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ABSTRACT

Hypoxia-inducible factor 1 (HIF-1) is a transcriptional acti-
vator that mediates changes in gene expression in response to
changes in cellular oxygen concentrations. HIF-1 is a het-
erodimer consisting of an oxygen-regulated HIF-1« subunit and
a constitutively expressed HIF-183 subunit. In mice, complete
HIF-1« deficiency results in embryonic lethality at midgestation
because of cardiac and vascular malformations. Analyses of
animal and cell culture models as well as human tissue have
provided evidence that HIF-1 plays important roles in the patho-
physiology of preeclampsia, intrauterine growth retardation, hy-

In humans, complex cardiovascular, hematopoietic, and re-
spiratory systems develop to maintain oxygen homeostasis.
Heart disease, cancer, cerebrovascular disease, and chronic
obstructive lung disease are the most common causes of mor-
tality in the United States, accounting for two thirds of all
deaths annually. In these disorders, disruption of oxygen ho-
meostasis represents a major aspect of disease pathophysiol-
ogy. HIF-1 is a transcriptional activator that mediates changes
in gene expression in response to changes in oxygen concen-
tration. HIF-1 plays important roles in normal development,
physiologic responses to hypoxia, and the pathophysiology of
common human diseases.

MOLECULAR BIOLOGY

HIF-1 is a dimeric transcription factor composed of HIF-1a
and HIF-1p subunits (1, 2). Under nonhypoxic conditions the
HIF-1a subunit is subjected to ubiquitination and proteasomal
degradation (3). In response to hypoxia, ubiquitination and
degradation of HIF-1a are inhibited, resulting in rapid accu-
mulation of the protein (4). In addition, the activity of the
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poxia-mediated pulmonary hypertension, and cancer. HIF-1 pro-
motes neovascularization in response to myocardial or retinal
ischemia by activating transcription of the gene encoding vascu-
lar endothelial growth factor. HIF-1 may also mediate the pro-
tective response to cerebral ischemia known as late-phase
preconditioning. (Pediatr Res 49: 614—617, 2001)

Abbreviations:
HIF-1, hypoxia-inducible factor 1
VEGF, vascular endothelial growth factor

HIF-1a transactivation domains is induced by hypoxia (5, 6).
HIF-1a dimerizes with HIF-18, which is constitutively ex-
pressed, resulting in the formation of active HIF-1 protein that
binds to the core sequence 5'-RCGTG-3' present in target
genes, several dozen of which have been identified thus far
(Table 1). New target genes continue to be identified and it is
likely that the total number of HIF-1-regulated genes in the
human genome is an order of magnitude greater than what is
presently known.

DEVELOPMENTAL BIOLOGY AND PHYSIOLOGY

Analysis of knockout mice has demonstrated that HIF-1« is
required for embryonic development and survival. HIF-1a-
deficient mouse embryos arrest in their development by d 9 of
gestation (E9.0) and die by E10.5 with severe cardiovascular
and neural tube defects and massive cell death, especially in
the branchial and cephalic regions (7-9). Mice that are het-
erozygous for the knockout allele and thus partially HIF-1«
deficient develop normally. However, when these mice are
subjected to long-term hypoxia (10% O, for 3 wk), the devel-
opment of erythrocytosis and pulmonary vascular remodeling
is significantly impaired (10). The impaired development of
medial wall hypertrophy in small pulmonary arterioles, which
is the hallmark of hypoxia-induced pulmonary hypertension,
indicates that HIF-1« is essential for this process. These results
suggest that partial pharmacologic inhibition of HIF-1 activity
might provide a means to prevent pulmonary vascular remod-
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Table 1. HIF-1 target genes

Gene product References

Adenylate kinase 3 41
a,z-Adrenergic receptor 42
Adrenomedullin 43
Aldolase A 7, 9
Aldolase C 7
Ceruloplasmin 44
Endothelin-1 45
Enolase 1 7
Erythropoietin 46
Glucose transporter 1 7,9,41
Glucose transporter 3 7
Glyceraldehyde-3-phosphate dehydrogenase 7,9
Heme oxygenase-1 47
Hexokinase 1 7
Hexokinase 2 7
IGF-II 48
IGF binding protein 1 40
IGF binding protein 2 48
IGF binding protein 3 48
Lactate dehydrogenase A 7,9
Nitric oxide synthase 2 49,50
p21 11
p35srj 51
Phosphofructokinase L 7
Phosphoglycerate kinase 1 7,9,11
Plasminogen activator inhibitor 1 52
Prolyl-4-hydroxylase a(I) 53
Pyruvate kinase M 7
Transferrin 54
Transferrin receptor 55,56
Transforming growth factor 5 39
VEGF 7,9,11
VEGF receptor FLT-1 57

eling without causing untoward side effects in at-risk patients
with chronic obstructive lung disease.

MYOCARDIAL ISCHEMIA-INDUCED
VASCULARIZATION

HIF-1« is also essential for angiogenesis in ischemic tissue.
When HIF-1a-deficient embryonic stem cells are subjected to
hypoxia, expression of mRNA encoding VEGF is not induced
(7, 9, 11). In near-term fetal sheep, myocardial hypoxia-
ischemia results in the induction of HIF-la protein, VEGF
mRNA and protein, and increased myocardial vascularization
(12). The impaired angiogenic response to ischemia in older
animals is caused in part by decreased VEGF production as a
result of impaired HIF-1 DNA-binding activity (13—15). Pre-
clinical trials of HIF-1a gene therapy for ischemia indicate that
this strategy for therapeutic angiogenesis is at least as effective
as VEGF gene therapy (16).

RETINAL VASCULARIZATION AND ISCHEMIC
RETINOPATHY

Expression of HIF-1a protein and VEGF mRNA are spa-
tially and temporally correlated during normal retinal develop-
ment (17). These data are consistent with other studies indi-
cating that hypoxia is an essential stimulus for retinal
vascularization (18). In a mouse model of oxygen-induced
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ischemic retinopathy similar to retinopathy of prematurity,
1-wk-old (P7) mice are exposed to hyperoxia from P7 to P12,
which blocks VEGF expression in the retina (19). When the
mice are returned to normoxic conditions, retinal ischemia
develops, which induces VEGF expression. Analysis of
HIF-1a expression revealed a temporal and spatial correlation
with VEGF mRNA expression, both with regard to the hyper-
oxic repression and ischemic induction (17), indicating that
HIF-1-mediated VEGF expression may play a major role in the
development of retinopathy of prematurity and other ischemic
retinal disorders such as diabetic retinopathy. Retinal neovas-
cularization can be prevented by blocking VEGF (20), sug-
gesting that inhibition of HIF-1 activity may be of therapeutic
utility in these conditions.

CEREBRAL ISCHEMIA AND DELAYED
PRECONDITIONING

HIF-1 may also play a role in cerebral ischemia. Cerebral
infarction can be induced in P7 rat pups by permanent ligation
of the left common carotid artery and exposure to 8% O, for
3 h. Seven days later the pups are killed and analyzed, reveal-
ing an approximately 40% reduction in hemispheric weight
ipsilateral to the carotid occlusion. In contrast, P7 rats that are
subjected to 8% O, for 3 h and then 24 h later are subjected to
carotid occlusion and hypoxia are dramatically protected
against cerebral infarction (21), a phenomenon known as de-
layed (late-phase) preconditioning. The 3-h hypoxic precondi-
tioning exposure was shown to induce HIF-1a protein expres-
sion throughout the brain (22). Analysis of HIF-1a expression
in the brains of P7 rats subjected to carotid occlusion and
hypoxia for 3 h and then killed immediately revealed induction
of HIF-1a protein expression throughout the hemisphere con-
tralateral to the occlusion, whereas in the ipsilateral hemi-
sphere HIF-1a expression was decreased in the brain paren-
chyma and dramatically up-regulated in the cerebral
microvasculature (22).

HIF-1a protein expression, HIF-1 DNA-binding and tran-
scriptional activity, and expression of target genes can also be
induced by exposing cultured cells to cobalt chloride or iron
chelators such as desferrioxamine (1, 5, 23). A single injection
of cobalt chloride or desferrioxamine induced HIF-1a expres-
sion in the brain and protected against the development of
cerebral infarction after carotid occlusion and hypoxia (22).
The ability of these agents to induce HIF-1a expression was
correlated with their ability to induce protection (hypoxia >
CoCl, > desferrioxamine). The basis for this protective effect
is unknown. HIF-1 has been shown to induce the expression of
erythropoietin and VEGF (Table 1), each of which has been
shown to function as a neuronal survival factor (24, 25). In
addition, HIF-1 coordinately regulates the expression of genes
encoding at least 13 different glucose transporters and glyco-
lytic enzymes (7). After middle cerebral artery occlusion, there
is a spatial and temporal correlation between induction of
HIF-1ao mRNA and of mRNAs encoding aldolase A, glucose
transporter 1, lactate dehydrogenase A, phosphofructokinase L,
and pyruvate kinase M (Table 1) in the penumbra, which is the
viable tissue surrounding the infarction (26). The induction of
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glycolytic metabolism by HIF-1 may contribute to the protec-
tive effect of preconditioning with cobalt, desferrioxamine, or
hypoxia. Whether the net effect of HIF-1 expression in the
ischemic state is to protect against or promote infarction is
unclear, as cell-based studies suggest that HIF-1 mediates
hypoxia-induced apoptosis (27) via induction of p53 (11, 28,
29).

CANCER

In contrast to the potentially protective effect of HIF-1
expression in the context of cerebral and myocardial ischemia,
HIF-1 plays an important role in promoting tumor progression
(30). Mutations that inactivate tumor suppressor genes or
activate oncogenes have, as one of their consequences, up-
regulation of HIF-1 activity, either through an increase in
HIF-1a protein expression, HIF-1 transcriptional activity, or
both (Table 2). Increased HIF-1 activity results in increased
expression of target genes with important roles in tumor pro-
gression such as induction of tumor vascularization by VEGF
(the angiogenic switch) and metabolic adaptation to hypoxia
via increased glucose transporter and glycolytic enzyme activ-
ity (the Warburg effect). Immunohistochemical analysis of 40
human brain tumors revealed a significant correlation between
HIF-1a protein expression, tumor grade, and tumor vascular-
ization (31). HIF-1« is overexpressed in the majority of com-
mon human cancers, including breast, colon, lung, and prostate
carcinoma (32).

The relationship between HIF-1« and the tumor suppressor
p53 is of particular significance. Tumor cells subjected to
hypoxia undergo p53-mediated apoptosis, which represents a
powerful selection for cells that have sustained mutations that
result in p53 loss of function (33). In unstimulated cells p53 is
bound by MDM2, a ubiquitin-protein ligase that targets p53 for
degradation by the proteasome (34, 35). In response to hyp-
oxia, HIF-1a is induced and binds to p53, an interaction that
protects p53 from degradation (28). Instead, MDM2 targets
HIF-1a for degradation (36). Thus, two major consequences of
pS53 loss-of-function are the prevention of hypoxia-induced
apoptosis and increased expression of HIF-1«. Increased HIF-
I-mediated VEGF gene transcription results in increased vas-
cularization of p53-nonexpressing as opposed to p53-

Table 2. Alterations in human cancer that increase HIF-1 activity

Function References

Tumor suppressor loss-of-function

p53 32,36

PTEN 58,59

VHL 37,38
Oncogene gain-of-function

AKT 58,59

FRAP (mTOR) 58

PI-3-kinase 58, 59

RAF/MEK/ERK (MAPK) 60, 61

RAS 62

SRC 63
Autocrine growth factor stimulation

EGF 48, 58

FGF2 48

IGF-1/IGF-2/IGF-1R 48,64,65

SEMENZA

expressing tumors (36). The von Hippel-Lindau tumor
suppressor is also a ubiquitin-protein ligase that specifically
targets HIF-1a for degradation under nonhypoxic conditions
(37, 38). Von Hippel-Lindau loss-of-function in renal cell
carcinomas and cerebellar hemangioblastomas results in con-
stitutive overexpression of HIF-1«a protein and VEGF mRNA,
resulting in tumors that are among the most highly vascularized
human cancers (31, 32, 37, 38).

CONCLUSION

HIF-1 is a master regulator of oxygen homeostasis, which is
a fundamental requirement for survival. It orchestrates a mul-
titude of biologic processes starting in early embryonic devel-
opment and extending into adult life. Recent data suggest that
HIF-1 may play an important role in the pathophysiology of
preeclampsia (39) and intrauterine fetal growth retardation
(40). In diseases that represent the most common causes of
mortality in western societies (ischemic cardiovascular disease,
cancer, and chronic lung disease), there is growing evidence
suggesting that modulation of HIF-1 activity, using a pharma-
cologic or DNA-based approach, may have therapeutic effects.
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