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Variable number tandem repeats mediate the
expression of proximal genes
Mehrdad Bakhtiari 1, Jonghun Park 1, Yuan-Chun Ding2, Sharona Shleizer-Burko 3, Susan L. Neuhausen2,

Bjarni V. Halldórsson 4, Kári Stefánsson 4, Melissa Gymrek 1,3 & Vineet Bafna 1✉

Variable number tandem repeats (VNTRs) account for significant genetic variation in many

organisms. In humans, VNTRs have been implicated in both Mendelian and complex dis-

orders, but are largely ignored by genomic pipelines due to the complexity of genotyping and

the computational expense. We describe adVNTR-NN, a method that uses shallow neural

networks to genotype a VNTR in 18 seconds on 55X whole genome data, while maintaining

high accuracy. We use adVNTR-NN to genotype 10,264 VNTRs in 652 GTEx individuals.

Associating VNTR length with gene expression in 46 tissues, we identify 163 “eVNTRs”. Of

the 22 eVNTRs in blood where independent data is available, 21 (95%) are replicated in

terms of significance and direction of association. 49% of the eVNTR loci show a strong and

likely causal impact on the expression of genes and 80% have maximum effect size at least

0.3. The impacted genes are involved in diseases including Alzheimer’s, obesity and familial

cancers, highlighting the importance of VNTRs for understanding the genetic basis of com-

plex diseases.
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The human genome consists of millions of tandem repeats
(TRs) of short nucleotide sequences. These are often
termed as short tandem repeats (STRs) if the repeating unit

is <6 bp, and variable number tandem repeats (VNTRs) other-
wise. Together, they represent one of the largest sources of
polymorphisms in humans1,2. While multiple resources have
been developed for genome-wide analysis of STRs, here we focus
specifically on VNTRs, which have been largely missing from
genome-wide studies due to technical challenges of genotyping
and the computational expense.

We define VNTR genotyping in the narrower sense of deter-
mining VNTR length (number of repeating units). As VNTRs can
be located in coding regions3, untranslated regions (UTRs)4, and
regulatory regions proximal to a gene5,6, the variation in length
can have a significant functional impact. Not surprisingly, VNTRs
have been implicated in a large number of Mendelian diseases
that affect millions of people world-wide7–9. They also are
known to modulate quantitative phenotypes in several other
organisms10, and have shown pathogenic effects in other verte-
brates including dogs11. VNTRs are also an important source of
variations in bacteria and have commonly been used to study
epidemiology and genetic diversity of Mycobacterium tuberculosis
and Yersinia pestis12,13. They have influenced primate and human
evolution through gene regulation and differentiation of great ape
populations14. Recent studies have identified VNTRs that have
expanded in the human lineage or are differentially spliced or
expressed between human and chimpanzee brains15.

Single nucleotide polymorphisms (SNPs) that associate with
gene expression, often referred to as expression quantitative trait
loci (eQTLs), are molecular intermediates that drive disease and
variation in complex traits16–18. Studies have shown that causal
variants for diseases often overlap with cis-eQTL variants in the
affected tissue19. Therefore, we focus on the specific application of
identifying expression-mediating VNTRs (“eVNTRs”), or VNTRs
located in regulatory regions whose length is correlated with the
expression of a proximal gene. Examples of “eVNTRs” include a
VNTR in the 5′ UTR of AS3MT, which is strongly associated with
AS3MT gene expression and lies in a schizophrenia associated
locus4 and a 12-mer expansion upstream of the cystatin B (CSTB)
gene is associated with gene expression and with progressive
myoclonus epilepsy9,20.

Despite their importance, the full extent of VNTRs in med-
iating Mendelian and complex phenotypes is not known due to
genotyping challenges. Traditionally, VNTR genotyping used
capillary electrophoresis which did not scale to large cohorts.
Despite the advent of sequence based genotyping, repetitive
sequences continue to be challenging for genomic analysis. For
example, “stutter errors” due to polymerase slippage during PCR
amplification change VNTR length and reduce genotyping
accuracy1. While tools for genotyping STRs have been
developed1,21,22, they generally do not detect or genotype VNTRs,
which have non-identical and larger repeat units. Recently, a few
specialized computational methods (including our own method,
adVNTR) have been published to tackle the problem of geno-
typing VNTRs from sequence data23,24. However, these methods
are too computationally intensive to scale to functional studies
with hundreds of individuals and 104 VNTR loci (Results). There
have also been recent, successful efforts to genotype VNTRs using
long-read sequencing technologies such as Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies (ONT)23,25,26.
While these methods (which include adVNTR) are quite accurate,
the technologies are currently too expensive for population scale
sequencing.

For these reasons, large-scale studies of VNTRs and their asso-
ciation with gene expression have been limited when compared to

other sources of human variation such as SNPs and CNVs19,27,28.
While the standard whole genome sequencing (WGS) frameworks
often ignore repetitive regions, there is some progress towards
“harder” variant classes such as eSTRs29–31 and “eSVs”28. There-
fore, “missing heritability”—the gap between estimates of herit-
ability, measured for example by twin studies32,33, and phenotypic
variation explained by genomic variation—remains a limitation for
eQTL studies34. It has been speculated that the inclusion of TRs in
association analyses may reduce this heritability gap7,34,35.

Here, we describe adVNTR-NN, a method that uses shallow
neural networks for fast read recruitment followed by sensitive
Hidden Markov Models (HMMs) for genotyping. We test the
speed and accuracy of adVNTR-NN on extensive simulations to
demonstrate accuracy. We use adVNTR-NN to genotype over
10,000 VNTRs in 652 individuals from the GTEx project and
associate VNTR length with gene expression in 46 tissues. We
additionally validate eVNTRs in blood tissues in 903 samples
from an Icelandic cohort and 462 samples from the 1000 genome
project with gene expression data (Geuvadis cohort). We compare
the strength of genic eVNTR association against proximal SNPs
and identified many of the eVNTRs as causal. Our results suggest
that it is computationally feasible to genotype VNTRs accurately
in thousands of individuals, and multiple eVNTRs are likely to
causally impact the expression of key genes involved in common
and complex diseases.

Results
Target VNTR Loci. Using Tandem Repeat Finder36, 502,491
VNTRs were identified that contained at least two repeating units
in the GRCh38 human assembly and had repeat unit lengths
between 6 and 100 bp. Over 80% of these had total length <140 bp
(Fig. 1a) and could be genotyped using Illumina sequencing. As
genotyping VNTRs remains computationally expensive, we
focused on the 13,081 VNTRs located within coding, untrans-
lated, or promoter regions of genes (Methods) as they are most
likely to be involved in gene regulation. Of those, we identified
10,262 VNTRs that were within the size range for short-read
genotyping (Fig. 1a). We added two additional VNTRs that were
previously linked to a human disease (Supplementary Data 1) to
obtain 10,264 target loci37,38.

adVNTR-NN improves genotyping speed. Our previously
published tool, adVNTR, used customized HMMs for each
VNTR and showed excellent genotyping accuracy, based on trio-
analysis, simulations, and PCR23. However, HMMs are compute-
intensive, and despite some filtering strategies used by adVNTR
(Methods), the time to genotype n= 10 K VNTRs was about 631
h per individual. In developing adVNTR-NN, we first made
significant improvements to pre-processing time. Next, we
deployed a second filtering step with a two-layer feedforward
network trained separately for each VNTR that accepted the k-
mer composition for each read and filtered it specifically for that
VNTR (Fig. 1b, c and Methods). The neural-network filter
required 0.03 s per read, and filtered reads with high efficiency in
filtering reads. For 55X WGS with r= 4.2 × 106 unmapped reads,
the NN supplied an average of 14 previously unmapped reads to
each VNTR HMM. Combining with the mapped reads, each
HMM received an average of 32 reads per VNTR locus. This
reduced the running time for n VNTR loci to

TadVNTR�NNðnÞ ¼ 25:48þ 0:29nmins:ðFig:1dÞ; ð1Þ

allowing each individual to be genotyped at n= 10 K VNTRs in
50 CPU hours, a 13× speedup over adVNTR.
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adVNTR-NN outperforms alternative alignment methods at
VNTRs. While adVNTR was highly accurate by itself, its final
accuracy depended upon reads filtered for genotyping, and spe-
cifically on false negatives—reads that were incorrectly removed
by a filter. Formally, a read sampled from a VNTR was con-
sidered to be true positive (TP) if it passed the filter for that
VNTR, and false negative (FN) otherwise. False positives (FP)—
reads that passed the filter despite not being from the VNTR

locus—were a lesser concern because they would eventually be
discarded by the HMM for not aligning well to the model.
However, high false-positives increase the running time. To
account for this, we measured the trade-off between efficiency
(1− (TP+ FP)/r) and recall TP/(TP+ FN).

For comparisons with alternative filters, we used Bowtie2 as a
representative read-mapping tool39. These tools are designed for
fast mapping of reads and are accurate for most of the genome, but

Fig. 1 VNTR performance. a Length distribution of all known VNTRs (red) and selected targeted VNTRs (blue) across the GRCh38 human genome in base
pairs. b The genotyping pipeline. c Neural network architecture for each VNTR which uses a mapping of reads to a k-mer composition vector. d Improvement
in running time after using neural network and k-mer matching. e Accuracy and efficiency of read recruitment in simulated data. The scatter plot shows 1-
efficiency ((TP+ FP)/R) and recall (TP/(TP+ FN)) of classification with different methods. High efficiency is related directly with running time. Each of
10,264 points represents a VNTR locus (Method) and are shown once for each method. The side and top panels show cumulative distributions of recall and
1-efficiency. f Base pairs (log-scale) affected by VNTRs per individual in the GTEx cohort. Source data are provided as a Source Data file.
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are not specifically designed for VNTR mapping genotyping (could
have high FN). As a second comparison, we used adVNTR23, which
has high recall (low FN) for VNTR mapping. We used a mix of real
and simulated reads to test performance (Methods).

In terms of efficiency (1− (TP+ FP)/r), Bowtie2 was the most
efficient retaining only 0.9 in 106 reads for further processing for
90% of the VNTRs. Both adVNTR and adVNTR-NN were
slightly less efficient retaining about 1.2 reads per million for 90%
of the VNTRs. However, they had significantly better recall.
adVNTR-NN filtered reads with at least 90% recall for 99% of the
target VNTR loci (Fig. 1e). In comparison, 80% of the loci
achieved that recall for adVNTR, and only 27% of the loci had a
recall of 90% for Bowtie2. Notably, adVNTR-NN had much
better recall compared to adVNTR while also being more
efficient, and therefore faster.

adVNTR-NN speed and accuracy on simulated VNTR alleles.
We had previously measured adVNTR genotyping accuracy23

using trio-consistency, comparison to long reads, and other
methods. Similarly, we used a mix of WGS data and simulated
reads (Methods) to measure adVNTR-NN accuracy.

The accuracy of VNTR genotyping using short reads depends
critically on total allele length and length of repeat unit itself.
adVNTR was 90% accurate on reads up to 90 bp in length, but its
accuracy dropped subsequently (Supplementary Fig. S1). Simi-
larly, its accuracy remained high for repeat unit length up to 40
bp, as long as the total allele length did not exceed the read-length
(Supplementary Fig. S2). We reiterate that a majority of the
known VNTRs have small allele length (Fig. 1a), and therefore
the overall accuracy remains high.

Next, we compared the overall running time and accuracy of
adVNTR-NN genotyping with VNTRseek24, which was not
available at the time of original release of adVNTR. Notably,
VNTRseek combines VNTR discovery and genotyping and does
not customize genotyping for each VNTR. Therefore, its running
time on 55X WGS ranged from 9640–9686 min, and was largely
independent of the number of target VNTRs (Supplementary Fig.
S3). This was in contrast to the 1696 min required by adVNTR-
NN. The speed advantage for adVNTR-NN could largely be
attributed to filtering strategies which could potentially be used to
improve VNTRseek genotyping time as well. On simulated
heterozygous reads with 30X coverage (Methods), adVNTR-NN
was highly accurate. It achieved 100% accuracy in 7343 (76%) of
9638 VNTRs compared to VNTRseek’s median accuracy of 60%
(Supplementary Fig. S4). In contrast with adVNTR-NN,
VNTRseek’s genotyping accuracy was sharply asymmetric, with
much lower accuracy for decreasing VNTR length (Supplemen-
tary Fig. S5).

GangSTR is a method designed for STRs, but can genotype
repeat units up to 20 bp40. Therefore, we compared its accuracy
against adVNTR-NN for these short motifs. GangSTR uses total
allele length which could result in an incorrect call if there are
significant changes in repeat unit length. Indeed, on reference
data, GangSTR was accurate in 82.4% of the VNTR loci and
under-counted the allele by 1 in 12.3% of the cases. adVNTR-NN
called the genotype correctly in 98.5% of the loci (Supplementary
Data 2, 3). On simulated heterozygous reads, GangSTR accuracy
lagged that of adVNTR-NN (Supplementary Fig. S6).

adVNTR-NN consistency on trio data. A reference database of
VNTR allele counts is not available for testing performance on real
data. Instead, we tested for consistency of adVNTR-NN calls on
10,264 VNTRs using WGS data of 537 trios from 1000 Genomes
Project41 (5,511,768 tests total). We observed 98.4% consistency in
the calls obtained by adVNTR-NN. The inconsistent alleles had

longer length (median 90 bp) in contrast to the length of the
consistent alleles (median 52 bp, Supplementary Fig. S7) a range in
which VNTR genotyping is more likely to be erroneous. More-
over, in a third of the inconsistent cases (0.5% of total), the RU
count of the inconsistent allele was ±1 of a parent’s RU count,
suggestive of a de novo mutation. Comparing adVNTR-NN
genotypes with adVNTR, the calls were identical in 99.81% of the
loci showing high similarity in accuracy between two genotyping
methods (Supplementary Data 4).

Datasets for identifying eVNTRs. To identify expression-
mediating VNTR loci (eVNTRs), we primarily used data from
the GTEx project19 (Methods). The GTEx project provided WGS
for 652 individuals as well as RNA-seq for each of these indivi-
duals from 46 tissue types including whole-blood. A majority
(86.0%) of the donors were of European origin; another 11.5%
were African American and the remaining were Asian and
American Indian. For validation, we used a second cohort of 903
Icelandic individuals42 with associated whole blood RNA
expression data and WGS. We also chose a smaller, third cohort
from the Geuvadis27 project which provided gene-expression data
in lymphoblastoid cell-lines for 462 samples, where the WGS for
the samples was available from the 1000 genomes project41. The
Geuvadis cohort was dominated by individuals of European
ancestry (80.7% of cohort). Most of the remaining (19.3%) were
of African ancestry. Due to the match of tissue type and ethnicity,
the Icelandic and Geuvadis whole blood data were used for
validation of methods for identifying eVNTRs discovered from
the GTEx project.

eVNTR identification. We genotyped 10,264 VNTR loci in all
652 samples from GTEx to study the role of VNTRs in mediating
gene expression of proximal genes. As expected, the most fre-
quent allele matched the reference allele in 96.8% of the cases
(Supplementary Fig. S8).

Despite the GTEx data being predominatly European, 51% of
the target VNTRs were polymorphic. Consistent with evolu-
tionary constraints, VNTRs in promoters were most likely to be
polymorphic (57%) followed by UTRs (51%) and coding exons
(47%) (Fig. 2a). Each individual in the GTEx cohort had a non-
reference allele in at least 839 (8.2%) of the tested VNTR loci,
with an average of 1259 (12.3%) non-reference VNTRs per
individual. Altogether, the 10,264 VNTRs inserted or deleted an
average of 47,197 bp per individual (Fig. 1f). As this represents
<10% of all VNTRs, the results highlight VNTRs as an important
source of genomic variation. The minimum variation in a non-
reference VNTR allele involved at least 6 bp and the average
change in each variant site was 37 bp or about 3 repeat units
(Supplementary Fig. S9).

To perform association analysis, we excluded 1817 (17.7% of
total) VNTRs that were monomorphic, 1445 (14.1%) VNTRs that
violated Hardy–Weinberg equilibrium constraints, and 4330
(42.2%) VNTRs that had minor allele frequency (MAF) <1%
after removing individuals in the GTEx cohort with no expression
data for the specific gene (Methods). We investigated VNTRs that
violated HWE. Similar to trio-inconsistent VNTRs but distinct
from all VNTRs, these VNTRs were longer, had long common
alleles (Supplementary Figs. S10 and S11), or their flanking
regions had a strong (>5 bp) match to the sequence of the
repeating units (Supplementary Fig. S12).

The filtering resulted in a set of 2672 VNTRs (26%) available
for association analysis. We used linear regression to measure the
strength of association between average VNTR length of the two
haplotypes, and adjusted gene expression level of the closest gene
(Fig. 2b and Methods). To account for confounding factors, we
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included sex and population principal components (PCs) of each
individual as covariates. We also added PEER (probabilistic
estimation of expression residuals) factors to account for
experimental variations in measuring RNA expression levels
(e.g., batch effects, environmental variables)43. Briefly, PEER
infers hidden covariates influencing gene expression levels, and
we removed their effect by producing a residual gene expression
matrix and using it for linear regression (See Methods).

We measured association with gene expression in each of the
46 tissues. To control false discovery rate (FDR), we used the
Benjamini–Hochberg procedure to identify a tissue-specific 5%
FDR cutoff (Supplementary Fig. S13 and Methods). Combining
data from all tissues, 759 tests tied to 163 unique VNTR loci
passed the significance threshold (Fig. 2c). We refer to these
(VNTR, gene) pairs as eVNTRs. Unlike VNTRs that failed HWE
(median length: 92 bp), eVNTR allele lengths were much smaller

Fig. 2 Effect of VNTR genotypes on mediating gene expression. a Location of target VNTRs and eVNTRs relative to the proximal genes. b Pipeline to
identify eVNTRs and assign causality scores. Ancestry, Sex, and PEER factors are included in C as covariates. We associate VNTR genotype with expression
residuals after correcting for the effect of C. c Quantile-quantile plot showing p values of association signals separated by tissue. Green line represents the
p values using 100 permutations. d Number of unique and shared eVNTRs in each tissue. e Trend of RU count correlation with gene expression level.
f Spearman correlation of eVNTRs effect sizes for each pair of tissues. g Scatter plot correlating effect size versus minor allele frequency (MAF). Source
data are provided as a Source Data file.
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(median:48 bp, Supplementary Fig. S10), and in a range where
VNTR genotyping is highly accurate (Supplementary Fig. S1).

Not surprisingly, a larger fraction (6.8%; Fig. 2a) of the UTR
and regulatory (6.0%) variants were associated, compared to
coding VNTRs (4.9%). The strength of association did not
depend upon the location of the VNTRs (Supplementary Fig.
S14). However, VNTRs within 100 bp of the transcription start
sites (TSS) were twice as likely to be eVNTRs compared to other
locations (P= 6 × 10−6; Fisher’s exact test), consistent with their
known roles in core-promoters44.

The number of eVNTRs observed in each tissue type generally
correlated with the number of individuals samples for each tissue
type (Supplementary Fig. S15). Consistent with previous results
on eQTLs19, and eSTRs31, testis and fibroblasts had the largest
number of eVNTRs, while fewer eVNTRs were identified in
whole blood and skeletal muscle, relative to the sample size. Only
4% of the eVNTRs were tissue-specific (Fig. 2d). We used the
method mash45 to test for reproducibility in other tissues. Mash
exploits the power gains that come from cross-sharing the effect
of an eVNTR in multiple tissues. The analysis suggested that
many (38%) eVNTRs were significant in at least half (23) of the
tissues tested (Supplementary Fig. S16).

Twenty-three of the 163 unique eVNTRs showed significant
association in whole blood (Table 1), a tissue type in which we
could validate the eVNTRs using independent data from the
Icelandic cohort of 903 individuals. The VNTRs that showed
significant associations in GTEx were replicated on the Icelandic
cohort using the conservative p value cutoff from the smaller
GTEx cohort. Two of the 23 VNTR loci could not be used for
replication in the Icelandic cohort due to missing expression data
for TRIM15 and SNHG16 genes. Of the 21 VNTRs, 18 (86%)
showed significance at a similar level and same direction of effect
in Icelanders, highlighting the strong reproducibility of the

associations. The Geuvadis data were acquired for a smaller
cohort compared to the Icelandic data and measured expression in
lymphoblastoid cells–transformed B cells, which are a component
of whole blood tissue. Therefore, we recomputed 5% FDR cut-offs
using the Benjamini–Hochberg method on 100 permuted samples.
Despite the caveats, 12 of the eVNTRs were replicated. Combined,
91% (20/22) of eVNTRs could be replicated in an independent
cohort where data was available. We also tested for correlation of
effect sizes between the Icelandic and GTEx data and found strong
correlation (Supplementary Fig. S17; Spearman correlation
coefficient 0.88; p value= 1.15 × 10−7). A similarly strong
correlation was observed between the Geuvadis cohort and GTEx
(Supplementary Fig. S18; Spearman correlation coefficient 0.70;
p value: 4.57 × 10−4). In all cases, the direction of effect was also
maintained.

STR genotyping software such as HipSTR1 can also genotype
repeats up to 6 bp. Therefore, we compared GTEx association
results on hexamer repeats from a recent eSTR study31. Fifteeen
loci were identified as eSTR/eVNTR in at least one of the two
studies (Supplementary Table S1). Despite differences in
genotyping methods, filtering, FDR controls, choice of covariates,
and reference assemblies, all 15 loci were at least nominally
significant in both tests, and 6 of 15 were identified as eSTRs/
eVNTRs in both studies.

In 65% of the cases, VNTR length had a positive correlation
with gene expression; the remaining cases had a negative
correlation (Fig. 2e). This was consistent with the hypothesis
that many VNTRs encode transcription factor binding sites and
increasing length improved the TF binding affinity. Moreover, the
overall effect size was also large and 80% of the eVNTRs had a
maximum effect size 0.3 or higher.

We computed correlation of eVNTR effect size between each pair
of tissues using the Spearman rank test. Despite the multi-tissue

Table 1 Replication of whole blood VNTRs in independent cohorts.

Replication

Locus Length RU Length Effect Size Gene Annotation Icelandic Geuvadis

1 chr1:21440112–21440147 35 6 0.43 NBPF3 UTR Y Y
2 chr2:24084339–24084414 75 25 −0.12 TP53I3 UTR Y Y
3 chr2:25161573–25161616 43 9 0.22 POMC Coding Y Y
4 chr2:112542424–112542500 76 25 −0.18 POLR1B Coding Y Y
5 chr3:56557249–56557289 40 20 −0.12 CCDC66 Coding Y Y
6 chr6:13328502–13328532 30 6 0.12 TBC1D7 UTR Y Y
7 chr7:64337190–64337240 50 13 0.09 ZNF736 UTR Y Y
8 chr8:86508719–86508765 46 23 0.13 RMDN1 UTR Y Y
9 chr10:102869497–102869605 108 36 0.22 AS3MT Coding Y Y
10 chr21:46228815–46228863 48 9 −0.03 LSS UTR Y Y
11 chr17:75589192–75589228 36 6 −0.06 MYO15B Coding Y -
12 chr1:46609102–46609134 32 16 0.09 MOB3C UTR Y N
13 chr5:80654880–80654954 74 9 0.04 MSH3 Coding Y N
14 chr9:137063433–137063550 117 39 −0.15 SAPCD2 UTR Y N
15 chr14:61762420–61762454 34 17 0.03 SNAPC1 UTR Y N
16 chr19:12577507–12577551 44 22 −0.09 ZNF490 UTR Y N
17 chr21:41316673–41316756 83 13 −0.19 FAM3B UTR Y N
18 chr22:37805258–37805313 55 6 0.11 H1F0 UTR Y N
19 chr1:202187007–202187042 35 7 0.06 PTPRVP UTR N Y
20 chr17:18208488–18208544 56 7 −0.13 ALKBH5 UTR N Y
21 chr17:76564106–76564152 46 9 0.11 SNHG16 UTR - N
22 chr17:56978047–56978107 60 20 0.15 SCPEP1 UTR N N
23 chr6:30163542–30163579 37 12 0.14 TRIM15 UTR - -

Each row describes an eVNTR in whole blood from GTEx project(n= 652 individuals) identified with false discovery rate (FDR) <0.05 based on 100 permutations. Replication of the signal in whole blood
tissue of the Icelandic cohort of 903 samples and in lymphoblastoid cell-lines from the Geuvadis cohort (462 samples) with the same direction of effect and FDR <0.05. For the Icelandic cohort, only the
VNTRs that showed significant associations in GTEx were tested using unmapped reads plus reads mapped to those specific loci. Hence, we used the conservative p value cutoff from the smaller GTEx
cohort. Length (respectively, RU length) refers to the total (respectively, repeat-unit length) of the VNTR.
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activity of most eVNTRs, each tissue showed distinct behavior with
low correlation to most other tissues (Fig. 2f). Similar tissue types
were expectedly correlated (e.g., brain). Some correlations were seen
among glandular tissues (salivary, prostate, and pituitary) and also
between adipose tissue and nearby tissues and organs (heart,
esophagus muscularis, artery, and breast). Fotsing et al.31 used
eSTRs to cluster a subset of 17 tissue types. When restricted to that
subset (Supplementary Fig. S19), the eVNTR clustering was highly
consistent with the eSTR clustering. Both analyses showed distinct
clades for (a) the two skin tissues with esophageal-mucosa possibly
due to an abundance of squamous cells and (b) the two adipose
tissues with esophageal-muscularis. Moreover the second clade was
part of a larger one containing the arterial tissues, the tibial nerve,
thyroid, and lung in both analyses. Thus, even though most
eVNTRs are shared across tissues, we hypothesize that the
combined effect of active eVNTRs is tissue-specific and leads to
unique regulatory program for each tissue type.

Similar to SNPs, and due in part to power considerations,
VNTR loci generally showed a negative correlation between MAF
and effect size, so that common variants generally had low effect
size with larger effects mainly shown by rare variants46 (Fig. 2g).
However, we still observed many eVNTRs where common VNTR
(MAF >0.05) showed large effects. These eVNTRs had highly
significant p values (Supplementary Fig. S20) and in many cases,
the proximal genes were associated with known diseases or
phenotypes (Supplementary Data 5). As these represent poten-
tially the most interesting eVNTR findings, we tested them
further for causality and function.

VNTRs mediate expression of key genes. Only a small number
of examples have been reported where VNTR repeat unit counts
have a causative on gene expression4. Each of these cases has been
discovered by gel analysis or Sanger sequencing on individual loci
in specifically chosen cohort. One well known example is the
AS3MT gene which is involved in early brain development, where
the VNTR was associated with expression and was in linkage
disequilibrium (LD) with SNPs associating with schizophrenia4.

To investigate causality, we ranked each eVNTR against all
SNPs within 100 kbp by (a) comparing the relative significance of
association with gene expression (r1); and (b) using the tool
CAVIAR47 to measure the causality of association (r2) (Methods).
Remarkably, the two rankings were very similar with mean
discrepancy 2∣r1− r2∣/(r1+ r2)= 2.3 × 10−3 across the 163
eVNTRs. We used the harmonic mean 2= 1=r1 þ 1=r2ð Þð Þ of the
two ranks to order the eVNTRs. Of the 163 VNTRs, 81 of the
eVNTRs were ranked 1 which are likely causal (Supplementaary
Fig. S21), indicating that the 49.6% of the eVNTRs had the
highest posterior probability of causality compared to all other
variants tested. Separating tissue types, 170 (22%) of the
759 significant associations were possibly causal. These results
suggest a large fraction of causal eVNTRs even with the caveat
that we only tested “genic” VNTRs.

Looking at individual eVNTRs, we recapitulated a previous
result by identifying an eVNTR in the AS3MT gene. The lowest
association p value measured in any tissue using 652 samples was
3.9 × 10−54, which was orders of magnitude higher than the
significance reported with 322 samples4 (Fig. 3a, b). Its CAVIAR
rank was 1 and it had an effect size of 0.33 in brain cortex in
contrast to the effect size of 0.16 for the top SNP in brain cortex.
Finally, the VNTR is located in a regulatory region of the genome
as identified by H3K27Ac and DNase marks (Fig. 3c).

The other eVNTRs, including the 81 with CAVIAR rank 1,
represent novel findings. Many mediate the expression of genes
(Supplementary Data 5) involved in key functions. For example,
proopiomelanocortin (POMC) is a precursor protein for many

peptide hormones with multiple roles including regulation of
appetite and satiety48. Hypermethylation of POMC (and reduced
expression) in peripheral blood cells and melanocyte-stimulating
hormone positive neurons was strongly associated with obesity
and body mass index49. Surprisingly, POMC over-expression also
predisposed lean rats into diet-induced obesity50. Our analysis
identified a VNTR in the coding region of the POMC gene as the
causal variant governing expression levels in 15 tissues, including
adipose and nerve tissues. The 6R allele had 1.8-fold higher
expression in blood and nerve cells (Fig. 3d), and the correlation
with expression was much stronger than neighboring SNPs
(Fig. 3e). The eVNTR had an effect size of 0.48 in Nerve tissue,
compared to 0.27 for the top SNP using the same model.
Moreover, the VNTR was located within an H3K27Ac mark that
was topologically close to the promoter of the gene based on
chromatin conformation (Fig. 3f).

The ZNF232 gene is differentially expressed in ovarian and
breast cancers51,52. Also, the chr17 locus containing the gene has
been associated with Alzheimer’s in a recent large meta-GWAS
study on the UK Biobank data53. We identified an eVNTR in the
promoter region where expanded alleles (at least 5 repeat units)
had 2-fold higher median expression relative to RU3 (Fig. 3g).
The VNTR was ranked 1 in 40 of 46 tissues including seven brain
sections, and specifically the hippocampus, which is the affected
region in Alzheimer’s54,55 (Fig. 3h) and was also ranked 1 in
ovary and breast tissues (Supplementary Data 5). In hippocam-
pus, the eVNTR effect size was 0.34 for eVNTR compared to 0.07
for top SNP using the same model.

The RPA2 gene product is part of the replication protein A
complex involved in DNA damage checkpointing56. Its over-
expression is identified as a prognostic marker for colon and
bladder cancers57. A VNTR that overlapped the TSS of RP2A
with lower VNTR length showed 1.9-fold higher expression of
RPA2 in multiple tissues including colon (Supplementary Fig. S22
and Supplementary Data 5). Supplementary Data 5 identifies
other important genes including NBPF3 (neuroblastoma58),
TBC1D7 (lung cancer59), ZNF490 (colorectal cancer60), MSH3
(myotonic dystrophy61). We note that the VNTR in MSH3 is a 9
bp repeat that is distinct from the trinucleotide expansion
mediated by MSH362. Taken together, our results suggest that
VNTRs mediate the expression of key genes.

Discussion
VNTRs are the “hidden polymorphisms.” Despite high mutation
rates and known examples of function modifications, VNTR
genotyping is not a component of Mendelian or GWAS pipelines.
This is primarily due to technical challenges. Here, we use a
combination of fast filtering followed by a HMM-based geno-
typing to accurately determine VNTR genotypes. Our method,
adVNTR-NN, can genotype 10K VNTRs for an individual in 50
cpu hours with high accuracy. We used adVNTR-NN to genotype
close to 2000 human samples at 10K loci. The use of neural
networks as a filtering strategy is novel, and we believe that fur-
ther improvements could lead to another order of magnitude
reduction in compute time, making it practical to genotype ≥105

individuals in the future.
Some VNTRs have complex multi-repeat structure making it

difficult to map reads and count the repeating units. However,
unlike other VNTR genotyping methods, our method customizes
the genotyping for each VNTR. Future research will focus on
improving the genotyping for the hard cases, possibly by building
HMMs with separate profiles for each distinct repeating unit, as
well as the use of long-reads to improve anchoring to the correct
locations. We pursue a targeted genotyping approach which has
the disadvantage of not being able to discover new VNTRs, and
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Fig. 3 Effect of VNTR genotypes on mediating gene expression. a Association of AS3MT VNTR genotype with gene expression in brain cortex (n=
148 samples, Fisher’s two-sided P: 2.78 × 10−12). Box plots display the median, 25th and 75th percentiles. b Association with gene expression (upper panel)
and CAVIAR causality probability of proximal SNPs—all SNPs in 100 kbp window on either side of the AS3MT VNTR (red-star). c Location of AS3MT VNTR
relative to known regulatory elements. d, e Association with gene expression of the POMC VNTR (n= 378 samples, Fisher’s two-sided P: 1.53 × 10−9) and its
causality probability relative to proximal SNPs. Box plots display the median, 25th and 75th percentiles. f Location of POMC VNTR relative to other regulatory
regions and its spatial proximity with the promoter region revealed via Hi-C. g, h Association with gene expression of the ZNF232 VNTR (n= 114 samples,
Fisher’s two-sided P: 5.47 × 10−9) and its causality score relative to proximal SNPs. Box plots display the median, 25th and 75th percentiles. Source data are
provided as a Source Data file.
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we rely on other methods for the initial discovery of VNTRs.
However, we note that the discovery is a one-time process while
genotyping must be repeated for each cohort, and therefore, it
makes sense to separate the two problems. For maximum sensi-
tivity, discovery of VNTRs could be performed on a new cohort
prior to genotyping. Even if the reference contained 0 copies,
knowledge of the repeat pattern and location would allow us to
genotype donors with multiple repeat units.

The relatively large number of VNTRs violating HWE suggests
that genotyping accuracy could be improved by filtering proble-
matic VNTRs. We are developing strategies to filter VNTRs based
on similarity to other VNTRs, matching sequence of repeat units
and flanking regions, and other tests for long alleles. As more data
is collected, we will be able to assess the accuracy of these
strategies.

adVNTR-NN can be used for association of a VNTR genotype
chosen from a large collection of target VNTRs, against catego-
rical or quantitative phenotypes. We used it to identify eVNTRs,
where VNTR allele changes associated strongly with gene
expression. It is possible that the largest allele or some other
regrouping has the strongest effect for some VNTRs, and this idea
may be used to strengthen the eVNTR association. However, we
did not have a consistent strategy for grouping the VNTRs and
therefore did not try this approach for the VNTRs in our study.
Nevertheless, for individual VNTRs that are on the borderline for
significance, this approach could be tried prior to functional tests.

We found that VNTRs were strongly associated with the
expression of proximal genes with over 6.1% of the 2672 VNTRs
tested showing genome wide significant association. Nearly half
of the eVNTR loci were more significant compared to neigh-
boring SNPs. While the high fraction of causal eVNTRs can
partly be explained by the choice of “genic” VNTRs for testing, we
believe that non-genic regions will identify additional causal
eVNTRs. In testing for causality, it would be best to compare
against all other forms of variation including SNPs (which
include small indels), structural variations, and other STRs.
However, there is significant complexity in calling these variants.
For example many STRs and even VNTRs are mis-annotated as
structural variants. We will address these concerns in future work.
In summary, ongoing technical innovations in speed and accu-
racy of VNTR genotyping are likely to improve our under-
standing of human genetic variation, and provide novel insights
into the function and regulation of key genes and complex
phenotypes.

Method
Genotyping in adVNTR-NN
Filtering trade-off calculations. Let A(r) denote the HMM genotyping time using r
reads. The goal of filtering is to reduce the number of reads supplied to each VNTR
HMM. Any filter is characterized by three parameters:

run-time: Let P(r) denote the running time of the filter for r reads for each
VNTR locus;

efficiency: Let fk denote the fraction of reads that were retained for any VNTR.
The efficiency is defined as 1− fk so that high efficiency implies only a small
fraction being retained by the filter.

sensitivity/recall: The fraction of true VNTR overlapping reads that were
accepted for each VNTR.

Consider a dataset with r unmapped reads and among the mapped reads, an
average of r0 reads are assigned to each VNTR locus. Assuming that the filtered
reads are distributed equally among the VNTRs, each HMM will receive f kr þ r0

reads on the average. The total genotyping time for n VNTRs is given by:

TadVNTRðn; r; r0Þ ¼ indexing � time þ nðPðrÞ þ A f kr þ r0
� �Þ; ð2Þ

Empirically, A(r)= 0.32r seconds per VNTR. The keyword match filter for
adVNTR achieved fk= 7.7 × 10−5. For a 55X coverage WGS with r= 4.2 × 106

reads, P(r)= 111.22(s), r0 ¼ 18, we run the HMM on an average of f kr þ r0 ¼ 341

reads per VNTR on the average. The running time is:

TadVNTRðn; rÞ ¼ 60:23þ n 1:853þ 0:32
60

´ 7:7 ´ 10�5 ´ 4:2 ´ 106 þ 0:32
60

´ 18
� �

ð3Þ

¼ 60:23þ 3:68nmins: ; ð4Þ
The genotyping time for n= 10K VNTRs is about 631 h per individual.

Read filtering. For each VNTR locus V, and each read R, consider a binary clas-
sification function f:V × R→ {0, 1}, where f(R, V)= 1 if and only if read R maps to
locus V. For each read and each of N loci V1,…,VN, the neural recruitment method
computes independent classification functions fi(Vi, R). Note that a read can be
assigned to multiple VNTR loci, or to none. As an initial step toward this task, we
perform a fast string matching based on prefix tree (trie) to assign each read to the
VNTR loci that share an exact match with the read. For an efficient matching, we
generate a separate aho-corasick trie63 using every k-mer in VNTR loci as dic-
tionary X. A trie is a rooted tree where each edge is labeled with a symbol and the
string concatenation of the edge symbols on the path from the root to a leaf gives a
unique word (k-mer) X. We label each leaf with a set of T VNTRs that contain
corresponding k-mer. On the other hand, the string concatenation of the edge
symbols from the root to a middle node gives a unique substring of X, called the
string represented by the node. We add extra internal edges called failure edges to
other branches of the trie that share a common prefix which allow fast transitions
between failed string matches without the need for backtracking63. Testing whether
a query q has an exact match in the trie can be done in O(∣q∣) and we require
additional O(∣T∣) time to assign read q to all T VNTR loci that share the keyword.
The overall complexity of this algorithm is linear based in the length of original
dictionary (VNTRs in the database) to build the trie and recover matches plus the
length of queries (sequencing reads). Hence, after construction of the trie, the
running time is proportional to just reading in the sequences.

Neural recruitment. To further reduce the set of reads assigned to each VNTR, we
use a 2-layer feedforward neural network to compute fi, using a k-mer based
embedding to encode DNA strings. Specifically, we use a DNA string w of length k,
consider an bijection ϕ that maps w to a unique number in [0, 4k− 1]. Each read R
can be defined by a collection of overlapping k-mers. We map read R to a unique

vector vR 2 f0; 1g4k , such that vR[i]= 1 if and only if ϕ−1(i) ∈ R. Details of the
neural network architecture and hyper-parameters are presented below.

Network architecture. Let v denote the mapping of a read. We use a shallow
architecture with an input layer used to present v to the network. We add two
layers of fully connected nodes as the hidden layers, with each node being a ReLU
function. In the output layer, there are two nodes zero and one which specify that
whether read should be classified as true (containing VNTR) or false (Fig. 1). We
used the training set to train the network with Adam optimization algorithm64.

The number of hidden layers N1 and N2 were chosen empirically. Too many
nodes would increase both training time and test time and possibly cause over-
fitting. We performed the training with the number hidden nodes of each layer
varying from 10 to 100 with 10 increase in each step and selected N1= 100 and
N2= 50 as the best parameters according to validation performance.

Choosing the optimal k-mer length. The choice of k-mer length is important.
Increasing the k-mer size could decrease sensitivity in our case as small variation
will significantly change the k-mer composition, whereas lowering k-mer size
reduces the features that are discriminative for a pattern65. In addition, our
embedding size exponentially grows with respect to the k so there is also a practical
upper bound on the k. Following Zhang65 and Dubinkina66, we trained and tested
in the range 4 ≤ k < 9. The accuracy remains comparable in this range (Fig. S23),
and we chose k= 6 as its mean validation accuracy is the highest compared to four
other values of k.

Effect of different loss functions. To choose the best loss function, we examined
three regression loss functions: Mean squared error (MSE), mean squared loga-
rithmic error (MSLE), and mean absolute error (MAE), as well as three binary
classification loss functions hinge, squared hinge, and binary cross-entropy. We
compared the validation performance of our models for these six different loss
functions. Each distribution in Supplementary Fig. S24 shows the accuracy on
validation set across 1905 genomic loci. We analyzed these distributions using one-
way analysis of variance (ANOVA) and none of them were significantly better than
others. We chose binary cross-entropy as it obtained the highest mean accuracy
(99.95%) among loss functions and its binary classification nature fits our
requirement.

Speed and efficiency of neural network filtering. The neural-network filtering
achieved a speed of N(r) ≃ 0.03r seconds for r reads, greatly increasing filtering
efficiency (f nf

0
k<10

�6) to input only 14 reads per VNTR on the average when
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r= 4.2 × 106. The running time using the two filters could be modeled as

TadVNTR�NNðn; rÞ ¼ n P0ðrÞ þ N f 0kr
� �� �þ nA f nf

0
kr

� �þ nAðr0Þ
¼ 25:48þ 0:13nþ 0:07nþ 0:09n ¼ 25:48þ 0:29nmin:;

ð5Þ

Simulated data for training and testing. We used ART67 to generate r= 6 × 108

reads from human reference genome (30X coverage) with Illumina HiSeq 2500
error profile. For each target locus, we modified the number of the repeats to be ±3
of the original count in the reference with setting 1 as minimum number of repeats,
and simulated reads from those regions. For each locus, we assigned labels to reads
as being true reads or not, based on exact location. We divided the original set of
reads into three parts: 70% for training, 10% for validation, and 20% for testing. We
trained all neural network models using the training and validation sets, and
reported performance on the test dataset.

To augment the data, we added random single nucleotide variations in the
genome sequences of the dataset before simulating the sequencing reads68. For
each sequence in the dataset, we replaced its nucleotides with a random one with
probability rm. We set rm= 10−5, the novel base substitution mutation rate within
VNTRs69. This method of dataset augmentation helps include “mutated” k-mers in
the embedding of reads, making the method more robust.

adVNTR-NN accuracy versus other methods. To test and compare genotyping accu-
racy against VNTRseek (v1.10.0), we started with a random selection of 10,000 target
VNTR loci (<140 bp) and filtered them out if a VNTR locus was marked as indis-
tinguishable in VNTRseek. As a result, 9638 target VNTRs remained. We used ART67

to generate heterozygous samples by simulating 15X coverage reads from each
modified haplotype which contained a non-reference allele and combined those with
15X reads that were simulated from reference. The non-reference allele for each
VNTR was chosen to be in the range [c− 3, c+ 3], where c is the reference count.
Together, this provided six diploid simulated datasets for each locus, at 30X coverage.

Similarly, to test and compare genotyping accuracy against GangSTR40 (v2.4.5)
for, we selected VNTR loci with repeat unit length ≤20 bp. A total of 6508 target
VNTRs remained. Following the method for VNTRseek comparisons, we used
ART67 to generate a homozygous sample and six heterozygous samples by
simulating 30X paired-end reads with Illumina HiSeq 2500 error profile.

Performance test. We measured running time of adVNTR-NN and VNTRseek by
running them with default parameters on a single core of Intel Xeon CPU E5-2643
v2 3.50GHz CPU. To measure the accuracy of genotyping, we ran adVNTR-NN
and VNTRseek on diploid simulated data of heterozygous VNTRs and measured
the number of correct calls divided by total number of VNTR loci.

Data and preprocessing. We accessed 30X Illumina WGS data from the GTEx
cohort (652 individuals) through dbGaP (accession id phs000424.v8.p2 [https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.
p2]). Specifically, we accessed CRAM files containing read alignments to the
GRCh38 reference genome through cloud-hosted SRA data using fusera v1.0 and
downloaded VCF files containing SNP genotype calls from dbGaP.

As genotyping VNTRs remains computationally expensive, we focused on the
smaller set of VNTRs located within coding, untranslated, or promoter regions of
genes, which are most likely to be involved in regulation. We identified VNTRs in
coding exons and UTRs by intersecting VNTR coordinates with refseq gene
coordinates downloaded from UCSC Table Browser. To identify VNTRs that
appear within promoter regions, we considered 500 bp upstream of the TSS of
genes as the promoter regions. Overall, this procedure identified 13,081 VNTRs, of
which 10,262 were within the size range for short-read genotyping (Fig. 1a). We
subsequently added two VNTRs previously linked to a human disease to obtain
10,264 target loci38,38. We genotyped these VNTR loci in 652 individuals from
GTEx cohort using adVNTR-NN on Amazon Web Services (AWS) cloud, which
allowed us to do the computation in parallel for different samples.

We compared the most common allele of each VNTR with the reference allele
(GRCh38) to observe representation of each VNTR in the reference. We also
searched for VNTRs with multiple observed alleles to estimate a rate of
polymorphism for VNTRs and find how common each allele was. To call a VNTR
polymorphic, we set the MAF at 5% and any variation below that frequency was
discarded. In addition, we identified the amount of base-pair difference that they
make in genome of each individual by comparing the copy number difference of
VNTRs between reference and the sample and multiplied that by the pattern length
of each locus. We computed how many loci on average differed between an
individual and reference by combining all non-reference calls in at least one
haplotype from all individuals and dividing it by all called variants. VNTRs whose
allele frequencies did not meet the expected percentage of homozygous versus
heterozygous calls under Hardy–Weinberg equilibrium (P < 0.05 for two-sided
binomial test) were eliminated. We further removed VNTRs that were
monomorphic (only one allele) in the entire GTEx cohort or had MAF lower than
1% among the individuals with expression data in every tissue. We used the
resulting 2672 VNTRs for subsequent analysis (Supplementary Data 1).

We obtained processed RNA-expression data (RPKM values) from 54 tissues
from dbGaP (phs000424.v7.p2 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000424.v7.p2]) and limited analysis to 46 tissues which

had data for at least 100 individuals. “Non-expressed genes”—genes with median
RPKM level zero—in each tissue were removed from analysis. For the remaining
genes, we quantile-normalized RPKM values of each tissue to a normal
distribution. We analyzed VNTR-gene pairs for each VNTR and its closest gene
based on refseq annotations in each of the 46 tissues.

Identification of eVNTRs. Before the analysis of the association of VNTR
genotypes and gene expression levels, we adjusted gene expression levels for
each tissue in order to control for covariates of sex, population structure, and
technical variations in measuring expression. For population structure, we used
the top ten PCs from a principal components analysis (PCA) on the matrix
of SNP genotypes to provide a correction for population structure. To generate
the SNP genotype matrix, we used the VCF files for GTEx cohort (accession
phg001219 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000424.v7.p2]) and filtered biallelic SNP sites MAF >0.05 using
plink70. To correct for non-genetic factors such as technical variations in
measuring RNA expression levels (e.g., batch effects, environmental variables),
we applied PEER factor correction and used the top 15 factors43. We removed
the effect of covariates by regressing them out from the RNA expression matrix
of each tissue and subtracting their factor contributions and used the residuals
for all eQTL association analyses.

We normalized the individual raw gene expression values to N(0, 1) by
subtracting the mean and dividing by the standard deviation of the expression
values for that cohort. For a gene-VNTR pair v, let yiv denote the normalized
expression value of gene in v for individual i and xiv denote the genotype of the
VNTR in v for individual i. Then,

yiv ¼ βvxiv þ∑
k
γkPCik þ∑

k
δkRik þ ϵiv ð6Þ

where, PCik denotes the strength of the k-th principal component, and Rik the value
of the k-th PEER factor. We performed the association test for each VNTR-gene
pair separately for each tissue type using Python statsmodels linear regression,
ordinary least squares (OLS)71, and computed a nominal p value of the strength of
association for each VNTR-gene pair using two-sided Fisher’s exact test.

Multiple testing correction. We used permutation tests and the Benjamini–Hochberg
procedure to estimate a 5% FDR significance cutoff for each tissue. The significance
thresholds for each of the 46 tissues ranged from 10−3 to 3.8 × 10−5 (Fig. S13).
Overall, 759 significant tests were observed from total of 73,609 tests in all tissues
and 163 unique VNTRs passed the significance test in at least one tissue.

We performed a similar correction for the Geuvadis cohort. Specifically, we
performed 100 permutations and used a Benjamini–Hochberg procedure to control
the FDR at 5%. For the Icelandic cohort, only the VNTRs that showed significant
associations in GTEx were tested using unmapped reads plus reads mapped to
those specific loci. Hence, we used the conservative p value cutoff from whole blood
tissue of the smaller GTEx cohort.

Fine-mapping of causal variants. To compare the strength of the VNTR association
relative to proximal SNPs, we extracted all SNPs from 50 kb 5′ to the transcription
start, from the gene body, and up to 50 kb 3′ to the end of the transcript using the
GTEx variant calls. To perform a fair comparison, we used the same test and
covariates for VNTRs and repeated it for each SNP by replacing the genotype to
obtain the strength of association for each SNP. Then, we ranked all variants based
on their association P value.

We further used a fine-mapping method, CAVIAR, as an orthogonal method to
identify the causal variant for the change in gene expression level. CAVIAR is a
statistical method that quantifies the probability that a variant is causal by
combining association signals (i.e., summary level Z-scores) and LD structure
between every pair of variants47. We ran CAVIAR with parameter -c 1 to identify
the most likely causal variant, along with the causality probability distribution for
each variant site. We ranked variants based on their causality probability given by
CAVIAR and called it the causality rank.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The analyses presented in this paper are based on the use of GTEx study data
downloaded from the dbGaP web site, under phs000424.v7.p2 [https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v7.p2]. The 30X whole
genome sequencing data of 1000 Genomes Project samples used in this research were
generated at the New York Genome Center with funds provided by NHGRI Grant
3UM1HG008901-03S1. This sequencing data is available at ENA Study PRJEB31736
[https://www.ebi.ac.uk/ena/browser/view/PRJEB31736] and ENA study PRJEB36890
[https://www.ebi.ac.uk/ena/browser/view/PRJEB36890]. RNA-seq data corresponding to
465 samples from 1000 Genomes Project were downloaded from Geuvadis project
[https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/]. The refseq data is
vailable at UCSC Table Browser [https://genome.ucsc.edu/cgi-bin/hgTables]. Source data
are provided with this paper.
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Code availability
adVNTR-NN is available at https://github.com/mehrdadbakhtiari/adVNTR. v1.4.0 of the
software was used for this paper (Supplementary Software 1). Code for eVNTR analysis
and generating figures is available at https://github.com/mehrdadbakhtiari/VNTR-eQTL
and as Supplementary Software 272.
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