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From small-scale forest structure to Amazon-wide
carbon estimates
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Tropical forests play an important role in the global carbon cycle. High-resolution remote
sensing techniques, e.g., spaceborne lidar, can measure complex tropical forest structures,
but it remains a challenge how to interpret such information for the assessment of forest
biomass and productivity. Here, we develop an approach to estimate basal area, aboveground
biomass and productivity within Amazonia by matching 770,000 GLAS lidar (ICESat) profiles
with forest simulations considering spatial heterogeneous environmental and ecological
conditions. This allows for deriving frequency distributions of key forest attributes for the
entire Amazon. This detailed interpretation of remote sensing data improves estimates of
forest attributes by 20-43% as compared to (conventional) estimates using mean canopy
height. The inclusion of forest modeling has a high potential to close a missing link between
remote sensing measurements and the 3D structure of forests, and may thereby improve
continent-wide estimates of biomass and productivity.
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ropical forests store a large amount of carbon!. Under-

standing and predicting the spatial variability of tropical

forest biomass is hence important for the assessment of the
global carbon cycle?. The consideration of three-dimensional
structural information of forests has proven to be essential for
carbon stock estimates to reflect successional states and differ-
ences in forest structure such as tree height3->.

The lidar system Geoscience Laser Altimeter System (GLAS)
onboard the Ice, Cloud and land Elevation Satellite (ICESat) has
contributed to identifying variability of forest height metrics in
space to derive several biomass maps of tropical forests®8 and
complement traditional remote sensing techniques (passive
optical instruments)®10 that monitor land-cover changes! 12 and
productivity of vegetation!3-16,

However, assessing forest biomass with lidar confronts several
challenges. These arise, among others, from the fact that the
interpretation of lidar remote sensing measurements is based on
statistical relations (e.g., height to biomass) that are derived from
field inventory data. Although nowadays valuable inventory data
exist (e.g., ForestPlots!7), those inventory data are rarely available
at the same spatial extent and at the location of the lidar mea-
surements, in particular, in large regions such as the Amazon
rainforest. Second, field inventories often do not follow a sys-
tematic spatial sampling strategy to reveal landscape patterns!S,
Third, biomass maps derived from remote sensing mainly build
on a general pan-topical relation between AGB and a lidar height
metric although it is known that these can vary for different
regions, e.g., due to variations in tree wood densities!®-21.

The combination of lidar measurements and forest modeling
provides new possibilities?223. It allows for including canopy
height information from remote sensing, on the one hand, e.g.%4,
and for considering regional differences in ecological character-
istics (e.g., mortality, turn-over, wood density) as observed in the
field, e.g.2%, on the other hand. In a recent study?®, a forest model
has been applied under spatially variable environmental condi-
tions on the entire Amazon rainforest in order to link simulated
forests stands with a canopy height map?’ derived from GLAS
lidar. The integration of forest modeling was a first step toward
bridging a gap across different spatial scales of field inventories
and lidar remote sensing. Nevertheless, it also implies uncer-
tainties as one canopy height may be associated with different
forest stands, including different species compositions and bio-
mass values. Hence, this previous study considers upper canopy
information but ignores sub-canopy structures’®. Empirical
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remote-sensing studies have shown that various metrics derived
from waveforms are needed to describe the structure of a forest?
and, therefore, should be assimilated into ecosystem models4.

Owing to increasing computational capacities, we are now able
to explore the integration of entire canopy profiles within a forest
model at large spatial scales, such as the Amazon rainforest. In
this study, we use canopy profiles recorded by GLAS lidar3? in
order to assess the biomass distribution of the Amazon. The
Amazon-wide version?® of the forest model FORMIND31:32 jg
used to simulate forest dynamics at the scale of a GLAS lidar shot
(a circular area of 65 m diameter) from which we reconstruct full
lidar profiles. We match ~770,000 lidar profiles in the Amazon
(GLAS) with simulated profiles. For every lidar shot, we then
derive probability distributions of potential forest attributes (here:
aboveground biomass (AGB), stem volume (SV), basal area (BA),
gross primary productivity (GPP), and aboveground woody
productivity (AWP)). The approach is used to address the two
primary questions: (1) How much information about forests
(AGB, SV, BA, GPP, AWP) can be derived from full lidar pro-
files? (2) Can we reduce the uncertainties in estimates of forest
attributes when using entire profiles as compared with using
solely mean canopy height (MCH)? Among all forest attributes
tested, we find the highest uncertainties for AGB estimations. The
uncertainties decrease with increasing forest height. We further
show that we can extract more information from entire profiles
than just a single lidar metric.

Results

The uncertainty index &. Each GLAS lidar profile in the Amazon
rainforest was compared with profiles derived from simulated
forest succession to filter out the potential successional states of
forests (Fig. 1). The best matches were then taken to estimate
forest attributes, e.g., AGB. It is hence possible to derive a
probability distribution for biomass at each ICESat shot (Fig. 2).
The analysis shows that for some locations the best matches
reveal a clear successional state of the forest for which simulated
biomass values differ only slightly (Fig. 2b). Other locations, on
the other hand, show ambiguities. Although matched simulated
profiles look similar, simulated forest biomass values differ
(Fig. 2a). We used the coefficient of variation of the probability
distribution of forest attributes to define an uncertainty index ¢
(Fig. 1; (3)). A regional analysis (Fig. 2c, d) reveals that the
uncertainty index of AGB esgp is highest along the Arc of
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Fig. 1 Workflow of our approach at one location in the Amazon. (1) The entire GLAS lidar profile derived from ICESat lidar is matched with simulated
profiles (100 simulated lidar profiles at a 5-year interval over 2500 years of forest succession, 50,000 in total) by calculating their relative overlap. (2) We
select the 50 best matches (relative overlap >70%) between the GLAS profile and the simuletd profiles. (3) We then derive simulated forest attributes
(e.g., biomass, basal area) for these 50 best matches. The derived probability distribution is used to quantify the uncertainty indices &
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Fig. 2 Two example locations where GLAS lidar profiles were matched with forest simulations. a, b left GLAS lidar profile (red) and best matching
simulated profiles (blue for best relative overlap, light blue for the other 49 simulated profiles with highest overlap). The relative overlap of all profiles is
>90%. a, b right Aboveground biomass (AGB) probability distribution for 50 simulated profiles and its coefficient of variation (CV). The CV is further
denoted as eagg, an uncertainty index that describes the structure- and species-induced uncertainty of AGB. ¢ Mean AGB (gray triangles indicate the
locations of the two example profiles.) and d eacg-derived for every GLAS shot. Source data are provided as a Source Data file
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Fig. 3 Frequency distributions of forest attributes and uncertainties. (left) Relative frequency distributions of a aboveground biomass (AGB), ¢ basal area
BA, and e aboveground wood productivity (AWP) for the Amazon based on 771,521 full lidar profiles. (right) Frequency distributions of the uncertainties
for b biomass eagp, d basal area ega, and f aboveground wood productivity eawp (see Supplementary Fig. 1 for esy, egpp). Source data are provided as

a Source Data file

Deforestation in the south-east, in central Amazon along the
Amazon river and in the north-west. Ambiguousness of profiles
has less influence on biomass values on the Guyana Shield and in

the south-west toward the Andes.

Amazon-wide forest attributes. Our approach allows for deriv-
ing frequency distributions for AGB, BA, and AWP of the entire
Amazon (Fig. 3, Supplementary Fig. 1 for SV and GPP). AGB
values reach up to 520 t ha—! with a mean value of 120 tha—!, BA
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Fig. 4 Mean uncertainties ¢ for different forest attributes. Shown are & for
aboveground biomass (AGB), stem volume (SV), basal area (BA),
aboveground wood productivity (AWP), and gross primary productivity
(GPP) taking mean canopy height (MCH) as a proxy for forest attributes
(MCH-derived) vs. the entire lidar profile (profile-derived). Hatched

bars show the mean uncertainty index for lidar profiles with a MCH
>15m. Source data are provided as a Source Data file

up to 52m>ha~! with a mean of 17m*ha~1, and AWP up to
8.7tC ha~la~! with a mean of 4.4tCha—!a~l. The frequency
distributions of the uncertainty of BA ep4 and of aboveground
wood productivity (AWP) eawp have a clear defined peak at
below 20%, whereas the distribution of e5gp displays a wider span
between 12 and 44%.

Further analyses show that the ambiguity in forest attributes
decreases with increasing MCH of forests with the exception of
AWP (Supplementary Fig. 2). Forests with a MCH < 15 m show
highest ambiguity. Uncertainty esgp also decreases with increas-
ing AGB while in terms of standard deviation (absolute values) it
is more or less constant for all AGB values (Supplementary
Fig. 3).

The mean uncertainty of AGB over all lidar profiles is ~47%
(Fig. 4). However, when profiles with a MCH<15m are
excluded, overall uncertainty is ~20%. Mean &g, and &gy are
around and egpp is below 30%. egp decreases to 12% (egpp to
20%) for profiles with a MCH > 15 m. Uncertainty of AWP is
below 20% for all profiles. We find that profile-derived values
are ~20-43% more accurate than MCH-derived values, e.g., ega
decreases from 45 to 32% and exwp from 30 to 17%.

Discussion
The investigation across the Amazon shows that lidar profiles
with a 65 m footprint can reveal carbon stocks and productivity
of forests (MCH > 15 m) with a profile-matching uncertainty of
~20%. The derived uncertainty index of BA is even <15%.
Forest stands can include different tree species that differ in
wood densities. For example, when a forest stand is dominated by
pioneer species, biomass will be low because pioneer species tend
to have low wood densities33. Thus, forest biomass values may
differ although their tree size distributions and hence lidar pro-
files are the same (Fig. 2a). In the following, we refer to this effect
as species-induced uncertainty. This effect alone, however, is not
sufficient to explain the uncertainty in estimating biomass from
lidar profiles. BA is a forest attribute that is independent of its
species’ wood densities but anyhow shows a mean uncertainty of
~15%. That means that a canopy profile can refer to different tree
height distributions within the footprint, an effect which we call
structure-induced uncertainty.

The quantified uncertainty of biomass is ~45% (20% for shots
of MCH > 15 m), whereas the overall uncertainty of BA is ~3/4 of
the uncertainty of biomass. As BA is the only forest attribute in
this study that is independent of species wood densities and
composition, this is a first indication that most of the profile
ambiguity in biomass is structure-induced and only around 1/4 is
species-induced (Fig. 4).

We find that the uncertainty of profile-derived biomass, BA,
stem volume, and gross primary productivity decrease with
increasing MCH (Fig. 4, Supplementary Fig. 2). This observation
can be related to the variation of tree densities and gap dynamics
in natural forests. Forest gaps show a high density of trees’* so
that the amount of possibilities to form a particular lidar profile is
larger than for a few large trees. In addition, larger trees mainly
occur in later successional state, which can only be reached by a
few species. Consequently, forests of low canopy height reveal a
higher structural- and species-induced ambiguity than forests that
are only dominated by a few large trees.

The determined uncertainty of AWP is the lowest of all forest
attributes (Fig. 4).The lidar profile quantifies how light penetrates
into the forests. In other words, it reflects the amount of light that
is absorbed by the forest. That means that AWP is mainly
influenced by the forest light climate3® and less by the forest’s
species or structure. Consequently, the information content of the
entire profile is of central importance for the estimation of pro-
ductivity. This results in a low uncertainty for AWP of ~17%.
GPP, on the other hand, seems to be stronger controlled by the
forest’s species and structure.

The presented approach has several advantages. First, the full-
profile approach encompasses a vast amount of forest states and
reveals ambiguities of profiles. It thereby considers more
forest stands than previous studies that often interpret remote
sensing data based on statistical relations derived from a limited
number of inventory plots (e.g.,3¢). This is of particular
advantage in the Amazon region where the access of forests is
limited and inventories of mature forest stands are often
favored?’. A comparison of inventory-based BA estimates with
nearby GLAS-derived estimates (Supplementary Fig. 7) shows
that the field inventory represents only one potential successional
state while several GLAS shots reveal a highly heterogeneous
forest. Empirical studies may benefit from this interpretation
of lidar profiles and could take our quantification of uncertainties
into account in the future. However, please note that our
analysis here is performed for large footprints (65 m diameter).
Uncertainties for such lidar footprints are potentially lower than
those associated with smaller footprints owing to averaging
effects3s.

Second, our approach allows for quantifying information
content of entire lidar profiles. We have shown that values
derived from an entire profile are up to 43% more accurate than
when taking solely MCH as a proxy (Fig. 4). Thus, assimilating
entire lidar waveforms is beneficial for estimates of actual AGB
and productivity for large regions. For example, it reduces
uncertainties of our previous approaches where sub-canopy
structures were ignored and only aggregated values on 40 m x 40
m patches were considered?6:3?,

Third, our approach is transferable to other spatial scales.
Integrating forest models into the quantification of forest attri-
butes from lidar will gain in importance with upcoming remote
sensing missions. The GEDI mission, for example, will provide
measurements for vegetation structure at a high resolution of
20 m*0. We believe that taking the entire profile into account will
reduce uncertainties related to structure-induced ambiguities.
Species-induced ambiguities may be reduced by deriving leaf
traits from future missions by hyperspectral measurements (e.g.,
EnMAP)4L,
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Beside the uncertainties quantified here, estimates from lidar
remote sensing have further sources of uncertainty: geolocation
error, edge effects*2, instrument errors, errors in allometries®3.
Our uncertainty index € quantifies structure- and species-induced
uncertainties. It does not include geolocation errors that are
mainly associated with inventory-based lidar studies (as in
ref. 3%). Additional analyses have shown that the influence of
changing the simulated footprint size (from 65 m to 60 m), and
uncertainties that are related to the matching algorithm, are
rather negligible (Supplementary Fig. 4). Note that proper
uncertainty analyses on edge effects, footprint sizes, and tree
allometries are limited by a high computational demand.
Uncertainties of tree allometries may add another error for AGB
of 10-20%!8.

Uncertainty in tree allometries is a common source of model
structural and parameter uncertainties in dynamic vegetation
models*, New approaches based on terrestrial laser scanning®®
will help to reduce allometric uncertainties in the future. How-
ever, in large-scale mapping projects that are based on spaceborne
lidar, it remains a challenge to account for regional differences in
allometries. As recently suggested, fusion of lidar remote sensing
with forest models could contribute to improving our
knowledge?®.

Our individual-based approach tackles the challenge of
including spatial variable species dynamics. However, at the
same time this complexity is limited by structural simplifica-
tions like categorizing tree species into mean early-, mid-, and
late-successional plant functional types (PFT, aggregation
approach). Model structural uncertainties are a matter of
finding the right balance between simplification and complex-
ity. A previous study*’ suggests to use at least one group that
represents early successional tree species. Increasing the
amount of PFTs by adding undergrowth shade-tolerant species
could affect the derived uncertainty of AGB, GPP, and AWP,
but at the same time this complexity relies on additional
uncertain tree allometries of those tree species. A further sim-
plification of our approach is that it does not consider the
influence of nutrients on forest growth?s.

We conclude that forest modeling is a powerful tool to explore
and quantify the information content of canopy profiles observed
by lidar. Our approach complements inventory-based statistical
approaches®#%°0 by including a vast variety of forest successional
states. Ecosystem modeling approaches have previously only used
MCH as a proxy*#2%. By making use of full lidar profiles, our
approach advances the usage of lidar remote sensing for a high-
resolution quantification of forest biomass and productivity.

Methods
Study area. The study area covers forests in South America that are categorized as
rainforest or moist deciduous rainforest (according to the FAO definition), have
an annual mean temperature above 18 °C and are located at an elevation below
1000 m26:51,

Lidar data. Lidar data have been derived from GLAS measurements on board
ICESat between 2003 and 2006. We here use only lidar shots that fell into

the Amazon region as defined above. Lidar shots have a footprint of ~65m

in diameter, an along-track distance of ~175m and a between-track distance of
~30 km3°, We used filtered data that exclude data of low quality (as in ref. °2) and
over steep slope (>10°), and that exclude leaf-off season derived from MODIS
phenology. In order to reduce data volume, each energy profile was reconstructed
from a set of Gaussian fitting parameters (the GLAS14 data product) to retrieve
individual waveform3’. In addition, we eliminated out all shots with a MCH
shorter than 5 m. This results in 771,521 lidar shots in total.

The Amazon-wide forest model. The Amazon-wide version of the individual-
based forest model FORMIND?2® was used to simulate forest dynamics throughout
all successional states. It has been set up to reproduce stem size distributions,
biomass, and BA at different successional states at four different locations in the
Amazon region. Forest dynamics evolve from individual tree growth and

establishment, competition for light and space, and natural tree mortality>!-32.
Spatially variable insolation (photosynthetic photon flux density, PPFD) drives tree
growth and competition for light, while precipitation and the clay fraction of soil
drive individual tree mortality. AGB, SV, BA, GPP, and AWP can be analyzed at
every successional state at different spatial resolutions (e.g., 0.16 ha, 1 ha, 1 km? in
ref. 28). The forest model has been validated for aboveground tree biomass and BA
with forest inventory data2® and cross-compared for productivity with other
studies®.

The Amazon rainforest was stratified into areas of similar environmental
conditions to reduce computational effort: mean annual precipitation, clay fraction,
and mean annual PPFD20, The forest model’s input (PPFD, precipitation, clay
fraction of soil) is variable in space, but constant in time. This resulted in 1280
areas in total for each of which 1km? of forest succession, including individual
trees with a diameter > 10 cm, was simulated representatively from bare ground
over 2500 years. Approximately every 100 years, the simulated area was partly
disturbed in order to cover all potential successional states as in ref. >3. Thus, a
representative simulation run was assigned to each 1-km? grid cell across South
American tropical forests.

Deriving waveform from the forest model. For the simulation of the lidar
waveforms we used the approach derived by Knapp et al. >3. The forest stand is
described as a three-dimensional voxel space, considering positions and crown
dimensions of all trees. The voxels have a side length of 1 m and are filled repre-
senting the canopy. The reflected energy from each voxel is modeled as an expo-
nential decay function (Beer-Lambert’s law). To account for the characteristics of a
GLAS footprint the following procedures were applied: a circular area of 65 m
diameter? around the center of each simulated hectare was sampled. That means
that we only use a subplot of each simulated hectare of the Amazon-wide forest
model in order to consider the same spatial scale as a GLAS lidar shot. As the
footprint can vary from 50 to 65 m varying from ellipsoid to circular®, we addi-
tionally tested our approach with a 60 m footprint (Supplementary Fig. 4). The
contribution of each voxel to reflection was weighted based on the horizontal
distance to the pulse center using a 2-dimensional Gaussian function (SD = 1/4 x
diameter of footprint) resulting in full contribution in the center and a decreased
contribution at the edge. Energy of all voxels per 1-m height layer was added up
and the derived waveform was finally normalized by the total sum to obtain relative
energy per height layer. For each of the 1280 areas, we simulated one hundred
footprints of 65 m radius over 2500 years at a 5-year time step. These sum up to 64
million simulated footprints in total. Note that in the current version, the forest
model simulates forest succession under stable climatic condition on yearly time
steps. Hence, our approach does not consider any intra-annual changes in canopy
profiles as observed in lidar profiles by Tang & Dubayah®’.

Identifying successional states with lidar profiles. Each ICESat lidar profile was
compared with simulated lidar profiles of local forest succession (100 representa-
tive simulated footprints over 2500 years). The similarities of normalized (by total
area including ground return) observed and simulated profiles were determined by
quantifying their relative overlap above 5 m (intersection area divided by union
area, Eq. (1)):

B 50 min(Ey(h), Eg, (h))
O = Zm v

— 1 Hsim

where O, is the relative overlap of the lidar observed and simulated profile. E,ps is
the lidar observed relative energy at height h, and Eg, is the simulated relative
energy at height h. We here assumed height classes of 1 m.

An analysis has shown that we can find a best relative overlap of >70% for 93%
of all GLAS shots (Supplementary Fig. 5b; example for a 70% overlap in
Supplementary Fig. 6; relationship between overlap and uncertainty see
Supplementary Fig. 9). Consequently, we took the 50 best matching simulated
profiles with an overlap above the threshold of 70% (Fig. 2 left) to identify potential
successional states of the forest and their attributes, e.g., aboveground biomass.
Supplementary Fig. 5a demonstrates the sensitivity of the uncertainty index to
taking 50 samples. An upper limit needed to be set in order to handle forests in
different successional stages equally as old growth forests occurred more frequent
in our simulations than early successional stages. In order to account for
uncertainties of the matching algorithm, the approach was additionally tested for a
threshold of 60 and 80% (Supplementary Fig. 4a). If the relative overlap with a
simulated profile was below the threshold, only the three best matches were taken.
For each GLAS lidar profile, we hence derived up to 50 matching forest attribute
values from our forest model. The distinctness or uncertainty of a forest attribute is
then expressed as its coefficient of variation (CV) of all these values (Fig. 1; (3)).
This CV is defined as the uncertainty index ¢ (see Supplementary Figs. 10 and 11
for an additional uncertainty (quartile coefficient of dispersion) that was tested in
the framework of this study). Beside the profile-derived uncertainty index, we
additionally determined the ambiguity of forests states of the 50 best matches when
taking solely one height metric, here the MCH.

We tested the validity of the approach by comparing observed BA at 140
inventory plots??>> against simulated values derived from the nearest lidar shots
(Supplementary Figs. 7 and 8). We consider all lidar shots that are located in a
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distance smaller than 3 km around the inventory as the locations of the lidar
shots do not match the exact locations of inventory data and coordinates of the
inventory sites come with uncertainties!®.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Source data underlying Figs. 2, 3, 4, and Supplementary Figures are provided as a Source
Data file.

Code availability
The FORMIND model is freely available on http://formind.org/downloads/.

Received: 6 February 2019; Accepted: 27 September 2019;
Published online: 08 November 2019
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