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Electronic health record-based predictive models for acute
kidney injury screening in pediatric inpatients
Li Wang1,6, Tracy L. McGregor2,6, Deborah P. Jones2, Brian C. Bridges2, Geoffrey M. Fleming2, Jana Shirey-Rice3,
Michael F. McLemore4, Lixin Chen3, Asli Weitkamp5, Daniel W. Byrne1 and Sara L. Van Driest2

BACKGROUND: Acute kidney injury (AKI) is common in
pediatric inpatients and is associated with increased morbid-
ity, mortality, and length of stay. Its early identification can
reduce severity.
METHODS: To create and validate an electronic health record
(EHR)-based AKI screening tool, we generated temporally
distinct development and validation cohorts using retro-
spective data from our tertiary care children’s hospital,
including children aged 28 days through 21 years with
sufficient serum creatinine measurements to determine AKI
status. AKI was defined as 1.5-fold or 0.3 mg/dl increase in
serum creatinine. Age, medication exposures, platelet count,
red blood cell distribution width, serum phosphorus, serum
transaminases, hypotension (ICU only), and pH (ICU only) were
included in AKI risk prediction models.
RESULTS: For ICU patients, 791/1,332 (59%) of the develop-
ment cohort and 470/866 (54%) of the validation cohort had
AKI. In external validation, the ICU prediction model had a
c-statistic = 0.74 (95% confidence interval 0.71–0.77). For non-
ICU patients, 722/2,337 (31%) of the development cohort and
469/1,474 (32%) of the validation cohort had AKI, and the
prediction model had a c-statistic = 0.69 (95% confidence
interval 0.66–0.72).
CONCLUSIONS: AKI screening can be performed using EHR
data. The AKI screening tool can be incorporated into EHR
systems to identify high-risk patients without serum creatinine
data, enabling targeted laboratory testing, early AKI identifica-
tion, and modification of care.

Acute kidney injury (AKI) occurs in ~ 25% of children
admitted to intensive care units (ICUs) and 5% of those

admitted to non-ICU pediatric wards, although application of
different diagnostic criteria results in broad incidence
estimates (1–10). Among pediatric ICU patients, AKI is
associated with increased length of stay, and it demonstrates
odds ratios43 for mortality (1,2,8,9,11,12). Seminal efforts to

identify children with AKI through screening of at-risk
populations have reduced AKI severity, likely due to early
identification and modification of AKI risk factors (13,14).
Recently, the Acute Dialysis Quality Initiative Consensus
Conference identified AKI as a target for risk prediction and
recommended development of AKI alert systems that will
“continuously and automatically monitor and assess a
patient’s risk for developing AKI” (15,16).
The primary goal of this study was to develop and validate

AKI risk prediction models in pediatric ICU and non-ICU
patients that use data from electronic health records (EHR) to
identify patients in whom laboratory testing, namely mea-
surement of serum creatinine to assess renal function, is
indicated. Prediction models that can be calculated in real
time in the EHR and those that do not rely upon prior serum
creatinine values will enable AKI risk prediction across a
broad pediatric population, including those not in well-
described high-risk populations and for whom no serum
creatinine data are available.

METHODS
Population and EHR Data Extraction
This study was reviewed and approved by the Vanderbilt institu-
tional review board who granted a waiver of the informed consent
process. Inclusion criteria for the development cohort were age
28 days through 21 years, measurement of baseline and an additional
inpatient serum creatinine as defined below, and admission between
1 January 2011 and 31 December 2012. Exclusion criteria were
Neonatal ICU admission (based on location codes) and chronic
kidney disease (based on ICD-9 and CPT codes, Supplementary
Table S1 online), both of which can be applied prospectively in EHR
systems (17). In addition, those not meeting the AKI definition but
with persistent serum creatinine measurements above the normal
range for age and sex were excluded, as it is unclear whether they
represent AKI without a measured baseline or no-AKI controls.
Admissions were assigned to the ICU cohort if the patient received
ICU care at any time during the hospitalization; thus, a patient cared
for in the ICU who subsequently was transferred to the floor was
included in the ICU cohort for both the development and validation
cohorts. Validation cohorts used admissions from 1 January 2013 to
31 December 2013 with identical inclusion and exclusion criteria.
All study data, including demographic, laboratory, medication
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administration, and administrative data, were extracted from EHR
data sources using Vanderbilt’s research data warehouse and were
managed using REDCap (Research Electronic Data Capture) (18,19).
Medications were categorized as high-risk nephrotoxins if they are
highly associated with renal injury (e.g., aminoglycosides, tacroli-
mus), moderate-risk nephrotoxins if they are associated with renal
injury in some circumstances (e.g., loop diuretics, enalapril), or non-
nephrotoxins (Supplementary Table S2). For each individual, the
number of unique medications in each category was tallied, and three
medication-related continuous variables were analyzed (high-risk
nephrotoxins, moderate-risk nephrotoxins, and total medications).
Peri-admission data included all the data available from 24 h before
the inpatient admission order through 48 h after admission. For
model development, covariate data were ascertained from 72 h before
the serum creatinine measurement that defined AKI status. Further
details are available in the Supplementary Materials.

Outcome Definition
Although serum creatinine is not a covariate in the risk prediction
models, the AKI outcome is defined by change in creatinine
(Supplementary Figure S1). Baseline creatinine was defined as the
lowest measurement obtained 90 days before through the first week
of admission. Inpatient creatinine was defined as any measurement
obtained 24 h prior to the admission order through discharge. AKI
was defined solely using the creatinine criteria, as reliable urine
output data were not available for all pediatric inpatients (15), and
accurate height measurements were not consistently available for
estimated glomerular filtration rate. Patients were classified as having
AKI, using the Kidney Disease Improving Global Outcomes
(KDIGO) serum creatinine criteria, if any inpatient creatinine
measurement was ≥ 0.3 mg/dl above the baseline or ≥ 1.5-fold more
than the baseline, without the restriction that the increase in serum
creatinine occurred within 48 h or 7 days, respectively, as defined in
the guidelines (7). Those not meeting these criteria were classified as
no-AKI controls.

Covariate Selection and Statistical Analysis
Predictor variables were selected from candidate variables to balance
the following goals: (i) real-time availability; (ii) correlation to AKI;
(iii) limited collinearity; (iv) either low missingness or ability to
transform to a categorical variable. For ICU patients, predictor
variables were age at admission, high-risk nephrotoxins, moderate-
risk nephrotoxins, total medications, minimum platelet count,
median red cell distribution width (RDW), phosphorus, serum
transaminases, minimum pH, and hypotension. The same predictors
were used for non-ICU patients, excluding pH and hypotension.
Further details on the candidate and final variables are available in
the Supplementary Materials.
The ICU and non-ICU cohorts were analyzed in parallel,

generating two distinct AKI prediction models. Descriptive statistics
were presented as median (interquartile range (IQR)) or frequency
(%). Continuous variables were compared using Wilcoxon rank-sum
test and categorical variables using Pearson chi-square test. We
analyzed the association between AKI and the a priori selected
covariates using multivariable logistic regression for ICU and non-
ICU admissions. We internally validated and calibrated the models
using bootstrapping (20). External validation of each model was
performed by evaluating model performance in the temporally
distinct validation cohorts. All analyses were performed with R,
version 3.3.0 (R Development Core Team, Vienna, Austria). The
level of statistical significance was set at Po0.05. Further details are
available in the Supplementary Methods.

RESULTS
Model Development and Internal Validation for ICU Patients
The ICU development cohort included 1,332 admissions
(Figure 1a) of patients with care in the ICU during any
portion of the hospitalization and creatinine measurements
available for outcome determination. Median age was 4.4
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Figure 1. Identification of cases and controls for development and validation cohorts. (a) Patient encounters including intensive care (ICU patients)
and without intensive care (non-ICU patients) identified for inclusion in the development cohort. (b) Patient encounters including intensive care (ICU
patients) and without intensive care (non-ICU patients) identified for inclusion in the validation cohort. AKI, acute kidney injury; CKD, chronic kidney
disease; ICU, intensive care unit; SCr, serum creatinine.
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(IQR 0.9–12.0) years, and the majority of patients were male
(N= 724, 54%) and White (N= 1,025, 77%, Table 1). In this
critically ill cohort, 791 patients (59%, Figure 1a) met the
criteria for AKI, defined as a serum creatinine increase of
≥ 0.3 mg/dl or an increase of ≥ 1.5-fold from baseline (7). Of
the 791 patients with AKI, 351 (44%) had stage 1 AKI, 299
(38%) had stage 2 AKI, and 141 patients (18%) had stage 3
AKI. The evaluated serum creatinine was obtained 0.3 (IQR
0.0–0.9) days after admission order for AKI cases and 0.9
(IQR 0.4–1.5) days for no-AKI controls (Po0.001). In the
72 h prior to the evaluated creatinine, those with AKI had
lower minimum platelet counts, higher median RDW, lower
minimum pH, and younger ages (Table 2). Those with AKI
also had fewer total medication exposures and fewer high-risk
nephrotoxic medication exposures, but more moderate-risk
nephrotoxic medication exposures during that time.
The odds ratios and 95% confidence intervals for the

selected predictors for AKI are shown in Figure 2a. Figure 3a
shows the calibration plot from the development cohort,
which demonstrates minimal overfitting and good calibration.
Additional details including variable selection, the prediction
rule as a linear predictor, and model performance and
discrimination metrics from internal validation are given in
the Supplementary Results, Supplementary Tables S3–S5,
Supplementary Figure S2 and Supplementary File 1.

Model External Validation for ICU Patients
The ICU external validation cohort included 866 patient
admissions during the subsequent year, and 470 (54%)
patients met the criteria for AKI (Figure 1b). This cohort
was similar at admission to the development cohort with
respect to demographics and AKI risk factors (Table 1). For
external validation, the predictive rule derived from the

development cohort was applied to the validation cohort to
calculate predicted probabilities, which were then validated
against true patient outcomes by fitting a logistic model. The
calibration plot for the external validation data (Figure 3b)
indicated a good model fit.
The frequency distributions of model-calculated AKI risk

among ICU admissions with and without AKI in the
validation cohort are shown in Figure 4a as an indication
of model discrimination. Note the overlapping distributions,
with those in the ICU who developed AKI with a tendency
toward higher predicted probability scores. The receiver-
operating characteristic (ROC) curve for the ICU model in the
validation cohort is shown in Figure 4b; the c-statistic, which
measures the area under the ROC curve, was 0.74 (95%
confidence interval 0.71–0.77). The model performance varied
by severity of AKI, with a c-statistic of 0.72 (0.68–0.76) for
stage 1 AKI, and increased to 0.76 (0.72–0.8) for stage 2 or 3
AKI. Additional details of the external validation are included
in the Supplementary Results, Supplementary Tables S5
and S6.

Model Development and Internal Validation for Non-ICU
Population
The non-ICU development cohort included 2,337 admissions
with creatinine measurements available for outcome determi-
nation, of which 722 (31%) patients met AKI criteria
(Figure 1). Of the 722 patients with AKI, 443 (61%) had
stage 1 AKI, 199 (28%) had stage 2 AKI, and 80 patients
(11%) had stage 3 AKI. Median age was 8.9 (IQR 2.6–14.8)
years, and the majority of patients were male (N= 1,264, 54%)
and White (N= 1,804, 77%, Table 1). The evaluated serum
creatinine was obtained 0.0 (IQR − 0.1 to 0.3) days after
admission order for AKI cases and 0.6 (0.1–1.6) days for

Table 1. Patient demographic and predictive model variables 24 h prior to and 48 h after admission

ICU Non-ICU

Development (1,332) Validation (866) Development (2,337) Validation (1,474)

Age (years)a 4.4 (0.9–12.0) 5.2 (0.9–12.5) 8.9 (2.6–14.8) 9.7 (3.0–14.6)

Maleb 724 (54) 495 (57) 1,264 (54) 750 (51)

Raceb

White 1,025 (77) 667 (77) 1,804 (77) 1,115 (76)

Black 205 (15) 130 (15) 391 (17) 249 (17)

Other/unknownc 102 (8) 69 (8) 142 (6) 110 (7)

Hispanic/Latino ethnicityb 109 (8) 65 (8) 163 (7) 122 (8)

Number of inpatient serum creatinine measurementsb 4 (2–7) 4 (2–8) 2 (1–3) 2 (1–3)

Baseline serum creatinine (mg/dl)a 0.29 (0.21–0.46) 0.35 (0.24–0.49) 0.37 (0.24–0.54) 0.41 (0.28–0.56)

Peak serum creatinine (mg/dl)a 0.51 (0.37–0.77) 0.55 (0.42–0.77) 0.50 (0.35–0.70) 0.56 (0.41–0.71)

Median white blood cell count (×103/μl)a 11.0 (7.8–15.2) 10.1 (7.2–14.0) 9.2 (6.1–13.3) 9.3 (5.9–13.1)

Minimum hematocrit (%)a 30 (26–36) 34 (29–39) 33 (29–38) 36 (29–41)

ICU, intensive care unit.
aMedian (interquartile range).
bNumber (%).
cOther includes Asian, American Indian/Alaska Native, Native Hawaiian or Other Pacific Islander, and Unknown.

EHR-based screening for AKI in children | Articles

Copyright © 2017 International Pediatric Research Foundation, Inc. Volume 82 | Number 3 | September 2017 Pediatric RESEARCH 467



no-AKI controls (Po0.001). Similar to the ICU cohort, non-
ICU patients with AKI were younger, had lower minimum
platelet counts, and higher median RDW than those who did
not develop AKI. Non-ICU patients with AKI had fewer total,
high-risk, and moderate-risk nephrotoxic medications in the
72 h preceding their evaluated creatinine measurements as
compared with no-AKI controls (Table 2).
The odds ratios and 95% confidence intervals for the

selected AKI predictors are shown in Figure 2b. The internal
calibration plot is shown in Figure 3c, which demonstrated
minimal overfitting and good calibration. Additional results
from the internal validation are presented in Supplementary

Results, Supplementary Tables S3–S5, Supplementary
Figure S2 and Supplementary File 1.

Model External Validation for Non-ICU Population
The non-ICU validation cohort included 1,474 admissions
during the subsequent year, of which 469 (32%) patients met
the criteria for AKI (Figure 1b). This cohort was similar at
admission to the development cohort (Table 1). The
calibration plot for the external validation data (Figure 3d)
again indicated good model fit. The frequency distributions of
model-calculated AKI risk among those with and without
AKI in the non-ICU validation cohort are shown in

Table 2. Serum creatinine values and predictive model variables in development cohort in those with and without AKI

ICU Non-ICU

Non-missing
(1,332)

No AKI (541) AKI (791) P value Non-missing
(2,337)

No AKI (1,615) AKI (722) P value

Baseline serum creatinine
(mg/dl)a,b

1,332 0.36 (0.26–0.54) 0.26 (0.19–0.41) o0.001 2,337 0.42 (0.29–0.58) 0.26 (0.18–0.41) o0.001

Peak serum creatinine
(mg/dl)a,b

1,332 0.45 (0.31–0.63) 0.56 (0.42–0.91) o0.001 2,337 0.49 (0.34–0.67) 0.53 (0.37–0.77) o0.001

Age (years)a 1,332 6.5 (1.4–13.6) 2.6 (0.6–10.5) o0.001 2,337 10.6 (3.3–15.3) 5.3 (2.0–12.4) o0.001

High-risk nephrotoxinsc

0 1,332 428 (79) 673 (85) 0.02 2,337 1,195 (74) 634 (88) o0.001

1 91 (17) 96 (12) 311 (19) 61 (8)

≥ 2 22 (4) 22 (3) 109 (7) 27 (4)

Moderate-risk nephrotoxinsc

0 1,332 452 (84) 557 (70) o0.001 2,337 1,453 (90) 671 (93) 0.01

1 63 (12) 151 (19) 136 (8) 36 (5)

≥ 2 26 (5) 83 (10) 26 (2) 15 (2)

Total medicationsa 1,332 4 (1–7) 1 (0–9) o0.001 2,337 1 (0–4) 0 (0–0) o0.001

Minimum platelet count
(×103/μl)a

737 252 (184–330) 161 (100–280) o0.001 948 267 (198–350) 234 (141–351) 0.003

Median red cell
distribution width (%)a

677 13.4 (12.8–14.2) 13.8 (13.0–14.7) o0.001 953 13.3 (12.7–14.7) 14.5 (13.0–16.3) o0.001

Phosphorusc

None checked 1,332 485 (90) 745 (94) o0.001 2,337 1,451 (90) 666 (92) 0.04

Normal 46 (9) 26 (3) 122 (8) 34 (5)

High value 10 (2) 20 (3) 42 (3) 22 (3)

Transaminasesc

None checked 1,332 408 (75) 717 (91) o0.001 2,337 1,191 (74) 629 (87) o0.001

Normal 79 (15) 23 (3) 225 (14) 41 (6)

High value 54 (10) 51 (6) 199 (12) 52 (7)

Minimum pHa 962 7.30 (7.24–7.36) 7.25 (7.15–7.30) o0.001 — — — —

Hypotensionc 1,332 132 (24) 241 (30) 0.02 — — — —

AKI, acute kidney injury; ICU, intensive care unit.
aMedian (interquartile range), P value from Wilcoxon rank-sum test.
bNote that neither baseline nor peak serum creatinine is included as covariates in the predictive model.
cNumber (%), P value from Pearson chi-square test.

Articles | Wang et al.

468 Pediatric RESEARCH Volume 82 | Number 3 | September 2017 Copyright © 2017 International Pediatric Research Foundation, Inc.



Figure 4c. The ROC for the non-ICU model in the validation
cohort is shown in Figure 4d; the c-statistic was 0.69 (95%
confidence interval 0.66–0.72). Again, the model performance
varied by disease severity, with a c-statistic for patients in the
validation cohort for those with stage 1 AKI of 0.66 (0.63–
0.7), and 0.74 (0.7–0.77) for those with more severe stage 2 or
3 AKI. Additional results from external validation are
included in the Supplementary Results, Supplementary
Tables S5 and S6.

DISCUSSION
We present the development of accurate and reliable risk
prediction models that can be used to screen for pediatric AKI
in ICU and non-ICU patients based on variables readily
available in the EHR. These models will be incorporated into
the EHR as part of a randomized trial to test targeted AKI
surveillance, a strategy that has been demonstrated to reduce
AKI severity in other settings (13,14). Given the frequency of
AKI in children and the associated increases in length of stay,
morbidity, and mortality, this work has the potential to save
healthcare dollars and improve clinical outcomes for children.
Furthermore, this approach demonstrates a strategy for

utilizing EHR data to generate clinically implementable risk
prediction rules that can be employed for alternative clinical
outcomes.
The goal of this study was to build predictive models for

pediatric AKI. Model covariates are only required to be
informative in the model, and are not required to indepen-
dently predict AKI or have a role in the pathogenesis of the
outcome. Each covariate in the model was selected from an a
priori set of candidate covariates, and, for many, the
association and odds ratios were as expected. Lower platelet
count, lower pH, higher RDW, and hypotension are known
risk factors for AKI (1,4,6,21,22). One prior study found that
younger patients experienced more AKI (6), whereas other
studies have indicated higher risk in older patients; (1,4)
associations of young age to AKI are potentially confounded
by the low baseline creatinine in the youngest pediatric
patients, leading to AKI diagnosis via 1.5-fold creatinine
increase without clinically meaningful reduction in renal
function. Other results were unexpected, such as the stronger
association of moderate-risk nephrotoxins than high-risk
nephrotoxins to AKI, which may be due to clinicians avoiding
the known nephrotoxic medications in children with

Age at admission
15 years vs. 3 years

High-risk nephrotoxins
Increase per 1 additional

Moderate-risk nephrotoxins
Increase per 1 additional

Total medications
Increase per 1 additional

Minimum platelet count
278×103/µl vs. 206×103/µl

Median RDW
13.5% vs. 13.2%

Phosphorus
None checked:Normal

Phosphorus
High value:Normal

Transaminases
None checked:Normal

Transaminases
High value:Normal

Minimum pH
7.3 vs. 7.2

Hypotension
Present vs. absent

Covariate and
comparator groups

0.4 2 51 10

0.56 (0.42−0.72)

1.11 (0.84−1.45)

2.19 (1.69−2.84)

0.89 (0.85−0.93)

0.79 (0.71−0.88)

1.05 (0.98−1.13)

1.89 (1.04−3.41)

5.52 (2.02−15.10)

5.38 (3.13−9.26)

3.11 (1.60−6.04)

0.68 (0.60−0.76)

1.34 (0.95−1.87)

Odds ratio 

Odds ratio
(95% CI)

a
ICU

0.4 2 51 10

0.56 (0.47−0.68)

0.88 (0.69−1.12)

1.30 (1.01−1.68)

0.89 (0.85−0.94)

0.95 (0.84−1.07)

1.15 (1.08−1.24)

1.02 (0.66−1.57)

2.32 (1.17−4.61)

2.50 (1.71−3.65)

1.24 (0.77−1.99)

Odds ratio

Odds Ratio
(95% CI)

b
Non−ICU

Figure 2. Adjusted odds ratios for individual factors included in the acute kidney injury risk prediction for ICU (a) and non-ICU (b) patients. Odds
ratios depicted are for age (15 vs. 3 years at admission), increase in one high-risk nephrotoxin, increase in one moderate-risk nephrotoxin, additional
one total medication, minimum platelet count (278× 103/μl vs. 206 × 103/μl), median RDW (13.5% vs. 13.2%), highest phosphorus (none checked vs.
normal and one or more high value vs. all normal), transaminases (none checked vs. normal and one or more high value vs. all normal), minimum
pH (7.3 vs. 7.2, ICU only), and presence vs. absence of hypotension (ICU only). Point estimates and 95% confidence intervals for each odds ratio are
shown to the right of each plot. CI, confidence interval; ICU, intensive care unit; RDW, red cell distribution width.
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suspected renal insufficiency. Fewer high-risk nephrotoxins
and total medications may result from the very early
presentation of many cases of AKI (e.g., on admission) prior
to medication administration and the earlier measurement of
creatinine in AKI cases vs. no-AKI controls; however, ICU
patients with AKI had increased rate of exposure to moderate-
risk nephrotoxins, indicating that we are capturing medica-
tion exposures. We also found that for the categorical
variables (phosphorus and transaminases), unchecked or
missing values were associated with an increased risk of
AKI vs. normal/low values. This indicates that AKI was
overrepresented in patients where these laboratory measure-
ments were not performed as part of clinical care, relative to
those with measured values within normal limits. This may
indicate that patients with normal values are at lower risk for
AKI due to more benign presentation of disease. Patients in
whom these laboratory measurements are not routinely
performed may be a group with relatively high incidence of

AKI. However, these statistical correlations do not imply
causation, and our study was not designed to identify
independent risk factors or etiologies for pediatric AKI.
Importantly, changes in clinical practice (e.g., a sharp increase
in testing of transaminases or phosphorus) would require
recalibration of the model, as calculated (but not true) AKI
risk would be affected. A demonstration calculator incorpor-
ating model covariates is available (Supplementary File 2)
and can be used to show the relative impact of changes in
each predictor.
Although the AKI outcome is defined by change in

creatinine, we intentionally designed these risk prediction
models for AKI to perform well prior to the ascertainment of
creatinine and associated results such as blood urea nitrogen,
potassium, and calcium. Notably, a risk prediction model for
early AKI in a pediatric ICU including blood urea nitrogen,
pH, platelet count, total bilirubin, age, post-operative status,
and pre-admission cardiac arrest had a c-statistic of 0.76–0.86
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Figure 3. Calibration curves for internal and external validation of acute kidney injury (AKI) models, with predicted probability based on the AKI
model on the X axis and actual observed probability on the Y axis. (a) Internal calibration curve for intensive care unit (ICU) patients, generated
via bootstrapping. (b) External calibration curve for ICU patients. (c) Internal calibration curve for non-ICU patients, generated via bootstrapping.
(d) External calibration curve for non-ICU patients.
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in validation sets, similar to the performance of our models
(21). At our institution, pre-admission cardiac arrest and
post-operative status are not available for incorporation into
real-time prediction in our EHR, so these were not included.
Furthermore, we developed a parallel predictive model for
non-critically ill patients, an important advancement as these
patients have less frequent laboratory monitoring and less
rigorous assessment of urine output making early clinical
detection of AKI more difficult.
Given the goal of early AKI detection, stage 1 AKI criteria

was used, defined using the KDIGO creatinine criteria, the
current clinical standard (23). The KDIGO criteria also
include time windows for the increase in creatinine (i.e.,
increase by 0.3 mg/dl or more within 48 h or 1.5-fold increase
in 7 days), which were not enforced in our cohort, as this
restriction could introduce significant bias as only those with

suspected renal injury would have frequent monitoring. In all,
187 of the 939 patients with AKI in the validation cohort had
an increase of 0.3 mg/dl within 48 h, and 617 had 1.5-fold
increase of creatinine within 7 days of the baseline, indicating
that a majority of the cohort satisfied these criteria; however,
the inclusion of patients who did not meet the time window
requirements may impact the validity of our models in
detecting AKI meeting formal KDIGO criteria.
Our development cohorts included data from the most

recent admission for every patient hospitalized over a 2-year
period in our tertiary referral children’s hospital pediatric ICU
and non-ICU with baseline and an additional inpatient
creatinine measurement. Since creatinine is measured as part
of a panel obtained for a wide variety of reasons and not only
because of suspicion of AKI, this cohort remains adequate to
represent the patient population as a whole. However, patients
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Figure 4. Discrimination of acute kidney injury (AKI) models in the validation cohort. (a) Frequency distribution of calculated probabilities of AKI in
the intensive care unit (ICU) validation cohort for those with (top panel) and without (bottom panel) AKI. (b) Receiver-operating characteristic (ROC)
curve for the ICU validation cohort, with risk prediction model sensitivity on the Y axis and 1-specificity on the X axis. The area under the curve
(AUC), or c-statistic, indicating model discrimination, is 0.74 (95% confidence interval 0.71–0.77). (c) Frequency distribution of calculated probabilities
of AKI in the non-ICU validation cohort for those with (top panel) and without (bottom panel) AKI. (d) ROC curve for the non-ICU validation cohort,
with risk prediction model sensitivity on the Y axis and 1-specificity on the X axis. The AUC (c-statistic) is 0.69 (95% confidence interval 0.66–0.72).
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with no creatinine measurements likely have systematically
lower AKI risk, resulting in overestimation of AKI risk. Given
our goal of using the EHR-based models as a screening tool to
identify those at risk for follow-up testing via serum creatinine
measurement, risk overestimation is preferred. However, the
generalizability of our model cannot be proven without serial
prospective assessment of serum creatinine in a representative
cohort of pediatric patients.
The next step in translating this work is clinical implementa-

tion of the model to determine the impact of real-time AKI risk
prediction. Previous prediction strategies have demonstrated
benefits of early AKI detection. EHR-based screening for
nephrotoxic medication exposures in pediatric inpatients at a
tertiary pediatric hospital resulted in a 42% reduction in AKI
intensity (13). In further work targeting cystic fibrosis patients
exposed to aminoglycosides, daily serum creatinine measure-
ment was associated with shorter aminoglycoside courses, fewer
concomitant aminoglycosides, and earlier detection of AKI (14).
In a randomized trial in adults, text paging providers and
pharmacists, if their patient met AKI criteria, failed to
demonstrate efficacy in improving the clinical outcomes of
maximum change in serum creatinine, dialysis use, or mortality
(24). These limited data indicate that early detection of AKI
through targeted screening, not just clinician notification of AKI
status, may be required to improve patient outcomes. Our risk
prediction model can enable such early detection across all
admitted pediatric patients, including those who are not exposed
to nephrotoxic drugs or do not belong to a specific high-risk
subset of patients. Given the early diagnosis of AKI in our cohort
(often on admission), the risk prediction models may be most
useful in identifying at-risk patients very early in their hospital
course, providing the opportunity for early detection and
intervention.
Our development of risk prediction models for incorpora-

tion into EHRs has several limitations. In building predictive
models, covariates are not required to be independent or
causative, so any associations with the outcome do not inform
mechanistic insights into pediatric AKI. As discussed above,
our defined outcome of AKI is limited to changes in
creatinine measurement. This restricts our retrospective
cohort to those patients with sufficient creatinine data
available for assigning AKI status. Owing to the sparse
availability of baseline creatinine measurement preceding the
inpatient admission for pediatric patients, the KDIGO time
windows for change in creatinine were not enforced, and the
baseline measurement may have been measured after the AKI
event (indicating return to normal renal function). This
strategy was employed to reduce the potential bias from
including only those individuals with serum creatinine
measurement available prior to any injury. Furthermore, we
did not differentiate between community-acquired and
hospital-acquired AKI; indeed, many of our AKI cases were
detected upon admission, and it is difficult to assess risk
factors prior to admission. These issues may affect the validity
of the models and the ability to accurately predict AKI that
develops later in the hospital admission. Future work that

includes more sensitive or specific biomarkers for renal injury,
assayed across a broad spectrum of patients, may improve the
precision and accuracy of AKI risk prediction modeling, as
will sub-phenotyping the outcome (e.g., AKI on admission vs.
early AKI vs. late AKI). We pre-specified that the patients
admitted to the ICU at any time during their admission would
be analyzed in the ICU cohort, but the AKI risk for patients
subsequently transferred out of critical care units may be
better predicted using the non-ICU model after transfer;
additional data collection will enable testing of this hypoth-
esis. Our external validation was performed using a distinct
set of admissions (temporal validation), but did not assess
model performance in another pediatric institution (geo-
graphic validation). Implementation in a different population
should be preceded by validation and calibration in the target
population. Finally, performance metrics indicate that while
our model is stable across internal and external validation,
model discrimination is modest. Cut points with high
sensitivity for AKI have low specificity, especially for the
non-ICU model (e.g., at 30% AKI risk, the non-ICU model is
74% sensitive but only 58% specific, Supplementary Table
S6). To be an effective screening tool for AKI, high sensitivity
is required, and low specificity is acceptable as a low-risk
follow-up test is available. In this scenario, modest AKI risk
prediction can trigger advice to check creatinine, the current
diagnostic test for AKI.

CONCLUSIONS
Through analysis of admissions to this pediatric hospital, we
generated and validated statistical predictive models for AKI,
using the data routinely collected and available from EHRs.
These risk prediction models can be incorporated into clinical
practice from within EHRs as a screening tool to alert
providers of increased risk for AKI among children in ICU
and non-ICU cohorts, especially at the time of admission. Our
approach demonstrates the use of EHR to promote a learning
healthcare system by using EHR data in generating clinically
implementable risk prediction.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper at
http://www.nature.com/pr
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