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Accelerated dryland expansion regulates future
variability in dryland gross primary production
Jingyu Yao 1,2, Heping Liu 1✉, Jianping Huang2,3✉, Zhongming Gao 1, Guoyin Wang4,2, Dan Li 5,

Haipeng Yu6 & Xingyuan Chen7

Drylands cover 41% of Earth’s surface and are the largest source of interannual variability in

the global carbon sink. Drylands are projected to experience accelerated expansion over the

next century, but the implications of this expansion on variability in gross primary production

(GPP) remain elusive. Here we show that by 2100 total dryland GPP will increase by 12 ± 3%

relative to the 2000–2014 baseline. Because drylands will largely expand into formerly

productive ecosystems, this increase in dryland GPP may not increase global GPP. Further,

GPP per unit dryland area will decrease as degradation of historical drylands outpaces the

higher GPP of expanded drylands. Dryland expansion and climate-induced conversions

among sub-humid, semi-arid, arid, and hyper-arid subtypes will lead to substantial changes in

regional and subtype contributions to global dryland GPP variability. Our results highlight the

vulnerability of dryland subtypes to more frequent and severe climate extremes and suggest

that regional variations will require different mitigation strategies.
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Drylands cover ~41% of the Earth’s land surface and sup-
port more than 38% of the global population1. Grasslands
(GRA), shrublands, and savannas (SAVs) are the primary

ecosystems of dryland regions2–4. Enhanced warming and
increasingly frequent and severe droughts5,6 threaten the ability
of these ecosystems to sequester carbon and maintain biodi-
versity7. Degradation of dryland ecosystems would have strong
negative societal and economic impacts, especially in developing
countries8. A better understanding of the implications of climate-
induced changes in dryland ecosystems under future climate
scenarios for carbon sink-source dynamics is urgently needed.

Global dryland ecosystems with high biomass turnover rates
have accounted for ~40% of the global land net primary pro-
duction (NPP), dominated the positive global land CO2 sink
trend, and contributed the largest fractions to the interannual
variability (IAV) of net CO2 flux over recent decades9–12. Such
carbon sink variability has been mostly associated with variations
in gross primary production (GPP). Using an ensemble of eco-
system and land-surface models and an empirical observation-
based product of GPP, Ahlstrom et al.10 show that the trend and
IAV in CO2 sink by terrestrial ecosystems in 1982–2011 were
dominated by semiarid ecosystems in response to variations in
both precipitation and temperature. As water-stressed biomes,
dryland ecosystems are particularly sensitive to drought and
wet events, leading to rapid, significant changes in ecosystem
structure and functioning and thus large carbon exchange
variabilities13,14. Such carbon exchange variabilities can even
switch between a net sink and a net source from year to year,
primarily due to annual precipitation crossing a threshold15.
Negative dryland GPP anomalies are strongly associated with
drought events (warm and dry conditions), whereas positive
dryland GPP anomalies are primarily driven by wet events (cool
and wet conditions)16,17. For example, the 2010–2011 global
carbon sink anomaly was mainly ascribed to the enhanced carbon
assimilation by Australian dryland ecosystems during wet
events7,11. Such Australian ecosystems have also exhibited repe-
titive carbon sink episodes18, suggesting that dryland ecosystems
would exert greater impacts on global carbon cycle variability
under future climate change7,19.

Model projections show that drylands will experience an
accelerated expansion of 11 and 23% by the end of the 21st
century under the Representative Concentration Pathway 4.5
(RCP4.5) and RCP8.5 scenarios, respectively, relative to the
1961–1990 baseline19. Following the widely used protocol20,21, we
define drylands as regions with an aridity index (AI) less than
0.65; AI is the ratio of the annual precipitation to potential eva-
potranspiration (PET). In addition to expansion, degradations
and conversions occur across dryland subtypes, which are defined
by AI ranges: hyperarid (AI ≤ 0.05), arid (0.05 < AI ≤ 0.2), semi-
arid (0.2 < AI ≤ 0.5), and dry subhumid (0.5 < AI < 0.65). The
expansion usually occurs along the boundaries between the his-
torical drylands (AI < 0.65) and the humid lands (AI ≥ 0.65) by
converting humid lands into dryland subtypes as a result of
enhanced droughts. Such dryland expansion varies substantially
from region to region, with East Asia and North America being
particularly prominent. Moreover, climate-induced shifts in
ecosystem types also occur across dryland subtypes, and such
shifts are highly dynamic even within a given region19. However,
the implications of such uneven expansion of drylands and
dynamic shifts in dryland subtypes for spatiotemporal variability
of dryland GPP remain unclear.

Here, we characterize how the projected dryland expansion
and degradation lead to shifts in regional and subtype contribu-
tions to global dryland GPP variability in response to future cli-
mate change under RCP4.5. To quantify regional contributions to
the global dryland GPP, we divided the global drylands into eight

regions: North America, South America, Europe, Africa, West
Asia, East Asia, South Asia, and Australia (Supplementary Table 1
and Supplementary Fig. 1). We used the MODIS-derived GPP
data to examine the spatiotemporal variations in the dryland GPP
from 2000 to 2014 as the baseline. The MODIS-derived GPP
shows good agreement and a linear relation with the FLUXNET-
derived GPP at 13 dryland flux sites (“Methods”). These flux sites
over drylands are located in North America, Europe, Africa, Asia,
and Australia, and their vegetation types are SAV, GRA, crop-
lands (CRO), woody savannas (WSA), and open shrublands
(OSH). The good agreements between the annual GPP anomalies
from MODIS and those from the flux towers also demonstrate
that the MODIS product also captures IAV, consistent with the
previous extensive GPP comparisons over global lands22,23.
Further, we compared spatial and temporal variations in the
dryland GPP between the MODIS-derived GPP and the FLUX-
COM GPP (“Methods”). Our results confirm the conclusions
from previous studies that the MODIS-derived GPP data are
reliable in quantifying spatiotemporal variability in global dryland
GPP, although underestimations of the MODIS-derived GPP are
identified in some regions24. Taking into account uncertainties
and other factors for the different datasets, MODIS-derived GPP
remains one of the most robust datasets to quantify the spatio-
temporal variability of GPP at global scales (“Methods”).

Results
Global and regional dryland GPP variability (2000–2014).
Global drylands demonstrated increasing trends and spatio-
temporal variations in GPP from 2000 to 2014 (Fig. 1). The largest
positive contributions to the increased dryland GPP trend
occurred in North America (45%), East Asia (21%), and Africa/
Australia (18%) (Figs. 1c and 2; Supplementary Table 2), whereas
the largest contributions to the global dryland IAV occurred in
Australia (25%), South America (20%), and Africa (15%) (Fig. 1d
and Supplementary Table 3). Note that relative changes in trends,
IAV, and their contributions are reported with respect to drylands,
consistent with the focus of this study; GPP of humid regions
(AI >= 0.65) is not discussed hereafter. Among the environmental
drivers, precipitation explained 67% of the dryland GPP varia-
tions, followed by air temperature, which explained 15% of the
dryland GPP variations. The remaining 18% of the dryland GPP
variability was explained by a combination of other drivers
including soil moisture, vapor pressure deficit (VPD), and PET
(“Methods”; Supplementary Figs. 2 and 3). These results are
consistent with previous findings that precipitation is the most
important driver of dryland vegetation dynamics.

Further analysis shows that precipitation and GPP variabilities
were significantly correlated in semiarid regions (R2= 0.82; P <
0.05). Due to their high sensitivity to precipitation (Supplemen-
tary Fig. 4), the semiarid regions contributed the most to the
trend (46%) and IAV (53%) of the global dryland GPP in
2000–2014 (Fig. 3). The subhumid regions were the second
largest contributor to the trend (37%) and IAV (29%) of the
global dryland GPP due to the high correlations between GPP
and temperature in North America and East Asia with the largest
areas of this subtype. When regional and subtype variations are
considered jointly, we found that the subhumid (53%) and
semiarid (44%) regions in North America, semiarid (49%) and
subhumid (43%) regions in East Asia, and semiarid (50%) and
arid (39%) regions in Africa primarily contributed to the regional
trends (Fig. 3a). The semiarid (51%) and arid (31%) regions in
Australia, semiarid (58%) and arid (31%) regions in South
America, and semiarid (59%) and subhumid (28%) regions in
Africa predominantly regulated the regional IAV during the
2000–2014 period (Fig. 3b).
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Projected dryland GPP in the 21st century under RCP4.5.
Warming and drying trends are projected to dominate climate
change in the 21st century, accompanied by more frequent
extreme climate events7. Long-term warming and drying trends
would accelerate dryland expansion by converting humid eco-
systems into dryland ecosystems and degrading fragile dryland
subtypes19. To address the questions of whether and how global
dryland expansion and dryland subtype conversions would lead
to shifts in regional contributions to the global dryland GPP and
IAV and changes in subtype contributions across regions, we first
adopted the proposition that the relationship between AI and
GPP can be used to quantify dryland GPP variability19. The tight
relationship between GPP and AI is reflected by the high corre-
lation between GPP and AI during 2000–2014 (Supplementary
Fig. 5). We examined the relationship between dryland GPP and
AI and applied this relationship to quantify the influence of
dryland expansion and degradation on dryland GPP. Using the
GPP and AI over 2000–2014, we fitted one polynomial function
between GPP and AI for each of the eight regions (Fig. 4), with
remarkably high correlations (Supplementary Table 4). These
high correlations confirm that AI is a good metric to constrain
dryland GPP19. We also used the two equations of the 95%
prediction intervals of the fitted GPP–AI relations (Fig. 4) to

calculate the uncertainty in the projected GPP. We then adopted
the aforementioned global dryland AI datasets based on the
RCP4.5 projections for the period from 2011 to 2100 to drive the
fitted functions for each region to estimate variations in the global
dryland GPP (Fig. 5). Note that these fitted functions based on
the data across the AI range from 0 to 0.65 were only applied to
determine the projected GPP over global drylands with the same
AI range (i.e., 0 < AI < 0.65). We performed the same calculation
under RCP8.5 for comparison. By establishing mapping relations
with the 2000–2014 MODIS datasets, we conducted bias correc-
tions on CMIP5 model results25. Our 2010–2100 GPP derived
from the fitted functions showed promising agreement with the
ensemble means of the 15 CMIP5 modeling results in the eight
regions during the same period (Supplementary Fig. 6; Supple-
mentary Table 5).

Influence of dryland expansion and conversions on GPP.
Global dryland GPP will increase by 12 ± 3% by the end of this
century under RCP4.5 relative to the 2000–2014 global dryland
GPP baseline. The global dryland GPP shows increasing trends
and larger IAV values. The global dryland GPP trend and IAV
increase by 7 ± 2 and 2 ± 1% in 2011–2040, 11 ± 3 and 4 ± 2% in
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Fig. 1 MODIS-derived dryland GPP trend and variations from 2000 to 2014. a Variations of the annual gross primary production (GPP) anomaly for the
global lands, global drylands, and global humid regions (2000–2014). The dotted line denotes the linear trend of GPP. Global drylands played the dominant
role in modulating both the trend and the interannual variability (IAV) of the global land GPP, accounting for 79% of the increasing trend and 83% of the
IAV of the global land GPP in 2000–2014, although they only contributed to 21% of the global mean GPP. b Variations of the annual GPP anomaly over the
eight dryland regions in 2000–2014. NAM North America, SAM South America, EU Europe, AF Africa, WAS West Asia, EAS East Asia, SAS South Asia,
AUS Australia, Drylands the global drylands. c The mean global dryland GPP trend, 2000–2014 (kg Cm−2 year−1). d The global dryland GPP IAV,
2000–2014 (kg Cm−2). The lowest global land GPP anomalies occurred in 2002 and the largest in 2011, which were primarily attributed to the global
dryland GPP anomalies in these 2 years (see a). The 2011 GPP anomaly was mainly caused by the high GPP in three dryland regions in Australia, Africa, and
South America (see b), which is consistent with the previous modeling study about the widely reported 2011 record carbon sink. Our analysis indicates that
the lowest GPP anomaly in 2002 was associated with the drought event, whereas the largest GPP anomaly in 2011, particularly in Australia and Africa, was
associated with the La Niña-induced wet anomaly. The trend of precipitation best explained the trend of the GPP in North America (64%), East Asia
(59%), and Africa (68%), whereas the precipitation IAV also best explained the GPP IAV in Australia (79%), South America (72%), and Africa (76%).
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2041–2070, and 12 ± 3 and 3 ± 2% in 2071–2100, relative to the
2000–2014 global dryland GPP baseline. Such increasing
trends and enhanced IAV by the end of this century are attributed
to the combined effect of the accelerated dryland expansion,
climate-induced shifts of the subtypes within the historical
drylands (e.g., primarily drought-induced degradation of dry-
lands), and conversions of drylands to humid lands. East Asia
and North America will experience the most significant dryland
expansions and changes in subtypes, resulting in large changes
in GPP, especially in 2010–2065 (Supplementary Figs. 7 and 8).
The drying areas are mainly distributed in Canada, central
Africa, western Asia, and northeastern China, with a larger
area becoming drier and a smaller area becoming wetter19.
The widespread expansion-induced GPP increase (0.0661 Pg C
year−1) substantially surpasses the GPP decrease (−0.0211 Pg C
year−1) due to the drought-induced degradation of drylands and
the wet-induced shrinkage in drylands (Fig. 6), leading to the
overall increase in the global dryland GPP by 12 ± 3% at the
end of this century (Fig. 5; see more analysis below). Nevertheless,
the global dryland GPP per unit area actually decreases at a rate
of –0.26 kg Cm−2 year−1 because the decreased GPP in the
historical drylands at a rate of −0.83 kg Cm−2 year−1 exceeds
the increased GPP in the expanded drylands at a rate of 0.57 kg C
m−2 year−1 (Fig. 6), taking into account the increase in the global

dryland areas by 11% at the end of this century under RCP4.5 as
compared with the 1961–1990 global dryland baseline19. The
increasing trends and IAV values will be stabilized after 2065
under RCP4.5 (ref. 26).

Substantial shifts in the regional contributions to global
dryland GPP trends are observed during different periods of
the 21st century. Under the RCP4.5 scenario, the three largest
regional contributors to the global dryland GPP trends shift from
East Asia (27%), South Asia (18%), and West Asia (17%) in 2011–
2040 to East Asia (35%), Africa (18%), and South Asia (16%) in
2041–2070, and then to East Asia (21%), West Asia (16%), and
North America (16%) in 2071–2100. East Asia emerges as the
largest contributor to the trend, exceeding North America and
South Asia. Australia, Africa, and South America remain the
largest contributors to the IAV, as compared with the 2000–2014
baseline (Fig. 2, Supplementary Fig. 9A). The large GPP IAV in
these three regions is likely attributed to the more frequent
climate extremes and the high sensitivity of drylands to droughts
and precipitation in these regions12.

It is observed that there is a shift in the roles of different
dryland subtypes in contributing to the global dryland GPP trend
and IAV under RCP4.5 (Fig. 3). The largest climate-induced
dryland expansion is found to occur in semiarid regions,
accounting for almost half of the total dryland expansion19,
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covering more than one-third of the total dryland areas, and
contributing almost half of the total global dryland GPP. This
explains the increased roles of semiarid ecosystems in regulating
the trends (49%) and variability (35%) of the global dryland CO2

sink under the future climate change. However, the arid subtype
plays an increasing role in regulating the trend (18%) and IAV
(29%), whereas the subhumid subtype has a reduced impact on
the trend (27%) and IAV (26%) (Fig. 3). The contributions of
different subtypes to the trend and IAV also vary across regions.
The largest contributions to the semiarid subtype GPP trends

occur in East Asia (30%) and Africa (27%), and the largest
contributions to the global semiarid subtype GPP IAV occur in
Africa (26%) and Australia (24%). The largest contributions to
the global arid subtype GPP trends occur in Africa (34%) and
Australia (19%), and the largest contributions to the global arid
subtype GPP IAV occur in Australia (44%) and Africa (21%),
whereas the largest contributions to the global subhumid subtype
GPP trends occur in East Asia (31%) and North America (27%)
and the largest contributions to the global subhumid subtype GPP
IAV occur in East Asia (31%) and South America (16%).
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During the 21st century under RCP4.5, the three prominent
land conversions that lead to the largest changes in the global
dryland GPP are from humid to subhumid (+2.53 Pg C year−1;
151.1%), subhumid to humid (−0.53 Pg C year−1; −31.5%), and
humid to semiarid (0.47 Pg C year−1; 28.0%) (Fig. 7). Meanwhile,
droughts also cause transitions among dryland subtypes, e.g., from
subhumid to semiarid, semiarid to arid lands, and so on, leading
to a reduction in the GPP (Fig. 7). Degradations within semiarid
(−0.37 Pg C year−1; −22.3%) and subhumid (−0.18 Pg C
year−1; −10.9%), from subhumid to semiarid (−0.17 Pg C year−1;
−10.0%), and from semiarid to arid lands (−0.07 Pg C year−1;
−4.2%) cause the substantial reductions in GPP (Fig. 7). Our
results indicate that the increase in dryland GPP due to expansion
of subhumid and semiarid dryland subtypes into previously
humid regions significantly exceeds the decreased dryland GPP
from drought-induced dryland degradation and the (less com-
mon) contraction of the subhumid subtype due to conversion to
humid lands. This leads to an overall increase in regional and
global dryland GPP in this century.

Discussion
Global drylands will experience substantial expansion, degrada-
tion, and conversions among dryland subtypes under future cli-
mate change, leading to changes in dryland ecosystem structures
and functioning and thus GPP. Indeed, changes in dryland eco-
systems have already happened over the past decades. For
example, vegetated drylands have exhibited large-scale conver-
sions into bare ground in the last 30 years27. These conversions
have various causes; e.g., in the southwestern United States, they
are probably the consequence of the increased dominance of
invasive species28. Long-term precipitation reductions in growing
seasons have caused the reduced vegetated drylands in Aus-
tralia29. In the Mongolian steppe, however, the extensive GRA
deterioration was attributed to a combined effect of rising air
temperatures, reduction in rainfall, and overgrazing30. Dryland
expansion acts as the primary process regulating future global
dryland GPP trends and variability. Under RCP4.5, East Asia will
replace North America as the largest contributor to global dry-
land GPP trends, whereas Australia remains to contribute the
largest to the global dryland GPP IAV in this century. Although

the semiarid subtype continues to dominate global dryland GPP
variability, the arid subtype and the subhumid subtype play an
increased and a decreased role in regulating the global dryland
GPP variability, respectively. Our results on the global dryland
GPP trends and IAV under RCP4.5 are conservative, and global
dryland GPP spatiotemporal variability will be likely to increase if
future climate change follows the RCP8.5 scenario (Supplemen-
tary Fig. 9B). Indeed, the dryland GPP under RCP8.5 shows a
25% increase by the end of this century relative to the 2000–2014
baseline due to a larger dryland expansion rate (Fig. 5). The
primary trend of global dryland GPP hotspots shift from East
Asia in 2011–2070 to North America in 2071–2100, while North
America and East Asia, instead of Australia, play the most
important role in regulating the global dryland GPP IAV in
2041–2100 (Supplementary Fig. 10, Supplementary Tables 6 and
7). The semiarid subtype in Africa and East Asia will lead to
enhanced GPP variability in the global drylands (Supplementary
Fig. 11). Our analysis demonstrates that regional and subtype
contributions to the global dryland GPP trend and IAV are
subjected to substantial shifts under future climate change.

Note that because this study is based on historical MODIS GPP
datasets and the derived GPP, it does not account for potential
dynamic responses of dryland ecosystems to future climate
change. Global dryland ecosystems would likely experience more
drastic changes in their structures and functioning (e.g., changes
in water use efficiencies) under multiple elevated climatic and
environmental stresses such as droughts, heat waves, grazing,
invasions of exotic species, CO2 fertilization, woody encroach-
ment, adaptations, and disturbances31–34. All of these processes
induce lagged and nonlinear effects on dryland ecosystem–
climate interactions. Evidence shows that lag effects can be
attributed to complex interacting feedbacks such as lagged
respiration of soil biota, carryover effects of antecedent climate
responses (e.g., water deficit), and changes in nutrient cycles35–40.
Variability in lag effects may be particularly significant in water-
limited dryland ecosystems where precipitation events have
strong impacts on the variability in aboveground NPP, soil N
availability, and drought sensitivity39. It was found that lag
effects can explain between 18 and 28% of the response variables
in semiarid and arid ecosystems41. However, limited or no
lag effects are simulated by current climate-vegetation models38.
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Fig. 7 Changes in dryland GPP due to expansion and conversions. It is estimated from our study that the global dryland gross primary production (GPP)
will increase by 12% in 2085–2100 relative to the 2000–2014 baseline under RCP4.5. Taking 12% as 100 units, the magnitudes in the diagram thus denote
the percentage of the contribution caused by each process to this 12% change. The sum of all the numbers in the diagram is equal to 100%. Positive values
indicate the increased GPP for the corresponding dryland subtypes and negative values indicate the decreased GPP for the corresponding dryland subtypes.
For example, −31.5% means a reduction in the GPP contribution to the 12% change for the subhumid subtype due to its conversion to humid lands, 151.1%
means an increase in the GPP contribution to the 12% change for the subhumid subtype due to its conversion of humid lands to the subhumid subtype, and
−10.9% means a reduction in the GPP contribution to the 12% change for the subhumid subtype due to its degradation within its subtype. Note that
changes in GPP in humid regions are not the focus in this study.
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This inadequate quantitative understanding of lagged responses
to climate extreme is of particular concern because a new climate
regime with more frequent and intense extreme events could
perpetuate the lag effects, leading to large bias in predicting
climate-carbon feedbacks35. However, the lag effects are not
quantified and discussed in our study. Thus, uncertainties and
limitations are expected in projected spatiotemporal variabilities
in global dryland GPP. Nevertheless, our MODIS-derived
GPP over global drylands show variabilities comparable with
previous studies and those obtained by models (e.g., CMIP5) and
empirical observation-based datasets. In addition, since pre-
cipitation and air temperature explained the majority of dryland
GPP variability (79%), other environmental drivers such as
changes in ecosystem types play relatively small roles in reg-
ulating dryland GPP variability. Thus, our projected GPP varia-
bility in 2010–2100 should capture its major spatiotemporal
features under future climate change. Dynamic Earth system
models that couple the physical, biophysical, societal, economic,
and biogeochemical processes that govern long-term global dry-
land ecosystem carbon cycle–climate feedbacks are essential to
more fully understand dryland ecosystem–climate interactions.

Methods
Aridity index. AI, a measure of climatic dryness, is the ratio of the annual pre-
cipitation (P) to annual PET. Drylands are defined as regions where the AI is less
than 0.65, and humid regions are defined as the regions where the AI is greater
than 0.65. We used previously published global AI datasets with a spatial resolution
of 0.5° × 0.5° from 2000 to 2100 (ref. 19). Previous comparisons demonstrated
strong agreement between CMIP5 historical simulations for 1948–2005 and
observations of dryland variability19.

MODIS GPP data. GPP is the capacity of vegetation to capture carbon and energy
during the process of photosynthesis42. We used monthly MODIS global terrestrial
GPP products from 2000 to 2014 with a spatial resolution of 0.5° × 0.5° (ref. 23).
The MODIS17 is the first continuous satellite-driven dataset monitoring global
vegetation productivity. The fundamentals for the MOD17 algorithm are to apply
radiation conversion efficiency in predicting daily GPP. Specifically, the MODIS
GPP is estimated using a light use efficiency (LUE) model developed by Mon-
teith42, in which gross photosynthesis is proportional to the amount of the
absorbed photosynthetically active radiation (PAR) by plants. The LUE model is
rewritten as43,44

GPP ¼ εmax ´ 0:45 ´ SWrad ´ f PAR ´ fVPD ´ fTmin; ð1Þ

where εmax is the maximum LUE, SWrad is the downward solar radiation, of which
45% is PAR, f PAR is the fraction of PAR being absorbed by plants, and fVPD and
f Tmin are the reduction scalars from water stresses (high daily VPD) and low daily
minimum temperature. Varying climate conditions and diverse plant functional
types pose difficulties in accessing the uncertain of MODIS GPP data. One primary
uncertainty source is due to lack of accurate definition of ε, especially for complex
and diverse ecosystems for which the same ε could induce large uncertainties in
estimating GPP. GPP can be overestimated for ecosystems with low productivity
and underestimated for ecosystems with high productivity45. In arid and semiarid
regions, accounting for the effect of soil moisture in the algorithm may reduce the
uncertainty in GPP over drylands46. In addition, such LUE model has known issues
in modeling fluxes in dry sites, particularly when soil moisture and VPD are
decoupled and VPD is not a good indicator of water availability and water stress.
Nevertheless, the MODIS GPP product remains the most widely used global GPP
product with its advantage of continuously spatial and temporal coverage47.

MODIS products (Levels 1, 2, 3, and 4) are a new type of integerized sinusoidal
projection data. We used MODIS Re-projection Tools to convert the MODIS GPP
data formats and map projections to the WGS84/geographic system48. The global
GPP datasets from 2000 to 2014 were used in this study.

FLUXNET GPP data. We compared the MODIS-derived GPP with the FLUXNET
GPP. The FLUXNET GPPs are based on eddy flux measurements and have been
widely used to validate MODIS GPP49. FLUXNET has established over 800 long-
term eddy covariance flux tower sites, ranging from 30°S to 70°N, covering a wide
range of climatic zones and terrestrial ecosystems (http://www.fluxnet.ornl.gov/).
FLUXNET employs standard data quality assurance and control, and postfield data
processing procedures to ensure high quality flux datasets with significantly
reduced uncertainties associated with site-to-site variations in fluxes. The FLUX-
NET GPPs are obtained from the difference between measured net ecosystem

exchange and calculated ecosystem respiration (Reco)45

GPP ¼ NEE� Reco; ð2Þ

where the partitioning for Reco uses the nighttime method49,50.
In this study, we compared MODIS-derived GPP with flux-derived GPP from

13 FLUXNET flux sites across five different biomes across the global (e.g., SAV,
GRA, WSA, CRO, and OSH). The flux data covered the years after 2000, available
from 1 to 14 years for the selected sites (Table S2) after passing FLUXNET quality
control. The results show that the MODIS GPP is well correlated with FLUXNET
GPP (Supplementary Fig. 12; Supplementary Table 8). Our comparisons confirm
the quality of MODIS datasets for studying temporal and spatial variations of the
dryland GPP.

FLUXCOM GPP data. We also compared the spatial variations in the annual global
dryland GPP from the MODIS datasets with those from the FLUXCOM datasets
(Supplementary Figs. 13 and 14; Supplementary Table 9). The FLUXCOM GPP
datasets (http://www.fluxcom.org/) are derived with upscaling approaches based on
three machine learning algorithms that integrate 224 FLUXNET site level obser-
vations, satellite remote sensing, and meteorological data. The use of three machine
learning algorithms minimizes sources of uncertainty in empirical upscaling and
ultimately provides an ensemble of machine learning-based global flux products to
the scientific community for evaluating process-based land-surface models [http://
www.fluxcom.org/]51. Briefly, the machine learning algorithms were initially
trained to site-level observations of the explanatory climate and land-surface
variables. To capture variabilities in vegetation greenness and land-surface tem-
perature with reliable input of changes associated with soil moisture, the variables
from high-resolution satellite remote sensing data were fed into the extensive
variable selection analysis52. The machine learning algorithms and their training
and a thorough cross-validation of the data are presented in Tramontana et al.53.
To obtain the global GPP, the trained and validated machine learning algorithms
were driven by with global gridded satellite data of selected explanatory variables, at
10 km spatial and 8 days temporal resolutions for the period 2000–2014. Due to the
complex topography and ecosystem functions, large uncertainties remain in
obtaining spatial and temporal patterns of GPP on regional and global scales from
FLUXNET GPP using different upscaling methods54,55. Since the 224 flux sites are
not uniformly distributed over the globe with different climate types and plant
function types, and there are less dense flux sites over drylands, caution should be
also taken when explaining CO2 dynamics over drylands.

CMIP5 GPP data. We also compared the MODIS-derived GPP with the simulated
GPP from 15 CMIP5 models. The CMIP5 simulations include long-term (century
timescale) integrations and near-term integrations (10–30 years) or decadal pre-
diction experiments25. The CMIP5 GPP datasets can be downloaded at https://
esgf-node.llnl.gov/search/esgf-llnl/. We compared our GPP with the ensemble
means of the GPP from 2010 to 2100 simulated by the 15 CMIP5 models (Sup-
plementary Table 8). The multimodel ensemble, which is different from the
ensemble of simulations produced by individual models, represents a variety of
best-effort attempts to simulate the climate system. To the extent that these
attempts are at least somewhat independent and that the collection of models is not
systematically biased on the whole, the ensemble can be used to provide both a
consensus representation of the climate system and, based on the spread of model
results, provide some measure of how much confidence might be placed in that
consensus.

Meteorological data. The precipitation dataset from the National Center for
Environmental Prediction’s (NCEP) Climate Prediction Center is an observation-
based dataset with a global latitude-longitude resolution of 0.5° × 0.5° (ref. 56),
which can be downloaded at http://www.cpc.ncep.noaa.gov/. Air temperature,
VPD, and wind speed (WS) are obtained from the NCEP/National Center for
Atmospheric Research reanalysis57, which can be downloaded at https://www.esrl.
noaa.gov/psd/data/gridded/reanalysis/. The soil moisture data used here are the
monthly GLDAS version 2 product (GLDAS-2) during the period from 2000 to
2014, with a horizontal resolution of 1° × 1° (ref. 58), which can be accessed at
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS. PET is estimated using the
Penman–Monteith algorithm, which is driven by meteorological parameters
including net radiation, soil heat flux, mean daily air temperature, WS, saturation
vapor pressure, and vapor pressure21. These meteorological data from 2000 to 2014
are used to analyze their influence on GPP.

Statistical analysis. To show the accuracy of MODIS product, we computed the
correlation coefficients using the ordinary least square (OLS) regression and the
root mean squared error (RMSE) between the two GPP products,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1 GPPflux � GPPMODISð Þ2
n

s

; ð3Þ

where GPPflux and GPPMODIS are the FLUXNET-derived and MODIS-derived
GPP, respectively. The linear trend of GPP was estimated using the OLS regression,
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and the significance level of the linear correlation was calculated with a two-tailed
test. The IAV of GPP was computed as the mean absolute global GPP anomaly.

Method to calculate relative contributions. The relative contributions of the
individual GPP trend from each of the eight regions to the global dryland GPP
trend were calculated such that the overall trend equals the sum of the trend for
each of the eight regions. To calculate the relative contributions of the GPP IAV
from each of the eight regions to the global dryland GPP IAV, we adopted an index
used in a previous study10

fi ¼
X

t

xit Xtj j
Xt

=
X

t

Xtj j; ð4Þ

where xit is the GPP anomaly for region i at time t in years, and Xt is the global
dryland GPP anomaly, so that Xt ¼ Σtxjt . The fi is the average relative anomaly
xit=Xt for region i, and this definition should guarantee that Σi fi ¼ 1. The resulting
scores for a region fi represent its contribution to global dryland variations. Regions
with high scores contribute strongly to overall dryland GPP variations, while
regions with low scores contribute less. Regions with negative scores dampen
variations.

Data availability
All processed GPP data used in this study are available at https://doi.org/10.6084/m9.
figshare.10271447. Other data can be downloaded in the websites provided in the
“Methods” section. Additional data that support the findings of this study are available
from H.L. upon reasonable request.
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