, the occurrence of diverse CRAF fusions
across pediatric and adult cancers (Figure 1b) highlights the
growing importance of CRAF fusions and need to understand its
mechanism of oncogenicity and its sensitivity to targeted
inhibition. CRAF fusions listed in Figure 1b all lack the N-terminal
auto-inhibitory domains of CRAF, strongly suggesting constitutive
activation of CRAF kinase activity. We sought to test this
hypothesis in PLGG-associated CRAF fusions, SRGAP3-RAF1 and
QKI-RAF1.
The absence of patient-derived PLGG cell models has limited

our understanding of the underlying biology of gene fusions. To
circumvent the lack of established PLGG patient-derived CRAF-
fusion cell lines, we generated two heterologous cell models by
stably expressing SRGAP3-RAF1 and QKI-RAF1 in Tp53-null primary
mouse astrocytes (PMAs)6 and NIH3T3 (Supplementary Figures 1a
and b). Because of the slow-growing nature of PLGGs, previous
studies on PLGG-derived mutations have found the need for
additional mutational hits to support transformation of primary
cell lines.6 The Tp53-null background in PMAs, although alone
insufficient to drive oncogenesis,6 provides a primary, glial cellular
context poised for transformation and testing of glioma-
associated CRAF fusions. We also use NIH3T3s that have been

predictive of oncogenic transformation and clinical response in
the BRAF-fusion setting.29 To assess the oncogenic potential of
CRAF fusions, we performed soft agar assays and measured colony
formation of fusion-expressing cells. QKI-RAF1 and SRGAP3-RAF1
overexpression was sufficient to drive significant anchorage-
independent growth of PMAs in soft agar compared with vector
controls (Figure 1c, P-valueo0.01–0.001), and we observed MAPK
pathway activation by QKI-RAF1 and SRGAP3-RAF1 in PMAs
(Figure 1d).
In CRAF-fusion expressing NIH3T3, we observed similar robust

colony formation in soft agar assays (Figure 1e, P-valueo0.05–
0.001). Both the MAPK and PI3K/mTOR pathways were aberrantly
activated by QKI-RAF1 and SRGAP3-RAF1 as monitored by
elevated phosphorylated-MEK and phospho-AKT/S6 levels in
NIH3T3s, respectively (Figure 1f). The difference in CRAF-fusion-
mediated activation of both MAPK and PI3K/mTOR pathways in
NIH3T3 versus only MAPK pathway in PMAs could not be
explained by differential expression level of fusion proteins
among cell lines (Supplementary Figure 1a) and is likely due to
variation in signaling programs in different cellular contexts.
To test tumor formation in vivo, QKI-RAF1 and SRGAP3-RAF1-

expressing PMAs were intracranially injected into the cerebral
cortex of NOD scid gamma (immunodeficient) mice. Both CRAF
fusions, but not vector control-expressing PMAs, formed tumors
and led to poor survival in all injected mice (Figure 1g,
P-valueo0.01). Similarly, only the NIH3T3-expressing QKI-RAF1
and SRGAP3-RAF1 injected into flanks of NSG mice formed robust
xenograft tumors (Figure 1h, P-valueo0.001). Our observations in
two independent cell systems suggest that QKI-RAF1 and SRGAP3-
RAF1 are driver oncogenes.

First- and second-generation RAFi do not suppress QKI-RAF1 and
SRGAP3-RAF1
Despite clinical testing of ATP-competitive RAFi against PLGGs, no
preclinical studies exist to show the effect of first- and second-
generation RAFi (Vemurafenib/PLX4720 and PLX8394, respec-
tively) on CRAF fusions. In QKI-RAF1 expressing NIH3T3, both
PLX4720 and PLX8394 caused paradoxical activation of the MAPK
pathway as seen by increasing phosphorylated-MEK and -ERK with
increasing drug concentrations (Figure 2a). Interestingly, we
observed decreased phosphorylated-S6 with higher RAFi despite
increased phosphorylated AKTT308 (Figure 2a), suggesting some
downregulation of the PI3K pathway. Instead of suppressing
growth in soft agar, both RAFi caused increased colony formation
in QKI-RAF1 expressing NIH3T3 (Figure 2b).
We observed similar paradoxical activation of the MAPK

pathway, PI3K/mTOR pathway suppression (Figure 2c) and lack
of growth suppression in soft agar (Figure 2d) upon treating
SRGAP3-RAF1 expressing NIH3T3 with PLX4720 and PLX8394.
These findings distinguish CRAF fusions from BRAF-fusion
(KIAA159-BRAF) that shows pathway suppression with PLX8394
(Supplementary Figure 2). This is in contrast to previous in vitro
studies reporting low biochemical IC50 for PLX8394 targeting wild-
type BRAF and CRAF.15

In CRAF-fusion expressing PMAs, we observed no MAPK
pathway suppression with PLX8394 treatment (Figure 2e) and
no growth suppression of QKI-RAF1 (Figure 2f) and SRGAP3-RAF1
(Figure 2g) with increasing PLX4720 or PLX8394. Collectively,
these findings suggest a correlation between drug-induced
paradoxical MAPK pathway activation and RAFi resistance of CRAF
fusions. Despite high RAFi concentrations affecting the PI3K
pathway by some unknown mechanism, lack of growth inhibition
in soft agar suggests that the PI3K/mTOR pathway could be
secondary to MAPK pathway in CRAF-fusion expressing tumors.
Neither of the tested PLX compounds affected the stability of
CRAF-fusion oncoproteins in our model systems (Supplementary
Figure 5a).
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CRAF fusions exist as homodimers and heterodimers with B/CRAF/
N-terminal fusion partner that are resistant to second-generation
paradox breakers
PLX8394 prevents RAF dimerization by interacting with residues
on the regulatory spine of wild-type RAF kinases,15 but our
findings suggest that CRAF fusions do not respond to PLX8394 like
wild-type CRAF. As dimerization underlies RAF kinase activity30

and homodimerization drives the oncogenic activity of KIAA1549-
BRAF,3 we hypothesized that CRAF fusions are activated via
homodimerization and/or heterodimerization. The presence of
dimerization domains in both N-terminal QKI31,32/SRGAP328 and
C-terminal RAF130,33 suggests that both partners in CRAF fusions
may contribute to dimerization.
To assess the dimerization potential of CRAF fusions, we tested

QKI-RAF1 homodimerization or heterodimerization with wild-type

BRAF, CRAF, QKI and truncated QKI (exons 1–3) using myc- and
flag-tagged constructs in HEK293 that demonstrates high
transfection efficiency. Upon immunoprecipitation (IP) of QKI-
RAF1 with a Myc antibody, we observed QKI-RAF1 interacting with
itself, wild-type BRAF, CRAF, QKI and truncated QKI but not the
vector control (Figure 3a). Similarly, we found SRGAP3-RAF1 to
homodimerize and heterodimerize with wild-type BRAF and wild-
type CRAF (Supplementary Figure 3a).
Next, we assessed whether PLX8394’s inability to inhibit CRAF

fusion is related to the inhibitor’s effect on CRAF-fusion protein–
protein interactions. We found that PLX8394 failed to disrupt QKI-
RAF1 homodimerization and heterodimerization with wild-type B/
CRAF or QKI (Figure 3b). This is in contrast to PLX8394’s disruption
of KIAA1549-BRAF homodimerization (Figure 3c) and inhibition of
oncogenic growth.3 This suggests that the robust correlation
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Figure 1. QKI-RAF1 and SRGAP3-RAF1 are oncogenic via activation of MAPK and PI3K pathways. (a) Structure of CRAF fusions in PLGGs. QKI-
RAF1: QKI exons 1–3 encode QUA1 dimerization domain and a truncated K-homology domain (KH-Tr), and CRAF/RAF1 exons 8–17 encode the
protein kinase domain. SRGAP3-RAF1: SRGAP3 exons 1–10 encode the Fes/CIP4-Homology (FCH) domain and, RAF1 exons 9–17 encode CRAF
kinase domain. (b) Table showing different CRAF fusions present in various adult cancers and pediatric cancer. (c, e) Soft agar assay using
(c) p53-null mouse astrocyte cells (PMAs) and (e) NIH3T3 stably expressing CRAF fusions, n= 5 and 3, respectively. Error bars represent s.e.m.
(d, f) Western blot analysis of MAPK and PI3K/mTOR pathway proteins in (d) PMAs and (f) NIH3T3. (g) Kaplan–Meier survival plot of NSG mice
orthotopically injected with PMAs overexpressing CRAF fusions, n= 5 mice, Po0.01. (h) Flank xenograft tumor growth measurements with
stable NIH3T3-expressing CRAF fusions. Error bars represent s.e.m., n= 10 mice. *P-valueo0.05, **P-valueo0.01, ***P-valueo0.001.
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between dimer disruption and responsiveness to RAFi could be
underlying the observed differences between BRAF- and CRAF fusions.

CRAF fusions activate oncogenic signaling in a dimerization-
dependent manner
QKI-RAF1 and SRGAP3-RAF1 retain kinase activity as well as critical
residues of the RAF1 dimer interface.30,34 Point mutation in a key
RAF1 dimer interface residue R401H has been shown to disrupt
RAF1 dimerization with little to no effect on basal kinase
activity.35–40 We assessed the effect of such mutation on QKI-
RAF1 (QKI-RAF1R401H). In co-IP assays, QKI-RAF1R401H homodimer-
ization with QKI-RAF1 was unaffected (Figure 4a) but hetero-
dimerization with wild-type BRAF and CRAF was decreased
(Figures 4b and c), as with wild-type QKI (Figure 4d) by unknown
mechanisms. Overall, the RAF1 dimer interface is critical for QKI-
RAF1’s interaction with wild-type B/CRAF, but is only partly
responsible for QKI-RAF1 homodimerization. This contrasts our
previous findings with KIAA1549-BRAF where homodimerization is
dependent on the BRAF dimer interface.3

The QUA1 region of N-terminal QKI contains dimerization
residues and the E48G point mutation causes disruption of QKI
dimers and RNA-binding function.32,41 This mutation (QKIE48G-
RAF1) decreased homodimerization with QKI-RAF1 (Figure 4a) and
heterodimerization with CRAF and QKI (Figures 4c and d),
indicating the importance of QKI dimerization residues in QKI-
RAF1. Surprisingly, wild-type CRAF and QKIE48G-RAF1 interaction
was also affected, even though CRAF interaction was expected to
be mediated by RAF1 portion of QKI-RAF1, not QKI. One possibility
is that QKI-RAF1 forms homodimers, followed by CRAF binding
to form complex oligomers, so loss of QKIE48G-RAF1 homodimer-
ization could be preventing CRAF interaction (Figure 4c), but this
hypothesis needs to be tested further.

Next, we tested double point mutants of QKI and RAF1 (QKIE48G-
RAF1R401H). QKIE48G-RAF1R401H demonstrated severe loss of inter-
action with QKI-RAF1, wild-type BRAF, CRAF and QKI (Figures
4a–d). Taken together, these results suggest that the N-terminal
fusion partner (QKI) primarily mediates dimerization of CRAF
fusion with little contribution from RAF1 dimerization motif.
We assessed the effect of dimerization mutants on QKI-RAF1’s

oncogenic signaling by infecting PMAs with various dimer mutant
constructs and testing MAPK signaling. QKI-RAF1R401H drove
similar levels of phosphorylated-MEK, -ERK and -S6 as QKI-RAF1,
whereas QKIE48G-RAF1 and QKIE48G-RAF1R401H had significantly
reduced MAPK signaling (Figure 4e) and QKIE48G-RAF1R401H

showed reduced phospho-S6. These results strongly suggest that
the QKI fusion partner is driving QKI-RAF1 dimerization and
subsequent activation of oncogenic MAPK signaling. Soft agar
assays showed a nonsignificant decrease in colony formation by
QKI-RAF1R401H compared with QKI-RAF1 (Figure 4f, P-value40.05).
In contrast, QKIE48G-RAF1 and QKIE48G-RAF1R401H displayed sig-
nificant reduction in anchorage-independent growth (Figure 4f,
P-valueo0.01), suggesting that QKI-RAF1-driven oncogenic
growth is largely dependent on QKI dimerization residues. For
SRGAP3-RAF1, we observed decreased MAPK signaling and lower
colony formation in soft agar for PMAs expressing SRGAP3-
RAF1R401H versus SRGAP3-RAF1 (Supplementary Figures 3b and c),
indicating partial importance of RAF1 dimerization motif in
SRGAP3-RAF1.

N-terminal fusion partner loses functionality in CRAF fusions
Loss of QKI’s RNA-binding function has been detected in adult
glioblastomas42 and lung cancers.22 As QKI-RAF1 retains part of
QKI RNA-binding motif, we tested QKI-RAF1’s RNA-binding
potential compared with wild-type QKI. We performed UV
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Figure 2. Existing RAF inhibitors do not suppress CRAF-fusion-driven signaling pathways and oncogenic phenotype. (a) Western blot and
(b) soft agar colony analysis showing the effect of RAF inhibitors, PLX8394 and PLX4720, on MAPK and PI3K/mTOR pathways in QKI-RAF1
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crosslinking by radiolabeling well-known RNA targets, myelin
basic protein and early growth response gene-2 (EGR-2)43 and
incubating with vector control, QKI and QKI-RAF1 proteins
expressed in HEK293 (Supplementary Figure 4a). Compared with
vector control, QKI bound to both RNA targets but QKI-RAF1 failed
to bind either RNA target (Figure 4g), indicating that QKI-RAF1 has
lost RNA-binding function. We have previously shown that partial
QKI loss in MYB-QKI expressing PLGGs causes increased
oncogenicity18 and a similar mechanism warrants more testing
in QKI-RAF1 tumors.

LY3009120 inhibits CRAF fusions by inducing inactive homodimers
and heterodimers with B/CRAF and preventing QKI
heterodimerization
To target the dimerization-dependent oncogenicity of CRAF
fusions, we tested LY3009120, a novel RAF dimer inhibitor capable
of binding and stabilizing both promoters of a RAF dimer in an
inactive conformation. LY3009120 has shown efficacy in suppres-
sing mutant BRAF dimers in melanoma, colorectal and thyroid
cancer lines and circumventing the paradoxical activation caused
by vemurafenib that binds only one protomer of a RAF dimer.44–46

In CRAF-fusion expressing NIH3T3s, LY3009120 led to potent,
dose-dependent inhibition of both MAPK and PI3K/mTOR path-
ways (Figure 5a), and even low doses suppressed anchorage-
independent growth (Figure 5b, P-valueo0.001). Similar suppres-
sion of the MAPK pathway was observed with LY3009120 in CRAF-
fusion expressing PMAs (Figure 5c), whereas the PI3K pathway was
not inhibited as strongly as in NIH3T3s. LY3009120 suppressed
soft agar colony growth of PMAs (Figure 5d) verifying LY3009120
antitumor effects on CRAF fusions. The protein stability of CRAF

fusions was not affected in the presence of increasing doses of
LY3009120 in treated cells (Supplementary Figure 5b).
To evaluate the inhibitory mechanism of LY3009120 in CRAF

fusions, we performed co-IP assays with LY3009120. Treatment
with LY3009120 induced QKI-RAF1 homodimerization and QKI-
RAF1/BRAF heterodimerization (Figure 5e, left panel) with minimal
effect on QKI-RAF1/CRAF heterodimerization. Interestingly,
LY3009120 caused complete disruption of QKI-RAF1/full-length
QKI heterodimerization but interaction with N-terminal-truncated
QKI is retained (Figure 5e, right panel). Despite stabilizing QKI-
RAF1 homodimers and heterodimers with other RAF proteins,
LY3009120 inhibits RAF1 kinase activity and downstream MAPK/
PI3K signaling (Figures 5a–c). LY3009120 seems to affect the QKI-
dimerization residues via some unknown mechanism, which could
alter QKI-RAF1 homodimerization and downstream signaling.
Thus, LY3009120 may provide a therapeutic alternative to existing
RAFi in CRAF-fusion-driven tumors and warrants additional testing.

CRAF fusions are partially suppressed in vivo by downstream MEK
inhibitors
The lack of preclinical efficacy with first- and second-generation
RAFi in CRAF fusions led us to test FDA-approved MEK inhibitors
(MEKi), selumetinib and trametinib. NIH3T3s overexpressing QKI-
RAF1 showed a dose-dependent decrease in phospho-ERK with
selumetinib and trametinib, indicating on-target MEK1/2 inhibi-
tion (Figure 6a, first and middle panels, respectively) and
significant growth inhibition in soft agar assays (Figure 6b, top
panel, P-valueo0.01, 0.1). PMAs expressing QKI-RAF1 also
displayed similar pathway inhibition (Figure 6a, last panel) and
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suppression of colony formation (Figure 6b, bottom panel,
P-valueo0.01) with trametinib.
SRGAP3-RAF1 expressing cells show similar MAPK pathway

suppression with both MEKi treatments (Figure 6c). However, only
trametinib, but not selumetinib, suppressed SRGAP3-RAF1-
mediated colony formation in NIH3T3 and PMAs (Figure 6d).
These in vitro studies suggest that trametinib is more potent at
inhibiting MAPK signaling and in vitro colony formation driven by
CRAF fusions.
To test trametinib in vivo, we injected CRAF-fusion expressing

NIH3T3 as flank xenograft tumors in NSG mice. Mice were treated
oral-gavaged with trametinib but, despite significant activity
in vitro, trametinib monotherapy only delayed but did not prevent
QKI-RAF1 and SRGAP3-RAF1 tumor growth (Figures 6e and f,
respectively). Tumor progression despite continued trametinib
treatment suggests that alternative pathways activated by CRAF
fusions in vivo permit tumor growth despite MEK inhibition.

Combinatorial targeting of MAPK and PI3K/mTOR pathways is
more potent than single-agent therapies against CRAF fusions
As the PI3K/mTOR pathway is also activated in CRAF-fusion
expressing NIH3T3, we performed combinatorial targeting of both
MAPK and PI3K/mTOR pathways using MEKi trametinib and mTORi
everolimus, and observed decreased phospho-ERK and phospho-
S6 (Figure 7a, left panel). Dose-escalation with everolimus alone
failed to affect CRAF-fusion-driven signaling pathways
(Supplementary Figure 4b). Despite minimal activation of baseline
PI3K/mTOR pathway in CRAF-fusion expressing PMAS, combina-
torial treatment suppressed phospho-ERK and phospho-S6
(Figure 7a, right panel). Co-targeting inhibited anchorage-
independent growth mediated by QKI-RAF1 in NIH3T3 and PMAs

(Figure 7a). Similar pathway suppression results upon co-targeting
MEK and mTOR in SRGAP3-RAF1-expressing cells (Figure 7c), along
with decreased colony formation in soft agar (Figure 7d). The
kinase inhibitors did not destabilize CRAF-fusion proteins, even at
higher doses, suggesting that trametinib and everolimus target
RAF1 kinase activity but not protein stability (Supplementary
Figures 5c and d).
We next tested co-targeting in two in vivo models: NIH3T3 flank

xenografts and orthotopic intracranial (IC) tumors with PMAs. Mice
with QKI-RAF1 expressing NIH3T3 flank xenografts were treated
with single-agent everolimus or trametinib and show initial
suppression of tumor engraftment but the tumor eventually
grows, whereas combinatorial treatment prolonged tumor sup-
pression due to direct inhibition of both pathways (Figure 7e and
Supplementary Figure 4c). We observed similar responsiveness in
SRGAP3-RAF1-expressing NIH3T3 flank xenografts (Figure 7f). We
further assessed treatment efficacy in a more relevant PLGG
model, QKI-RAF1 expressing PMAs as IC tumor model. In combo-
treated animals, 80% (4/5) were alive at 50 days post-IC injection
of QKI-RAF1 PMAs, whereas all vehicle and single-agent-treated
animals either died or developed neurological symptoms requir-
ing killing (Figure 7g). Our findings show that combinatorial
therapy with MEKi and RADi prolonged overall survival in CRAF-
fusion in vivo models and should be further explored in the
preclinical setting.

DISCUSSION
Our study describes the oncogenic mechanism and therapeutic
sensitivity of PLGG-associated CRAF gene fusions that can greatly
aid precision medicine approaches. To our knowledge, this is the
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first report to distinguish between BRAF and CRAF/RAF1 fusions
found in PAs.6 Whereas vemurafenib paradoxically activates BRAF
fusions, PLX8394 suppresses KIAA1549-BRAF tumors. Contrast-
ingly, CRAF fusions are resistant to both vemurafenib and PLX8394
but are responsive to RAF dimer inhibitor LY3009120 or
co-targeting with MEKi and mTORi. These results establish distinct
sensitivities of BRAF- and CRAF fusions to various inhibitors. We
also identify critical contribution of the N-terminal fusion partner
QKI in QKI-RAF1’s resistance to existing RAFi, a finding that may be
relevant to CRAF fusions in a broad category of pediatric and adult
cancers.
Compared with a small fraction of PAs reported with CRAF

fusions, various BRAF mutations are found more frequently
including BRAFV600E present in 6–10% of PAs and higher
prevalence in other PLGG subtypes,47 KIAA1549-BRAF fusion
found in majority of PAs and novel BRAF mutations reported by
PLGG whole-genome sequencing studies.6 Despite sharing the
same histopathology, our findings define distinct molecular and
therapeutic profiles for CRAF-fusion and BRAF-fusion-driven
tumors and suggest that targeted therapies should be tailored
to the specific RAF alteration. This necessitates development of
molecular stratification schemes for PLGGs as patients with similar
histological diagnosis might have different molecular drivers.
Relevant patient-derived models are extremely rare for PLGGs,

with no established PLGG cell lines expressing CRAF fusions.47–49

The heterologous model systems used in this study have
previously been predictive of clinical response such as in the
PLGG Phase II trial with sorafenib.29 These model systems indicate
that CRAF fusions are oncogenic via the MAPK and PI3K/mTOR

pathways. Yet, despite similar downstream signaling to BRAF
fusions, CRAF fusions were found to be distinct molecular entities.
Whereas KIAA1549-BRAF primarily exists as homodimers3 dis-
rupted by PLX8394 (Figure 3c), CRAF fusions exist as RAFi-resistant
homodimers and heterodimers with B/CRAF/N-terminal partner.
Dependence on BRAF mutational status for RAFi sensitivity has
been studied, but our findings suggest for the first time that BRAF-
and CRAF fusions could be distinct signaling entities based on
dimerization status primarily mediated by the non-kinase fusion
partner. Furthermore, other N-terminal fusion partners of CRAF
fusions, such as SRGAP3, FYCO1 and ATG7, possess dimerization
domains. This raises the possibility that a common dimerization-
dependent oncogenic mechanism prevails among pan-cancer
CRAF fusions that needs to be established via further compre-
hensive testing of diverse CRAF fusions. Importantly, these
mechanistic findings have significant clinical implications for
patients with CRAF fusions, as clinically available RAFi would be
unsuccessful in disrupting oncogenic dimers and related signaling
of CRAF fusions.
LY3009120 is a pan-RAFi that has shown promise in inhibiting

various NRAS, KRAS and BRAF mutations.45,46 We show LY3009120
treatment disrupting QKI-mediated interaction between QKI-RAF1
as well as stabilizing inactive homodimers and heterodimers with
B/CRAF. This strongly supports our hypothesis that a RAFi can be
effective against CRAF fusions if dimerization of both fusion
partners is targeted, but these initial findings would require
further preclinical in vivo testing.
While selumetinib is currently in clinical trials for PLGGs

(ClinicalTrials.gov Identifier: NCT01089101), we have shown only
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partial inhibition of CRAF fusion with selumetinib monotherapy. In
BRAF-mutant cancers, selumetinib is more potent than RAFi but
multi-agent therapy combining MEKi with either vemurafenib or
mTORi (everolimus) has shown the most promising preclinical
results based on BRAF mutational status.47 In our study, trametinib
monotherapy partially suppressed CRAF-fusion-driven tumors,
suggesting some oncogenic dependence on the PI3K/mTOR
pathway. Combinatorial therapy using MEKi trametinib and mTORi
everolimus was most effective in inhibiting the growth of QKI-
RAF1- and SRGAP3-RAF1-driven tumors. Safety and tolerability of
combining MEKi and mTORi were tested recently in adult patients
with advanced solid tumors.50 This study failed to identify a
dosage that provided appropriate drug response with acceptable
tolerability in adults. However, this study used a varied adult
patient cohort, some of whom had previous chemotherapy and
other treatments. Importantly, trametinib combined with ever-
olimus at doses lower than what we used in this study was
successful at targeting BRAF fusions (AJW, unpublished). Our
preclinical results using combinatorial targeting of MAPK and
PI3K/mTOR pathways in CRAF fusions would suggest that this
therapeutic strategy should be further explored in the pediatric
setting, specifically for CRAF-fusion-harboring tumors.
Previous studies on kinase gene fusions have focused on

downstream effects of truncated, activated kinases, but our study
depicts a novel oncogenic role for the non-kinase fusion partner.
We found that QKI-mediated dimerization of QKI-RAF1 is essential

for resistance to RAFi therapy. This adds to the growing list of
oncogenic roles being attributed to QKI, including loss of
expression/tumor suppressor function, altered regulation of target
RNAs and maintenance of glioma stemness.18,51–53 However, the
role of N-terminal fusion partner might be fusion-specific. For
example, introduction of the R401H substitution to ESRP1-RAF1,
an oncogenic protein fusion that forms constitutive dimers driven
by CRAF, significantly reduced MAPK signaling.10,54 Our study
highlights how both genes involved in an oncogenic somatic
rearrangement collaborate, predicting a vast array of potential
oncogenic functions that the non-kinase partner can execute.
We have previously shown that partial loss of QKI expression in

angiocentric gliomas can enhance the oncogenic profile of MYB-
QKI fusion.18 Because of absence of RNA-sequencing data, we
could not directly verify whether there is partial loss of QKI
expression in QKI-RAF1-driven tumors. While this needs further
investigation, there is a possibility that monoallelic QKI loss could
collaborate with the oncogenicity of QKI-RAF1. Similarly, loss of
the functional SRGAP3 Rho-GTPase domains in SRGAP3-RAF1
suggests functional allelic loss of SRGAP3. This, along with
contribution of SRGAP3 dimerization motifs to fusion gene
oncogenicity, needs to be further explored.
The distinct subtypes of PLGGs are beginning to be associated

with specific mutations such as the association of MYB-QKI with
angiocentric gliomas and KIAA1549-BRAF fusions with PAs. This
study adds another layer of complexity with the same histologic
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subtype displaying different mutations and distinct therapeutic
responses. Overall, we highlight the importance of molecular
classification of PLGGs in assisting personalized medicine
approaches, along with therapeutic implications for pan-cancer
CRAF fusions.

MATERIALS AND METHODS
Cell culture
NIH3T3 and HEK293 were obtained from ATCC and maintained in 1 ×
DMEM containing 10% Donor Bovine Serum (DBS) and 10% Fetal Bovine
Serum (FBS), respectively. Tp53-null early-passage PMAs were kindly shared
by Suzanne Baker (St Jude Children’s Hospital), and maintained in DMEM-
F12 with 10% FBS and epidermal growth factor (EGF).6 Cell lines were
routinely tested for mycoplasma infection.

Vector construction and generation of stable cell lines
SRGAP3-RAF1 and QKI-RAF1 constructs were synthesized as Gateway-
compatible entry clones. Full-length RAF1, QKI and SRGAP3 were purchased
as gateway entry clones from PlasmID/Dana-Farber/Harvard Cancer Center
DNA Resource Core. Subcloning was carried out to integrate SRGAP3-RAF1,
QKI-RAF1, full-length QKI, RAF1 and SRGAP3 into Gateway-compatible
N-MYC-tagged pMX-Puro Retroviral Vector (Cell Biolabs, San Diego, CA,
USA). NIH3T3 and early-passage PMAs were transduced using infection
protocol previously described.18 Gateway destination vectors with either
an N-terminal MYC or FLAG tag (Invitrogen, Waltham, MA, USA) were
generated for all constructs. Anti-MYC antibody (Invitrogen R951-25,
1:5000) and anti-FLAG antibody (Sigma A8592, 1:10 000 from Sigma-

Aldrich, St Louis, MO, USA) were used to detect tagged proteins along with
anti-CRAF antibody (Cell Signaling #9422 from Cell Signaling Technology,
Danvers, MA, USA).
QKI-RAF1 dimerization mutants were generated by polymerase chain

reaction-based site-directed mutagenesis of MYC- and FLAG-tagged
constructs. RAFR401H dimerization mutants35,36 in QKI-RAF1 were generated
using primers: forward CGCAAAACACACCATGTGAACA and reverse CAGA
ACAGCCACCTCATTCCT. QKIE48G dimerization mutants31 in QKI-RAF1 were
generated using primers: forward CTGGACGAAGGAATTAGCAGAG and
reverse CAGCCGCTCGAGGTGGTT.

Cellular drug assays
PLX4720 and PLX8394 were provided by Plexxikon, trametinib was
provided by GlaxoSmithKline and LY3009120 (Eli Lilly, Indianapolis, IN,
USA) and selumetinib (Astra Zeneca, Gaithersburg, MD, USA) were
purchased from Selleck Chemicals (Houston, TX, USA). These drugs were
used alone or in combination with mTORi, everolimus (purchased from LC
Laboratories, Woburn, MA, USA). All listed inhibitors were dissolved in
dimethyl sulfoxide and stored at − 20 °C. Cells were plated at 1 × 106 cells/
ml and serum-starved, followed by exposure to indicated drug concentra-
tions for 1 h.

Western blot analysis
CRAF-fusion-expressing NIH3T3 and PMAs were processed for western blot
analysis as described previously.3 For MAPK and PI3K/mTOR pathway
analysis, pMEK (#9154), MEK (#4694), pERK (#4370), ERK (#4695), pAKT
Ser473 (#4060), pAKT Thr308 (#4056), AKT (#2920), pS6 (#2215) and S6
(#2317) antibodies from Cell Signaling were used.
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Soft-agar cellular transformation assays
Anchorage-independent growth was assessed as previously described.3,18

Co-IP assays
Interactions of SRGAP3-RAF1 and QKI-RAF1 with itself, wild-type BRAF,
CRAF, QKI or SRGAP3 were assessed via co-transfections of MYC- and
FLAG-tagged constructs into HEK293 using Lipofectamine 2000. HEK293
was used due to high transfection efficiency and protein expression. Anti-
MYC antibody-coated magnetic beads (MBL, M047-11, purchased from
MBL, Woburn, MA, USA) were used to immunoprecipitate the transfected
proteins from cell lysates at 4 °C overnight. Beads were washed 3× 15 min
at 4 °C, followed by a final 1 × phosphate-buffered saline wash, elution
using 2 × LDS (Lithium dodecyl sulfate) and heating at 70 °C for 10 min,
and then by western blot analysis.

Animal studies
Homozygous NSG mice were obtained from Jackson Laboratories (Bar
Harbor, ME, USA), bred in our animal facility and housed under aseptic
conditions. We used 6–10-week-old mice with equal sex representation,
randomized for treatment and no investigator blinding. The Children’s
Hospital of Philadelphia Institutional Animal Care and Use Committee
approved all animal protocols.
Mouse flank xenograft studies with CRAF-fusion-expressing NIH3T3:

NIH3T3 cell lines were injected subcutaneously into NSG mouse flanks
(n=10 each cell line, per treatment arm) and tumor growth was measured
daily. Trametinib (1 mg/kg/dose) and everolimus (10 mg/kg/dose) combi-
natorial drug study was performed by pretreating with daily oral gavage
for 1 week prior to injecting cell lines (doses chosen based on scaling from
human dosing). Ellipsoid tumor volume was calculated using the formula:
volume= 1/2(length ×width2).
IC tumor model: 1 × 106 PMAs expressing SRGAP3-RAF1, QKI-RAF1 and

vector control were resuspended in Matrigel basement matrix (BD
Biosciences, Franklin Lakes, NJ, USA) and 2 µl was injected into the right
striatum of NSG mice (n=5/cell line). Animals were monitored and killed at
the onset of neurological symptoms, QKI-RAF1 on day 39 and SRGAP3-
RAF1 on day 42 post injection. Similar treatment doses as used in flank
experiment were started on day 13 post recovery from IC injection. All
animals were sacked on day 50.

UV crosslinking and co-IP assays
We used two known RNA targets of QKI, myelin basic protein and EGR-243

and performed in vitro transcription and P32-radiolabeling of RNA probes.
UV crosslinking with QKI or QKI-RAF1 expressing HEK293 lysates was done
as described previously.55 Crosslinked protein–RNA conjugates were
immuoprecipitated using anti-Myc-tagged beads and separated on an
SDS-PAGE gel.

Statistical analysis
P-values were calculated using t-tests (two-sided, correction for multiple
comparisons using the Holm–Sidak method). Kaplan–Meier curves and log-
rank (Mantel–Cox) survival analysis was used for IC model. All statistical
analyses were conducted using GraphPad Prism Version 6.0 (GraphPad
Software, La Jolla, CA, USA).
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