
Article https://doi.org/10.1038/s41467-024-51221-z

Fast and robust analog in-memory deep
neural network training

Malte J. Rasch 1,2 , Fabio Carta1, Omobayode Fagbohungbe1 &
Tayfun Gokmen 1

Analog in-memory computing is a promising future technology for efficiently
accelerating deep learning networks. While using in-memory computing to
accelerate the inference phase has been studied extensively, accelerating the
training phase has received less attention, despite its arguably much larger
compute demand to accelerate. While some analog in-memory training algo-
rithms have been suggested, they either invoke significant amount of auxiliary
digital compute—accumulating the gradient in digital floating point precision,
limiting the potential speed-up—or suffer from the need for near perfectly
programming reference conductance values to establish an algorithmic zero
point. Here, we propose two improved algorithms for in-memory training, that
retain the same fast runtime complexity while resolving the requirement of a
precise zero point. We further investigate the limits of the algorithms in terms
of conductance noise, symmetry, retention, and endurance which narrow
downpossible devicematerial choices adequate for fast and robust in-memory
deep neural network training.

Analog in-memory computing AIMC is a promising future hardware
technology for accelerating deep-learning workloads. Great energy
efficiency is achieved by representing weight matrices in resistive
elements of crossbar arrays and using basic physical laws of electro-
statics (Kirchhoff’s and Ohm’s laws) to compute ubiquitous matrix-
vector multiplications (MVMs) directly in memory in essentially con-
stant timeOð1Þ1–5.Many recent AIMCprototype chip-building efforts to
date have been focused on accelerating the inference phase of deep
neural networks (DNNs) trained in digital6–12. However, in terms of
compute requirements, the training phase is typically orders of mag-
nitude more expensive than the inference phase, and thus would in
principle have a greater need for efficient hardware acceleration using
in-memory compute13. However, accelerating the training phase using
AIMC has been challenging, in particular, because of the asymmetric
and non-ideal switching of the memory devices that fail to achieve the
high precision requirements of standard (SGD) algorithms designed
for FP (FP) DNN training (see e.g., ref. 14 for a discussion). Thus,
dedicated AIMC training algorithms are needed that can successfully

train DNNs with the promised AIMC speedup and efficiency despite
non-ideal device switching characteristics.

To accelerate DNN training in contrast to inference, the back-
propagation of the gradients in SGD, as well as weight gradient com-
putation and weight update itself, have to considered. While the
backward pass of anMVM is straightforwardly accelerated in AIMC by
transposing the inputs and outputs in constant timeOð1Þ, the gradient
accumulation and update onto weights represented in the con-
ductances of the memory elements is muchmore challenging. Typical
devicematerials, such asResistive RandomAccessMemory (ReRAM)15,
Electro-Chemical Random Access Memory (ECRAM)16,17, as well as
capacitors as weight elements18, show various degrees of asymmetry
when updating the conductance in one direction versus the other
direction, as well as a gradual saturation to a minimal or maximal
conductance value. Moreover, the device conductance can only effi-
ciently be updated in small increments thus making some operations
such as a full reset to a common target conductance prohibitively
expensive. Finally, inherent device-to-device variations make it

Received: 18 December 2023

Accepted: 1 August 2024

Check for updates

1IBM Research, TJ Watson Research Center, Yorktown Heights, NY, USA. 2Sony AI, Zürich, Switzerland. e-mail: malte.rasch@gmail.com;
tgokmen@us.ibm.com

Nature Communications | (2024) 15:7133 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-7988-4624
http://orcid.org/0000-0002-5677-1723
http://orcid.org/0000-0002-5677-1723
http://orcid.org/0000-0002-5677-1723
http://orcid.org/0000-0002-5677-1723
http://orcid.org/0000-0002-5677-1723
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51221-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51221-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51221-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51221-z&domain=pdf
mailto:malte.rasch@gmail.com
mailto:tgokmen@us.ibm.com

challenging to implement many algorithmic ideas that instead inher-
ently assume translational invariance.

One way to get around these challenges is to sacrifice speed and
efficiency by simply computing the gradient and its accumulation in
digital memory and precision and only accelerate the forward and
backward pass using AIMC, as suggested by Nandakumar et al.19,20.
However, given thatOðN2Þ digital operations areneeded forupdating a
weightmatrixof sizeN ×N, the update phasewouldnotmatchwith the
Oð1Þ character of the MVM in the forward and backward passes and
thus slow down the overall AIMC acceleration of DNN training.

Therefore, Gokmen et al.13 instead suggested to use coincidence
of voltage pulse trains to perform the outer-product and weight
update operations fully in-memory in a highly efficient and fully par-
allel manner. This approach has great potential since also the update
phase can then be done in constant time Oð1Þ. Unfortunately, when
computing the gradient and directly updating the weight in-memory
with this approach, a bi-directionally switching deviceof unrealistically
high symmetry and precision is needed13,21,22. The main problem when
accumulating gradients over time using asymmetric devices with rea-
listic device-to-device variations is that each device will drift in general
towards a different conductance value even in the case when random
fluctuations with zero mean are accumulated and therefore the net
update should be zero and identical for all devices.

However, realizing this issue, follow-up studies23,24 more recently
suggested to use two additional, separate arrays of non-volatile
memory (NVM) devices to, respectively, accumulate the gradients
separately from the weights and represent predetermined reference
values. It turns out that a differential read of the devices used for the
accumulated gradients and those programmed with the reference
values can statically correct for the effect of the device-to-device var-
iations on the gradient accumulation. Indeed, when additionally
introducing a low-pass digital filtering stage, the requirements of the
number of reliable conductance states and on-device symmetry were
considerably relaxed24. Furthermore, because only OðNÞ additional
digital operations are needed, the update pass retains very good run-
time complexity and is this efficiently accelerated using AIMC.

While this Tiki-Taka version 2 (TTv2) algorithm24 was also
demonstrated recently in hardware and in simulation using realistic
ReRAM on small tasks25, several challenges remain in practice. First,
implementing the circuitry for a differential read results in a more
complicated unit cell design as well as significant additional chip area
cost for the additional referencedevices. Second, the estimationof the
reference conductance values and the programming of the resulting
values has to be done prior to the start of the training, which takes
additional time and effort26. Finally and most importantly, as we will
show here, even a small deviation of the programmed reference values
from the theoretical values on the order a few percent leads to sig-
nificant accuracy drops during training, thus severely limiting this
approach in practice where much larger programming errors and
limited retention are common issues. Indeed, even in the study
demonstrating the TTv2 algorithm25, reference values were repre-
sented in digital values due to test hardware limitations. Moreover,
even if the programming would be perfect, retention of the exact
values over long training times might become problematic. Together,
these issues make the use of the TTv2 algorithm challenging in
practice.

Here, we first make a simple improvement to the TTv2 algorithm
to better handle any offsets inflicted by an erroneous reference value.
We propose to use the chopper technique27 in the gradient accumu-
lation to remove any remaining offsets in the reference by periodic or
random sign changes. This Chopped-TTv2 (c-TTv2) algorithm relaxes
the requirement of the reference errors to smaller than about 25%
without significantly altering the runtime in comparison to TTv2.
Secondly, we introduce an altogether different algorithm, Analog
Gradient Accumulation with Dynamic reference (AGAD), that

establishes reference values on-the-fly using a modest amount of
additional digital computing. In this case, the reference values are an
estimate of the recent past of the transient conductance dynamics and
thus independent of any device measurement or device model
assumption. We find that both c-TTv2 and AGAD train benchmark
DNNs to state-of-the-art accuracy. In addition, AGAD also greatly
simplifies the hardware design as it does not need a separate con-
ductance array for any reference values, nor any differential read cir-
cuitry. We also show that AGAD broadens the choice of device
materials since both symmetric as well as asymmetric device char-
acteristics can be used, in contrast to TTv2 and c-TTv2, which depend
on devices showing asymmetry. By estimating the expected perfor-
mance, we show that the both proposed algorithms retain the fast
runtime of TTv2, showing two orders of magnitude runtime
improvement to the alternative approach using digital instead of in-
memory gradient accumulation20.

Finally, we also introduce a dynamicway to set the learning rate to
optimize the gradient accumulations in diverse DNNs, significantly
easing the search for hyper-parameters in practice.

Results
In the following, we present first simple toy examples to illustrate and
compare the mechanism of the proposed training algorithms
Chopped-TTv2 (c-TTv2) (Supplementary Alg. 2) and Analog Gradient
Accumulation with Dynamic reference (AGAD) (Supplementary Alg. 3)
to the baseline Tiki-Taka version 2 (TTv2) algorithm (see Fig. 1; the
proposed algorithms are described in detail in the “Methods” section
“Fast and robust in-memory training”). Then, we use them to simulate
the training of DNNs with different material and reference offsets
settings. For simulations, we use the PyTorch-based28 open source
toolkit (AIHWKit)29, where we have implemented the proposed algo-
rithms (see also Supplementary Fig. 4). Finally, we investigate the
projected performance numbers, as well as on-chip memory, and
digital compute, and device material requirements.

Gradient update mechanisms
All here proposedAIMC learning algorithms share the feature that they
use a dedicated array of conductances (that is �A) to compute the
gradient accumulation in-memory, while slowly transferring the
accumulated gradients onto the actual weight matrix, which is repre-
sented by another crossbar array of conductances (that is �W) to enable
in-memory acceleration of the forward and backward passes as well.
To illustrate the mechanism of the proposed learning algorithms, we
first investigate a simple casewhere activations are given by x = − X and
gradient inputs by d = αX + (1 − α)Y where X , Y ∼N ð0, 1Þ are Gaussian
random variables. Thus, in this case, the correlation of activations and
gradients is given by α and expected average update is only in one
direction Δ�w / �α.

Let’s first assume that the reference matrix �R used for the differ-
ential read of the accumulated gradients in TTv2 and c-TTv2 (see Fig. 1)
is perfectly accurately set to the symmetry point (SP) of �A (as illu-
strated in Fig. 2) so that no offset remains (see results in Fig. 3A–C). For
simplicity, we plot here the conductance values in normalized units,
assuming that the SP is set arbitrarily to zero, �a* � 0, and the maximal
and minimal conductance at 1 and − 1, respectively (see “Methods”
section “Device material model” for details). Note that for TTv2
(Fig. 3A; see “Methods” section “Recap of the Tiki-Taka (version 2)
algorithm”) the trace of a selected matrix element �a is strongly biased
towards negative values, thus indicating correctly the direction of the
gradient. It, however, saturates at a certain level, caused by the char-
acteristics of the underlying devicemodel (see Eq. (4)). Because of the
occasional reads (indicated with dot markers), the hidden weight
accumulates until threshold is reached at− 1 (green trace), in which
case the weight �w is updated by one pulse (orange trace). The shaded
blue area indicates the instantaneous accumulated gradient value of

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 2

ω= �a� �r. The area would be red if the value was positive, which would
cause the hidden weight h to update in the wrong direction if readout
at that moment.

In Fig. 3B, the behavior of the proposed c-TTv2 algorithm (see
“Methods” section “Chopped-TTv2 algorithm” for details) is shown for
the same inputs. In this algorithm, the gradients are accumulated with
changing signs in either positive or negative directions within a
chopper period. Here, for better illustration, a fixed chopper period is
chosen (gray dashed lines). Since the incoming gradient is constant

(negative), the modulation with the chopper sign causes an oscillation
in the accumulation of the gradient on �a. However, since the sign is
corrected for during readout, the hiddenmatrix is updated (mostly) in
the correct direction (blue areas are sign corrected). As we will see
below, this flipping of signs will cancel out any offsets (which are
currently assumed to be 0). If the trace of �a has not returned to the SP
before the readouts, it would cause some transient updates of the
hidden weights in the wrong direction (red areas). The weight �w is
nevertheless correctly updated on average as the hidden weight

Fig. 2 | Setting the zero-reference point with differential read in Tiki-Taka
version 2 (TTv2) and Chopped-TTv2 (c-TTv2). A Example ReRAM-like device
response traces showing noise and variation in response to bi-directional pulses.
Here we assume that the device gradually saturates with consecutive up or down
pulses (see lower plot for pulse direction applied). Noise properties and update
step sizes can be adjusted in the soft-bounds model Eq. (4) to e.g., reflect typical
ReRAM (high noise), capacitor (medium noise, lower variation), or ECRAM (low
noise) traces. B Due to the asymmetry, consecutive (pairwise) up-down pulses

converge the conductance to a fixed point where up and down pulses are on
average of the same size (symmetry point (SP), see Eq. (8)). Because of device-to-
device variation each device has an individual SP value (dashed lines). CWhen the
SP is estimated for each device of a crossbar array �A, it can be programmed on a
separate reference device �R. Assuming that the circuitry allows for a matrix-vector
multiplicationwith differential read, e.g., yi =

P
j �aij � �rij
� �

xj , then individual device
responses are effectively set to zero when consecutive up-down pair pulses are
applied.

Fig. 1 | Illustration of gradient update computation steps. The general structure
of the gradient computation is shared for all improved learning algorithms dis-
cussed and is basedonTiki-Takaversion 2 (TTv2) (see ref. 24). For each input vector
x and backpropagated error vector d the weight gradient is first accumulated on a
crossbar array �A, using a parallel pulsed outer-product update with learning rate λA
(13; see Supplementary Alg. 1). Note that the matrices are here displayed in a
transposed fashion so that voltage inputs x are delivered from the left and d from
the bottom side. Then a single row of the accumulated gradient in �A is read out
intermittently every ns vector updates (looping through the rows over time), and
digital computation is used to arrive at a FP vector zk that is added to the digital

storage H with learning rate λH. Finally, the corresponding row of actual weight
matrix, which is represented by a second crossbar array �W , is updated when a
threshold is crossed, and the hidden matrix H is reset correspondingly. The newly
proposed algorithms differ in the digital computation to arrive at x̂ and zk. For the
TTv2 baseline algorithm, it is x̂ � x and zk � ð�A� �RÞ vk where the reference
crossbar array �R is programmed before DNN training and a fast differential analog
MVMisused for readout (using one-hot unit vectorvk). See “Methods” section “Fast
and robust in-memory training” and Supplementary Fig. 2 for more details on the
digital operations of the proposed algorithms.

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 3

averages out transients successfully. The rate of change of �w, however,
is somewhat impacted by the averaging of the transients.

We further propose the AGAD algorithm (Fig. 3C; see “Methods”
section “AGAD algorithm” for details) that uses an (average) value pref

of the recent accumulated gradient �a as the reference point (and not
the static SP programmed onto �R; see violet line in Fig. 3C). The digital
reference value of pref is changed only when the chopper sign changes
(dashed horizontal lines) and is computed by a leaky average of the
past conductance readouts (p; see red line in Fig. 3C). Because of this
on-the-fly reference computation, this algorithm is not plagued with
the same transients. In fact, the increased dynamical range causes a
faster update of the hidden matrix and subsequently the weight �w.

Since in Fig. 3A the reference �R was set exactly to the SP of �A—as
required for TTv2—the zero point was perfectly set to the fix-point of
the device dynamics30. In this case, the baseline algorithmTTv2 indeed
works perfectly fine and might be the algorithm of choice, because it
requires least amount of digital computing (as we discuss below).
However, in a more realistic setting when the reference matrix �R does
not exactly match the SP, that is programmed instead with an error
offset �R �a* � μr andμr ≠0, the algorithmperformsgenerally poorly.
This is shown in Fig. 3D, where the experiment of Fig. 3A is repeated,
however, now with an offset of μr = −0.8 (blue dashed line in Fig. 3D).
Note that the constant gradient pushes the accumulated gradient �a
away from the SP (here at zero) as expected, however, since the
algorithm does subtract the offset programmed on �R, the update onto
the hidden matrix is wrong. In fact, hidden weight h (green line) never
reaches the threshold and is net zero in this example instead of
becoming negative as expected (compare to the Fig. 3A).

On the other hand, because of the effect of the chopper sign
changes, even this large offset can be successfully removed with the
c-TTv2 algorithm (Fig. 3E). Note that the hidden weight h as well as the
weight �w decreases correctly. However, due to the large offset,
noticeable oscillations (red areas) are stressing the accumulation on h,

thus reducing the speed and fidelity of the gradient accumulation. In
case of the AGAD algorithm (Fig. 3 F), the dynamic reference point
computation perfectly compensates any wrong offset, making the
reference device conductance and the programming of the SP alto-
gether unnecessary.

Stochastic gradient descent on single linear layer
While investigating the case of constant gradient input is illustrative
for the accumulation behavior of the learning algorithms, in a more
realistic setting, the incoming gradient magnitude typically depends
on thepastupdate of theweightmatrix, thus closing a feedback loop30.
Therefore, we next test how the algorithms perform when actually
implementing stochastic gradient descent. We first consider training
to programa linear layer with output f iðxÞ=

Pn
j = 1wijxj to a given target

weight matrix Ŵ . We define the loss function as the mean squared
deviation from the expected output by using the target weight Ŵ ,
namely

LðxjW ,Ŵ Þ= 1
2m

Xm

i

f iðxÞ �
Xn

j = 1
ŵijxj

� �2
: ð1Þ

Naturally, whenminimizing this loss (using SGD) and updatingW,
the deviation is minimized for W = Ŵ . This problem statement is
similar to the proposal to program target weights for AIMC inference31,
however, we here use our proposed gradient update algorithms to
perform the gradient accumulation in memory instead of using digital
computed gradients.

We set Ŵ to random values N ð0,0:3Þ and use xj ∼N ð0, 1Þ as
inputs. We evaluate the different algorithms by the achieved weight
error ϵ2w = hðwij � ŵijÞ2i, that is the standard deviation (SD) of the
learned weights with the target weight. Figure 4 shows the results for a
20 × 20 weight matrix after a set amount of inputs with fixed learn-
ing rate.

Fig. 3 | Illustration of the gradient update mechanism of the algorithms
assuming constant (negative) gradient input. A–C Reference conductance (�R)
set to the symmetry point (SP) of �A without offset (�rij = �a*

ij). D-F Reference con-
ductance set to the symmetry point (SP) with added offset (�rij = �a*

ij � 0:8).A,DTiki-
Taka version 2 (TTv2) accumulates the gradient onto �aij (blue curve) which is
constantly updated in the direction of the net gradient. The hidden weights hij
(green curve) is updated intermittently with the readout of �aij (indicated with dots;
here every 25 updates). The weight (orange line) is updated once the threshold is
reached (dotted line). Note that theweight is updated correctlywithout offset (plot
(A) blue area indicates correctly signed updates), however, with reference offset
(plot (D) blue dashed line) the weight update breaks down. B, E Chopped-TTv2 (c-
TTv2) introduces a chopper (dashed gray lines) that switches the gradient

accumulation direction (here set to regular intervals). Note that weight is correctly
updated without offset (plot (B)), however, a reference offset (plot (E)) causes a
slowdown (but not breakdown) of the weight learning as the offset disturbs the
zero point in one chopper cycle but recovers every other cycle (red areas indicate
wrong sign of the gradient readout due to theoffset).C,F (AGAD) introduces anon-
the-fly reference estimation (pij; red line) that is copied to the current reference
(pref

ij , violet line) when the chopper changes. Note that in this case the reference is
dynamically adjusted so that weight update is correct without (plot (C)) as well as
with any offset (plot (F)). Parameter settings: 5 × 5 matrix size (only first element is
plotted), δ =0.05, σb = σ± = σd-to-d = σc-to-c = 0.3, γ0 = 200, λ =0.1, ns = 5, β =0.5,
ρ =0.1, lmax = 5, λA = 1, and σr =0.

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 4

We compare the two proposed algorithms (c-TTv2, and AGAD)
with the TTv2 baseline24, as well as with plain in-memory SGD, where
the gradient update is directly done on the weight �W (Supplementary
Alg. 1). Additionally, we explore the resilience to two-parameter var-
iations, (1) the magnitude of the offset (by varying the SD of the
reference offset σr across devices), and (2) the number of device states
nstates (see Eq. (6)). As the number of states also scales the relative
amount of conductance noise in our model (see “Methods” section
“Device material model”), this variable can be seen as a choice of dif-
ferent device materials, where a low number of states corresponds to
e.g., ReRAM devices, and a high number of states corresponds to e.g.,
ECRAM devices.

As expected in case of no offset σr =0 and in agreement with the
original study24, the TTv2 algorithm works very well, vastly out-
performing in-memory SGD, in particular for small number of states
(e.g., ϵw ≈ 5% vs > 25.0%, respectively, for 20 states and the very same
target weight matrix; see Fig. 4A, B). However, reference offset varia-
tions σr > 0 critically affect the performance of TTv2. As soon as σr ≥0.1
(here corresponding to 5% of the weight range of 2), weight errors
increase significantly (e.g., to ϵw ≈ 9% for 20 states). This poses chal-
lenges to the usefulness of TTv2 with current devicematerials because
weight programming errors are generally in the order of at least 5–10%
of the target conductance range for ReRAM (6, see also Supplementary
Fig. 1B in ref. 32). Thus, the reference �R cannot be programmed

accurately enough with the SP of �A (see “Methods” section “Recap of
the Tiki-Taka (version 2) algorithm”) to avoid a significant accuracy
degradation when training in-memory using the baseline TTv2.

Using the concept of choppers in the proposed algorithms c-TTv2
and AGAD, on the other hand, improves the resiliency to offsets dra-
matically (Fig. 4C, D). The c-TTv2 algorithmmaintains the sameweight
error for large offsets when the number of states is small. Offsets in
case of larger number of states are less well corrected, consistent with
the existence of transient decays towards the SP that are the slower the
higher the number of states is (see Eq. (7)). In case of AGAD, reference
offsets simply donotmatter, as the reference is dynamically computed
on-the-fly (see Fig. 4D). Moreover, in contrast to c-TTv2, AGAD works
equallywell forhigher number of states showing that transients are not
problematic here either.

DNN training experiments
Finally, we compare the different learning algorithms for actual DNN
training. For better comparison, we use largely the same DNNs that
were previously used to evaluate the earlier algorithms. These were a
three-layer fully connected DNN13, LeNet convnet33 for image classifi-
cation of the MNIST dataset34, and a two-layer recurrent long short-
termmemory (LSTM) network for text prediction of theWar andPeace
novel24,35. We again trained the DNNs with different reference offset
variations (see Fig. 5; see Supplementary Methods Sec. C.1 for details)

Fig. 4 | Weight programming error using different learning algorithms. Stan-
dard deviation of the converged analog weights �W to the target weights is plotted
in color code. The value of the reference offset device-to-device variation σr is
increased horizontally, while vertically changing the number of material device
states nstates (see Eq. (6)). Less number of states, in general, corresponds to a noisier
conductance response (e.g., for typical ReRAMmaterials), higher number of states
corresponding to more ideal device conductance responses (e.g., ECRAM). A In-
memory SGD using stochastic pulse trains. B Baseline Tiki-Taka version 2 (TTv2).

C The proposed Chopped-TTv2 (c-TTv2) algorithm. D The proposed (AGAD)
algorithm. Simulationdetails: Parameter settings as in Fig. 3 except that σr and δ are
varied. Additionally, we set σb =0 for �W only (to not confound results for not being
able to represent the target weight with �W) and set σ± = 0.1 (to avoid a large impact
of few failed devices on the weight error). The targetmatrix and inputs are fixed for
each case for better comparison. Averaged over three construction seeds of the
device variations.

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 5

with the same challenging devicemodel (see example device response
traces for nstates = 20 in Supplementary Fig. 3). As suggested by
Gokmen24, accuracy for all algorithms could in principle be further
improved and weights could be extracted from the analog devices for
further deployment using stochastic weight averaging not con-
sidered here.

The results of Fig. 5 are very consistent across the three different
DNNs of various topologies (fully connected, convnet, and recurrent
network) and confirm the trends found in case of the weight pro-
gramming of one layer (compare to Fig. 4): If the offsets are perfectly
corrected for, all algorithms fare very similarly reaching close to FP
accuracy. However, as expected, the impact of a reference offset is
quite dramatic for TTv2, whereas c-TTv2 can largely correct for it until
it becomes too large. On the other hand, AGAD is not affected by the
offsets at all and typically shows best performance (Fig. 5B–D).

We found that even without offsets, both algorithms outperform
the state-of-the-art TTv2. However, this is largely due to the choice of
parameter settings which has larger writing rates onto the �A matrix
(lmax = 5). When using reduced rates (lmax = 1) for devices with smaller
number of states, all algorithms are fairly similar (see Supplemen-
tary Fig. 7A).

We further find that the gradients are computed so well for the
proposed algorithms in spite of theoffsets and transients on �A, that the
second-order effect of not correcting for the SP of �W (as illustrated in
Fig. 2) is becoming prevalent. Indeed, the test error improves beyond
the FP test error for both c-TTv2 and AGAD when the SP of �W is
subtracted and thus corrected for (Fig. 5 closed symbols), but

increases somewhat if not (open symbols). AGAD shows better per-
formance over c-TTv2 for larger number of states (Fig. 5A).

Although these three benchmark networks have been used
extensively in previous studies on AIMC training algorithm evaluation,
they are relatively small in terms of free parameters (235K, 80K, and
77K, respectively). Simulating every update pulse for each weight
element accurately in larger networks remains challenging due to
simulation time limitations, in particular when multiple training runs
are necessary for hyper-parameter tuning. However, to confirm whe-
ther the general trend of the effect of a reference value offset on the
various algorithms is preserved in larger DNNs, we conducted a brief
training experiment on a vision transformer36 for classifying the
CIFAR1037 image data set, which is significantly larger (4.3M parameter;
see Supplementary Methods Sec. C.1.4 for details). Indeed, even with-
out hyper-parameter tuning, we found that when the reference offset is
not perfectly corrected for, the classification error remains markedly
stable only for the proposed algorithmic improvements c-TTv2 and
AGAD but not for TTv2 (see Supplementary Methods Sec. C.1.4 and
Supplementary Fig. 6). This is very consistent with the observed trend
for the smaller benchmark DNNs (compare to Fig. 5B–D).

Device material requirements
TheproposedAIMC training algorithmsare inprinciple agnostic to the
choice of the device material, as long as the devices support incre-
mental bi-directional update. However, each algorithm has certain
requirements on device behavior to successfully converge in the DNN
training. The baseline TTv2 as well as the proposed c-TTv2 algorithm

Fig. 5 | DNN training with different analog learning algorithms. The symmetry
point (SP) of �W is either corrected for (closed symbols; compare to Fig. 2) or not
(open symbols with dashed lines). All simulations are done for a fixed amount of
epochs for comparability (see Supplementary Fig. 5 for example traces). A Con-
verged test error (in percent) with a three-layer fully connected DNN on theMNIST
dataset is shown for varying number of device states nstates using a large reference
offset variation σr =0.5. Note that the proposed algorithms, Chopped-TTv2
(c-TTv2) and (AGAD), greatly outperform the baseline Tiki-Taka version 2 (TTv2)

across all settings of nstates. Test errors for training in FP precision using standard
SGD are shown as comparison (FP; red dotted line).B–D Reference offset variation
σr versus test errorwithnstates = 20 for differentDNNs. Note that independent of the
DNN the results are very similar to the weight programming task in Fig. 4: TTv2
essentially does not allow for reference offsets, TTv2 is much more tolerable,
whereas AGAD is invariant against reference offset. A, B 3-layer fully connected
DNNonMNIST.C LeNet onMNIST.D 2-layer LSTMon theWar& Peace dataset. See
Supplementary Methods Sec. C.1 for more details on the simulations.

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 6

indeed require asymmetric conductance response that is induced by
the gradual saturation of the updatemagnitudewhen approaching the
bounds at least for the �A devices (ie. the assumptionof the soft-bounds
model Eq. (4)must be valid). This becomes evident when repeating the
same weight programming task of Fig. 4 but now varying the asym-
metry of the devices (see Fig. 6). The asymmetry is changed by
increasing the saturation bounds, but keeping the average update size
δ constant at the SP, which effectively increases the number of states
(see Eq. (6)) and causes a more symmetric (linear) pulse response
around the SP (see example responses inFig. 6A, e.g., blue curve versus
orange curve, where the latter has high symmetry in up and down
direction around zero). Note that the weight programming error
sharply improves with higher symmetry for in-memory SGD (see
Fig. 6B, red curve), however, the weight error decreases significantly
for higher symmetry for TTv2 and c-TTv2 (blue and orange curves,
respectively) showing that a certain amount of device asymmetry is
necessary for these algorithms. In contrast, the achieved weight error
of AGAD does not depend on the device asymmetry setting (Fig. 6;
green line), due to its dynamic reference computation. Thus, AGAD is
more widely applicable, supporting both asymmetric material choices
(such asReRAM) aswell asmore symmetric devices, such as capacitors
or ECRAM.

Endurance. Another important feature of some NVM devicematerials
(especially ReRAM materials) is the often limited endurance: after
sending a very large number of voltage pulses the conductance
response diminishes or fails altogether38. Since we propose to accu-
mulate the gradient using fast in-memory compute, high endurance is
critical. Indeed, if one counts the maximal number of pulses (positive
and negative) for any of the devices used for training a DNN up to
convergence (here LeNeT on MNIST; see Fig. 5) one finds values
between 0.5 to 4 pulses maximally per input sample for the �A devices
(depending on the device and hyper-parameter settings for AGAD).
However, different analog crossbar arrays �A, �R, and �W (see Fig. 1 and
Supplementary Fig. 2) serve very different functions and thus have
very different endurance requirements. For instance, if one counts the
number of pulses written onto �W for the same DNN training simula-
tions, one instead finds values between 2 ⋅ 10−4 and 4 ⋅ 10−4 pulses
maximally per input sample. Thus, the devices representing theweight
�W require 4 orders of magnitudes less number of pulses than those
used for the gradient accumulation �A. Given that a typical training data
set can have millions of examples and a fair number of epochs are

typically trained, the endurance of �A needs to be very high, whereas
endurance requirements for the device material used for �W and �R are
much less concerning.

Retention. Similarly, the retention requirements are vastly different
for �A, �R and �W . We here define retention as the time the conductance
level stays nearby the target level without external inputs. For the
reference device �R, the retention requirements can be assessed by the
tolerable reference value offset. As seen from the simulations in
Fig. 4B, if the reference value would drift by more than 5% from the
programmed value (in percent of the conductance range, corre-
sponding to σr =0.1), during the time of the training, the TTv2 algo-
rithm will not converge to the desired accuracy. However, for c-TTv2
the retention requirement on �R is significantly relaxed as the �R could
drift up to 25% (σr =0.5; Fig. 4C) within the time needed for training.
However, in practice retention should be much higher, since the
writing of �R would need to be refreshed for the next DNN training
leading to inefficiencies. SinceAGAD is independent of any offsets on �R
(Fig. 4D), the programmable reference device is not needed as dis-
cussed above.

The retention requirement for �W , on the other hand, is similar for
all algorithms and on the order of the duration for a full training run, as
these devices represent the converged DNN weights.

Interestingly, the retention required for �A is significantly less than
the duration of the training. As shown in Supplementary Fig. 8, the
required retention duration for �A in AGAD is on the order of the
transfer period Nns, where N ×N is the assumed matrix size, which in
typical cases corresponds to the time duration the learning algorithm
takes to process on the order of 100 to 1000 input samples. Since the
number of training examples is often on the order of many millions,
the retention requirement of �A is orders of magnitudes smaller than
the time it takes to train the DNN. However, because of chip design
considerations �R and �A likely need to bemadeof the samematerial and
the retention requirements for �R is considerably higher. Therefore, the
benefit of reduced retention for �A can only be exploited for AGAD,
which does not need a programmable reference �R. In this case, �A could
be made of a high endurance but low retention material (or using an
appropriate capacitor).

Performance
In the following, we estimate the expected runtime performance for
the different algorithms as well as needed memory and bandwidth.

Fig. 6 | Varying device asymmetry. Different device materials show different
degrees of asymmetric conductance responses. A different device responds with
varying degrees of asymmetry (changing wmax and fixing the step size). Colors of
the example pulse responses to 200 up and 200 down pulses indicate the asym-
metry device setting. B Weight errors (computed as in Fig. 4) achieved by the
various algorithmsdepend on the degree of device symmetry. Note that onlyAGAD
retains a very low error independent of the asymmetry setting (green line).

Asymmetry, typically very detrimental for direct SGD implementation (red line), is
necessary for TTv2 (blue line) as well as c-TTv2 (orange line). This is because the
latter algorithms hinge on the assumption that the conductance quickly returns to
the symmetrypoint (SP) and the time constant to reach the symmetrypoint (SP) for
random updates depends on the asymmetry (see Eq. (7)). Error bars indicate
standard errors over 3 construction seeds.

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 7

We focus on evaluating how much time the update pass (including
gradient accumulation) would take on average per input sample,
since other phases, namely forward and backward phases, are iden-
tically shared among all algorithms discussed here. Note that by
focusing on the update performance per input sample, we assume
that the convergence behavior for the different algorithms is not
vastly different in respect to the FP baseline. In other words, we
assume that a similar amount of training epochs are needed to reach
acceptable accuracy. We confirmed that the number of epochs nee-
ded for convergence is indeed on the same order of magnitude in
respect to the FP baseline in practice (see Supplementary Fig. 5 for
example traces for the data in Fig. 5A), validating our assumption in
first-order approximation.

Table 1 lists the detailed runtime estimates and complexities for
the proposed algorithms (see “Methods” section for detailed deriva-
tions). As additional comparison, we have listed the Mixed-Precision
(MP) algorithm20, where the gradient accumulation is done in digitally
using a FP matrix. When an element of this gradient accumulation
matrix reaches a threshold, pulses are sent to the (full) analog weight
matrix �W . Thus, the number of FP operations is on the order of
Oð2N2 +NÞ, as one multiplication and one addition is needed per
matrix element and input sample and additionally one of the input
vectors needs to be scaled with the learning rate. We assume for MP
thatwriting the full analogweightmatrix is only doneonceper batchB,
so that the analog time needed per input sample is N/B tsingle-pulse for
programming N rows.

As a second baseline, we compare to in-memory SGD (as descri-
bed in “Methods” section “In-memory outer-product update”), which,
however, yielded poor accuracy results in Fig. 5.

When one assumes that a certain amount X of digital compute
throughput is available exclusively for a single analog crossbar array,
then we can estimate the average time (per input sample) the gradient
update step would take. For approximate numbers, we assume that a
single update pulse would take approximately 5 ns, a single MVM
about 40 ns39, and that the memory operations (Table 1, rows in first
section) can be hidden behind the compute40. In Supplementary Fig. 9,
the average time for an update is plotted against the amount of
available compute. As seen from Table 1, if one assumes a state-of-the-
art number of 175 billion FP operations per second (FLOPS) (that is 0.7
TFLOPS40, shared among 4 crossbar arrays), the proposed algorithms
out-perform the alternative MP algorithm by a large margin, showing
the benefits of AIMC for in-memory gradient update (about 50× faster,
even if one already assumes a batch size of 100, which favors the MP
algorithm). Moreover, computing the gradient in digital requires a
much higher memory throughput for MP (see row “Memory ops” in
Table 1), which couldbe challenging tomaintain. Since atmostone row
(or column) is processed in digitally for our proposed algorithms per
input, memory bandwidth is not a bottleneck.

Note that for these numbers we have considered a conservative
setting of the hyper-parameters, ns = 2 and lmax = 5. In fact, the runtime
of the algorithms TTv2, c-TTv2, and AGAD would all converge to the
limit of in-memory SGDwith increasing values of ns, as their additional
compute all scale with 1

ns
(see Table 1 “FP ops” and “Analog ops”). We

find that higher ns numbers are supported, however, accuracy drops
slightly ifns gets too high (depending on thematrix size), if at the same
time, the device number of states is limited (see Supplementary Fig. 7
for the effect of different ns settings during DNN training). Note that if
ns increases, the analog devices �A have to accumulate and hold the
information for more input samples before being read out. However,
as shown in Supplementary Fig. 7A, DNNs can also be trained with e.g.,
ns = 10 and lmax = 1 without accuracy loss with certain device char-
acteristics (here nstates = 20). With the same digital throughput
assumptions as above, the expected update time for AGAD in Table 1
would then further reduce to 17.1 ns reaching an acceleration factor of
about 175× compared toMP (see Table 1; see also Supplementary Fig. 9
for more parameter settings).

Finally, as detailed in the “Methods” section “AGAD algorithm”,
one could also set β = 1 in AGAD which would make the storing and
computing of P unnecessary, saving OðN2Þ storage and Oð3N=nsÞ
compute for the estimation of the leaky average. However,we find that
accuracy is generally improved when setting β < 1 depending on the
number of available states nstates (see Supplementary Fig. 7, red line
labeled AGAD with β = 1).

Discussion
We have introduced two learning algorithms for fast parallel in-
memory training using crossbar arrays. In this approach, the weight
update necessary for the stochastic gradient descent is directly done
in-memory using parallelly pulsed increments for adding the outer
product between the activations and backpropagated error signals to
the weights.

Note that this in-memory training approach is radically different
from hardware-aware training typically employed when using analog
crossbar arrays for DNN inference only (e.g.,32,41,42). In the latter case,
the DNN weights are (re)-trained in software (using traditional digital
CPUs or GPUs) assuming generic noise sources to improve the noise
robustness. The finalweights are programmedonceonto the analogAI
hardware accelerator which is then used in an inference application
without further training. In contrast, in our study the training of the
weights itself is done by the analog AI hardware accelerator in-memory
on the crossbar arrays, thus opening up the possibility for high energy
efficiency during the training of DNNs. Whether inference is then done
with the same hardware using the trained weights depends on the
application. While directly using the trained weights with the same
hardware for inference would be the most efficient, other approaches
are possible as well. For instance, Gokmen24 suggests extracting the

Table 1 | Complexity and estimated runtime performance of the weight update during DNN training

Algorithm TTv2 c-TTv2 AGAD in-memory SGD MP

Storage [byte] O ðN2 + 2NÞ O ð3N2 + 2NÞ O ð2NÞ O ðN2 + 2NBÞ
Input loads [bit] O ð16N+ 2NlmaxÞ O ð16NÞ
Memory ops [bit] O ð16N=nsÞ O ð18N=nsÞ O ð50N=nsÞ O ð1Þ O ð16N2=BÞ
FP ops. Oð2N+ 2N=nsÞ O ð2N+6N=nsÞ O ð2NÞ O ð2N2 +NÞ
Analog ops [time] (lavg + 1/ns) tsingle-pulse + tMVM/ns lavg tsingle-pulse N/B tsingle-pulse

≈∑ Time est. [ns] 56.3 56.3 62.1 30.9 3024.5

Complexity and average runtimeof theweight updatewith input vectorx andgradient input vectordof sizeN (and assumingpart of amini-batch of sizeB). Number comparisons, resetting, signflips,
and ceilings are not counted. Here only FPmultiplication and additions are counted as operations. The integer ns≥ 1 is the period of transfer. Note thatOð1Þ load and store operations (e.g., counters
and constants) are omitted. An 8bit FP number format is assumed for all digital numbers. For the time estimates, we assume N = 512, and FP operations compute time is calculated assuming
throughput of 0.7 TFLOPS (70%utilization of 1 core of40 (1 GFLOPS, FP8) shared for 4 analog crossbars39) and ns = 2. Memory access time estimates are assumed to be included in the throughput and
hidden with compute40. For the analog compute time, we assume lavg = 5, tMV M = 40 ns39 and tsingle-pulse = 5 ns. We further assume B = 100 for the total time estimate of MP. Stochastic number
generation (possibly in hardware circuitry) is assumed to be parallel and hidden among the other operations.

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 8

trained weights during in-memory training using stochastic weight
averaging in ahighly efficientway, so that they can thenbeused for any
other hardware during inference, including reduced precision digital
inference accelerators.Other analog inferencehardwarecould be used
as well, however, an additional programming error penalty will be
introduced in this case. Nevertheless, given that realistic device noise is
naturally present during our proposed in-memory training, the
resulting weights are likely to be robust to any device noise in a way
similar to the conventional hardware-aware training approach in
software (see e.g., ref. 32).

For our algorithms, we found that the converged accuracy mat-
ches or exceeds the current state-of-the-art in-memory training algo-
rithm TTv224. Indeed, in cases where the TTv2 algorithm suffers severe
convergence issues, the proposed algorithms are considerably
improved. In particular, TTv2 suffers if the reference conductance is
not programmed very precisely (within few percent of the con-
ductance range), which hasn’t been considered during its
conception24. A precise writing of the reference is very difficult to
achieve with current device materials rendering the application of
TTv2 unrealistic, in particular for larger-scale DNN training. Both pro-
posed algorithms, c-TTv2, and AGAD, relax this requirement
significantly.

The computational complexity added to TTv2 for the proposed
algorithms is negligible for c-TTv2. While AGAD introduces slightly
more digital compute and storage, the overall runtime is nevertheless
expected to be still orders ofmagnitude faster than alternatives,where
the gradient matrix is computed in digital and therefore scales with
OðN2Þ20. Indeed, when estimating the average gradient update time for
a 512 × 512 weight matrix in Table 1 with reasonable assumptions, we
find 62.1ns for AGAD versus > 3000 ns when updating the gradient
matrix in digital instead. This large improvement is achieved because
the in-memory update pass uses only linear order of digital operations
(OðNÞ) with the proposed algorithms. Moreover, since the weight is
stored in analog memory, the forward and backward passes can be
accelerated as well. While the MVMs needed for the forward and
backward passes can be accelerated in-memory in constant time
(Oð1Þ), there are, however, typically other utility OðNÞ computations
done in digital besides the mere MVMs. For instance, rescaling of the
input and outputs for improving the AIMC MVM fidelity (see e.g.,
ref. 32 for a discussion), or computing other layers such as affine
transforms of normalization layers, skip connections, activation func-
tions, that are all part of modern DNNs. Since these utility layers
commonly have at leastOðNÞ runtime complexity, the additionalOðNÞ
digital operations needed for the proposed updated passes will not
change the overall runtime complexity of the full training, which
includes forward, backward, and update passes24.

We like to emphasize that the reduced number of digital opera-
tions necessary for our AIMC training algorithm, together with the
non-von-Neumann architecture and high energy efficiency of MVMs
and outer products on the analog crossbar arrays, translates into a
highly energy-efficient approach for DNN training in comparison to
traditional digital ways of compute. While the energy efficiency per
digital operation has improved over time43, the complexity of the
memory access and MVM compute still remains bounded by OðN2Þ
and is thus inherently worse than our AIMC approach. Indeed, even
more energy savings could result from co-designing DNNs for
deployment on AIMC architectures, as the scaling laws of the SGD
training is different compared to digital hardware. For instance, a large
and dense matrix multiplication is much less costly on AIMC than on
digital von Neumann hardware, potentially opening up opportunities
for designing novel energy-efficient DNN architectures with high
accuracy tailored to AIMC in the spirit of44.

We here have given a runtime estimate for the gradient update
only instead of a complete estimate of the time needed to train a DNN
on a given chip. A complete estimate has to take into account many

details of the mixed analog-digital chip architecture, as it needs to
consider not only the forward pass computations of all analog and
digital auxiliary layers (as recently shown for an energy estimate for
inference-only AIMC hardware39), but also the backward pass, and
weight update computations that require intermediately storing of
results (see ref. 24 for a discussion). Therefore, a complete energy
estimate for a full DNN training run has to be based on a specific AIMC
chip architecture and is thus beyond the current study.

The hallmark of AGAD is to compute the reference value on-the-
fly. Interestingly, even in the field of analog amplifier design, it has
been previously proposed to dynamically compute the zero point
(auto-zero) in conjunction with the chopping technique. This combi-
nation as been shown to have superior performance in challenging
signal-processing application45. This approach is qualitatively similar
to AGAD that employs both the chopper as well as an on-the-fly
reference.

Note that the reference value computed for AGAD is different
from the reference value programmed onto the conductances �R in
case of TTv2 and c-TTv2. In the latter case, the symmetry point (SP) of
�A is used as reference together with a differential read of both con-
ductances. Consequently, TTv2 and c-TTv2 make in practice quite
restrictive assumptions on the devicemodel, namely that an unique SP
exists, which ismoreover stable over time. In contrast, AGAD subtracts
an estimate of the history of the transient conductance value that was
reached before the chopper sign flipped in digital. This digitally stored
reference value is based on the transient conductance dynamics and
thus independent fromany SP assumption. Using this transient on-the-
fly reference value computation is made possible by the introduction
of the chopper that changes the sign and thus the direction of the
information accumulation. Given that the devices have limited con-
ductance range, incoming gradients therefore can use the full
dynamics range effectively.

The on-the-fly reference value computation has several advan-
tages for AIMC DNN training. First, the lengthy estimation and pro-
gramming of the reference arrays �R prior to theDNN training run is not
necessary thus simplifying and improving the overall training process.
Second, the chip design is simplified as the differential read of two
devicesdoes not needed tobe implemented incircuitry. Third, the unit
cell of the crossbar array is simplified because no individual and pro-
grammable reference for each element in the weight matrix is needed
at all, saving considerably in hardware complexity and chip area cost.

Finally, the AGAD algorithm greatly broadens the device material
choices. The on-the-fly reference estimation enables the computation
on transients, meaning that the average conductance level becomes
irrelevant. This means that both symmetric or asymmetric devices can
be used similarly well for the gradient accumulation. This contrasts
with TTv2 and c-TTv2, which are designed specifically for and require
asymmetric device conductance responses. Enabling such broad
devicematerial choice is important for future applicability of AIMC for
DNN training. For instance, very high endurance ReRAM (many mil-
lions of pulses) is beyond the current state-of-the-art for this material
choice, however, other material choices exist such as ECRAM, or
capacitors, that essentially have no endurance limit, but have a much
more symmetrical response. We also show that gradient accumulation
material only needs to show very short retention, thus further relaxing
the material requirements of AGAD. In conclusion, we show that both
c-TTv2 and AGAD push the boundary of in-memory training perfor-
mance, while considerably relaxing device material and chip design
requirements, opening a realistic path for accelerating DNN training
using analog in-memory computation.

Method
Analog matrix-vector multiplication
Using resistive crossbar arrays to compute an MVM in-memory has
been suggested early on46, and multiple prototype chips where MVMs

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 9

of DNNs during inference are accelerated have been recently
described6–9,11,47. In these studies, theweights of a linear layer are stored
in a crossbar array of tunable conductances, inputs are encoded e.g., in
voltage pulses, andOhm’s andKirchhoff’s laws areused tomultiply the
weights with the inputs and accumulate the products (Supplementary
Fig. 1A, see also e.g., ref. 1 for more details). In many designs, the
resulting currents or charges are converted back to digital by highly
parallel analog-to-digital converters (ADCs).

For fully in-memory analog training, as suggested in ref. 13,
additionally a transposed MVM has to be implemented for the back-
ward pass, which can be achieved by transposing inputs and outputs
accordingly (see Supplementary Fig. 1B).

Here, we simulate the non-linearity induced by an MVM in the
forward and backward following previous studies13. We use the stan-
dard forward and backward settings in the simulation package
(AIHWKIT)29, which includes output noise, input, and output quanti-
zation, as well as bound and noise management techniques as
described in33 (see SupplementaryMethods Sec. C.1 for the exactAIMC
MVM model settings).

However, we focus on the nonidealities induced by the incre-
mental update of the conductances (as detailed below) which are
typically much more challenging for AIMC training than the MVM
nonlinearities. For instance, it has recently been shown in simulation
that with realistic MVM assumptions many large-scale DNNs can be
deployed without significant accuracy drop on AIMC inference hard-
ware when retrained properly32.

In-memory outer-product update
While accelerating the forward and the backward pass of SGD using
AIMC is promising, for a full in-memory training solution, in-memory
gradient computation and weight update have to be considered for
acceleration as well.

For the gradient accumulation of and N ×N weight matrix W of a
linear layer (i.e., computing y =Wx), the outer-product update W ←W
+ λdxT needs to be computed. While this can be done in digital, pos-
sibly exploiting sparseness (e.g., MP, see ref. 20), it would still require
on the order ofOðN2Þ digital operations, and doing so would thus limit
the overall acceleration factor obtainable for in-memory training. To
accelerate also the outer-product update to be performed in-memory
and fully parallel, Gokmen& Vlasov13 suggested to use stochastic pulse
trains and their coincidence (as illustrated in Supplementary Fig. 1C).

The exact update algorithm has gone through a number of
improvements in recent years33,35, however,wehereusea yet improved
version in Supplementary Alg. 1. In particular, we suggest to dynami-
cally adjust the pulse trains in length for better efficiency. Note that we
assume in Supplementary Alg. 1 for simplicity of the formulation that a
mixture of negative or positive pulses across inputs xi are possible,
while in practice, negative and positive pulses are sent sequentially in
two separate phases (setting all xi <0 to 0 in the first phase and all x > 0
to zero in the second).

In the “Results” section, we will compare the performance of our
in-memory training algorithms in more detail, and they are partly
based on this outer product. Note that the Supplementary Alg. 1 takes
Oð2NÞ FP operations for each vector update (assuming a vector length
of N) to compute the absolute maximal values that is needed to scale
the probabilities. Then maximally lmax pulses are given (in each of the
two sequential phases of negative and positive pulses), however, the
dynamical adjustment of the pulse train length (see Supplementary
Alg. 1) leads to only lavg ≤ lmax pulses on average over input vectors.
Thus, assuming a pulse duration of tsingle-pulse, the runtime complexity
of digital compute of the output product update is Oð2NÞ and the
average time for the analog part is 2tsingle-pulselavg. For the pulsing,
2Nlavg stochastic numbers are generated or 2Nlmax pre-generated
pseudo-random pulse trains are loaded frommemory, and therefore a
complexity of the memory loads is Oð2NlmaxÞ bits. If one further

assumes that the input and output vectors, x and d need to by tran-
siently stored to compute the pulse probabilities (e.g., in 8-bit FP for-
mat), then the overall memory operations required is on the order
of Oð2Nlmax + 16NÞ bits.

Previous studies13,33,35 have investigated the noise properties when
using Supplementary Alg. 1 to directly implement the gradient update
in-memory and it turns out that this would require very symmetric
switching characteristics of the memory device elements in particular
for large DNNs22. Thus, the requirements of such an in-memory SGD
algorithm turns out to be too challenging in face of the asymmetry
observed in today’s device materials, which we discuss in the next
section.

Device material model
When subject to a large enough voltage pulse, bi-directionally
switching device materials, such as ReRAM15, ECRAM16,17, or
capacitors18, show incremental conductance changes. In previous
studies48,49, it was shown that the soft-bounds model characterizes the
switching behavior of such materials qualitatively well. According to
that model, the conductance change g← g +ΔgD to a single voltage
pulse in either up (D = + or down D = −) direction is given by

Δg + � α+ gmax � g
� �

Δg� � α� gmin � g
� � ð2Þ

where thus the induced conductance change gradually reduces
towards the conductance bounds. While here the conductance is
measured in physical units, it is more convenient for the following
discussion to (arbitrarily) normalize the conductances. For that, we
first set ghalf�range � hgmaxi�hgmini

2 where the average is taken over the
individual devices (that in general have individual gmin and gmax values
due to device-to-device variations). Then, we set the normalized
conductance value to �w � g�hgmini

ghalf�range
� 1, so that for a device at hgmini the

normalized value is �w= � 1, and hgmaxi corresponds to �w= 1, and
finally hgmini+ hgmaxi

2 corresponds to �w=0.
Using this normalization, Eq. (2) becomes (assuming no device

variations for the moment, i.e., gmax = hgmaxi and gmin = hgmini)

Δ�w+ � α + 1� �w
� �

Δ�w� � �α� 1 + �w
� � ð3Þ

whichcorresponds to the soft-boundsmodel in48 albeitwith adifferent
conductance normalization (here shifted to the range of −1, …, 1
instead of 0,…, 1 to ease of discussion of the algorithmic zero point).

We introduce device-to-device variations on the saturation levels
as well as on the slope parameter α and cycle-to-cycle update fluc-
tuations to arrive at the full model

Δ�w+ �w jθ� � � α +
�wmax��w
�wmax

+ σc�to�cξ
� �

Δ�w� �w jθ� � � �α� �wmin��w
�wmin

+ σc�to�cξ
� � ð4Þ

where ξ are standardnormal randomnumbers (drawn for eachupdate)
to model the update fluctuations of strength σc-to-c. Here we chose to
normalize the difference of the actual conductance to the bound by
the bound, that is e.g., �wmax��w

�wmax
, so that the update size remains constant

for the same relative distance of �w towards the bounds when varying
solely �wmin or �wmax. Note that in simulations the normalized
conductance values are ensured to be clamped to the saturation
levels (between �wmin and �wmax) to avoid that the additive noise would
drive the conductance to not supported levels.

In Eq. (4), we use the placeholder θ for the hyper-parameters as
defined in the following. To capture device-to-device variability, we
draw random variations during construction according to
�wmax = maxð1 + σbξ1, 0Þ and �wmin = minð�1 + σbξ2, 0Þ where ξ i 2

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 10

N ð0, 1Þ are random numbers that are different for each device but
fixed during training.

The slope parameters are given by

α + � δ γ + ρð Þ
α� � δ γ � ρð Þ ð5Þ

where γ = eσd�to�dξ3 , and ρ = σ±ξ4, so that σd-to-d is a hyper-parameter for
the variation of the slope across devices, and σ± a separate device-to-
device variation in the difference of the slope between up and down
direction. The material parameter δ determines the average update
response for one pulse when the weight is at �w=0. We define the
number of device states (for a given fixed setting of the incremental
update noise level σc-to-c) by the average weight range divided by δ,
that is

nstates =
�wmax � �wmin

δ
: ð6Þ

We found in previous studies that this model of the device-to-
device variationsfits ReRAM(array)measurements reasonablewell25,50.

Symmetry point. It can easily be seen that for the devicemodel Eq. (4),
the conductance change in response to apositivevoltagepulse linearly
depends on the current conductance value and decreases up to the
bound �wmax where it becomes zeros. Likewise, the conductance
change linearly decreases for negative updates down to the bound
�wmin, and thus the (normalized) conductance �w will saturate at �wmax

and �wmin. Because of this gradual saturating (soft-bounds) behavior,
there exists a conductance value at which the up and down con-
ductance changemagnitudes are equal on average, which is called the
symmetry point (SP)23,30 and denoted as �w*.

If one assumes that random up-down pulsing (without a bias in
either direction) is applied to the devices, the device will reach its SP
quickly. This can be easily seen in the case where a positive pulse
always follows a negative pulse. Then theweight change can bewritten
as (assuming for the moment σb = σc-to-c = σ± = σd-to-d = 0):

Δ�w≈Δ�w+ �w jθ� �
+Δ�w� �w jθ� �

= �2δ �w ð7Þ

which shows that for repeated pairs of up-down pulses the weight will
decay exponentially with (approximate) decay rate of τ = 2δ to a fixed
point at �w* = 0.

Solving Eq. (4) for the SP �w* by settingΔ�w� �w* jθ
� �

=Δ�w+ �w* jθ
� �

,
one finds for the non-degenerated case, i.e., �wmax > �wmin, α+ > 0, and
α− >0,

�w* =
α + � α�
α +
�wmax
� α�

�wmin

=
2ρ

γ +ρ
�wmax
� γ�ρ

�wmin

ð8Þ

Note that some of the AIMC training algorithms discussed in the fol-
lowing will use this SP as a reference value of the gradient
accumulation.

Recap of the Tiki-Taka (version 2) algorithm
In the TTv2 learning algorithm (see Fig. 1 for an illustration), three
tunable conductance elements for each weight matrix element are
required, namely the matrices �A, �R, and �W , where we write �X for a
weight matrix X that is thought of coded into the conductances of a
crossbar array, to distinguish between matrices that are in digital
memory. The first two conductances, �A and �R, are used to accumulate
the gradient accumulation and storing the SP of �A, respectively, and
are read intermittently in fast differential manner �A� �R, whereas �W is
used as the representation of the weight W of a linear layer and thus

used in the forward and backward passes. On a functional level, the
algorithm is similar to modern SGD methods that introduce a
momentum term (such as ADAM51), since also here the gradient is first
computed and accumulated in a leaky fashion onto a separate matrix
before being added to the weightmatrix. However, the analog-friendly
TTv2 algorithm computes and transfers the accumulated gradients
asynchronously for each row (or column) to gain run-time advantages.
Furthermore, crucially, the device asymmetry of the memory element
causes an input-dependent decay of the recently accumulated gra-
dients as opposed to the usual constant decay rate of the momentum
term that is difficult to efficiently implement in-memory (see also
discussion in refs. 24, 30).

While this TTv2 algorithm greatly improves the material specifi-
cations by introducing low pass filtering of the recent gradients, it
hinges on the assumption that the device has a pre-defined and stable
SP within its conductance range30. The SP is defined as the con-
ductance value, where a positive and a negative update will result on
average in the same net change of the conductance. Because of the
assumeddevice asymmetry, the SP acts as a stable fix point for random
inputs, which causes the accumulated gradient on �A to automatically
decay near convergence (see “Methods” section “Symmetry point”).
However, to induce a decay towards zero algorithmically, it is essential
to identify the SPwith the zero value for each device, which is achieved
by removing the offset using a reference array �R (as illustrated in
Fig. 2). The reference conductance �R is thus used to store the SP values
of its corresponding devices of �A and instead of directly reading �A, the
difference �A� �R is read, while only �A is updated during training.

Taken together, for TTv2 the reference array �Rmust be set to the
SP of a corresponding analog matrix �A prior to the DNN training. The
algorithm of how to program �R to the SP in practice is discussed in
ref. 26. It turns out, however, that the programming as well as the SP
estimation is in general subject to errors. To model this error, we set
(with Eq. (8)) the elements of �R to

�rij = �w*
ij + ξ ij ð9Þ

where ξ ij 2 N ðμR,σRÞ. Thus ξij models the remaining error on the
reference device after SP subtraction.

Inmoremathematical detail, to lower the device requirements for
in-memory SGD, TTv2 computes the outer product update in a fast
manner in-memory and thus accumulate the recent past of the gra-
dients (dxT) onto a separate analog crossbar array �A, but slowly
transfer the recent accumulated gradients by sequential vector reads
of �A onto the analog weight matrix �W , to counter-act the loss of the
information due to the device asymmetry on the gradientmatrix �A. So,
each vector update, the following three sequential operations are in
principle done (see illustration in Fig. 1):

������������������������������!/ λA dx
T

parallel update SupplementaryAlg: 1
�A

�������������!
λH �A��Rð Þvk

everyns anMVMread
hk ���������!

/ hkb c0vTk
write singlepulses

�W

ð10Þ

The outer-product update onto the analog array �A is done using
the stochastic pulse trains and coincidences as described in Supple-
mentaryAlg. 1 and is thus essentiallyOð1Þ. For the second step, a rowof
�A can be read by computing an MVM in-memory by using the corre-
sponding one-hot unit vectors vk as input and is thus fast (Oð1Þ). Note
that insteadof reading a rowas described, one could similarly readout
a column of �A instead by using the transposed read capability—as is
true for the other algorithms that are described below. To not confuse
the description, we will here explain only the case of rows with the
understanding that instead of rows columns could be processed
as well.

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 11

The resulting FP vector zk = ð�A� �RÞ vk is multiplied with a learning
rate λH and then added onto the corresponding row of the digital FP
matrixH. The selected row k could be random, or sequentially iterated
through all rows with wrapped boundaries. Each time a transfer is
made, the absolute vector values ∣hk∣ are tested against a threshold
(typically set to 1), and single pulses are used to update the corre-
sponding row of the analog weight matrix �W when the threshold is
reached. Thereby the sign of hik) is respected (note that we use the
floor-towards-zero sign hk

� �
0). This writing of single pulses can be

done in Oð1Þ as only one column is written in parallel.
This TTv2 algorithm (as described in all details in Supplementary

Alg. 2 with ρ = 0) is our baseline comparison.

Overall performance. The average runtime complexity of the TTv2
algorithmper input sample is divided into digital operations (compute
and storage) and time for the analog operations. As detailed in the
“Methods” section “In-memory outer-product update”, the outer pro-
duct into �A needsOð2NÞ digital operations. The additionalOðNÞ scaling
and OðNÞ additions needed for the transfer of the readout of �A to the
digital matrix H are only done every ns vector updates and skipped
otherwise, so that the average complexity of digital operations per
input vector sample is Oð2N=nsÞ. Similarly, the writing onto �W is only
executed every ns inputs. Altogether, the average complexity of digital
operations for the full gradient update is thus Oð2Nð1 + 1

ns
ÞÞ.

The average analog runtime per input sample is
2 ðlavg + 1

ns
Þ tsingle�pulse + 1

ns
tMVM, given that at most 2 pulses (positive

and negative phase) are sent for the write on �W and one read (forward
pass) of �A has tobeperformed (with time tMVM) everyns input samples.
Note that although Oð8N2Þ bit memory is needed to store H, only
Oð16N=nsÞ bit memory operations (load and store per input sample)
are needed in addition to those needed the outer product on �A (see
Methods section ‘In-memory outer-product update’), as only one row
is operated on for the transfer and writing, which could thus be pre-
fetched and cached efficiently.

Fast and robust in-memory training
We propose two algorithms based on TTv2, that improve the gradient
computation in case of any kinds of reference instability or residual
offsets. Both algorithms introduce a technique borrowed from
amplifier circuit design, called chopper27. A chopper is a well-known
technique to remove any offsets or residuals caused by the accumu-
lating system that are not present in the signal, by modulating the
signal with a random sign-change (the chopper) that is then corrected
for when reading from the accumulator.

Chopped-TTv2 algorithm. While using a reference matrix �R has the
advantage to subtract the SP from �A efficiently using adifferential read,
the design choice comes with unique challenges. In particular, the
programming of �R might be inexact, or the SP might be wrongly esti-
mated or vary on a slow time scale. As shown in the “Results” section,
any residual offsets or � �r � �a* would constantly accumulate onH and
be written onto �W thus biasing the weight matrix unwantedly. More-
over, the decay of �A to its SP is the slower the more states the device
has and input dependent (see Eq. (7)). While feedback from the loss
would eventually change the gradients and correct �W , the learning
dynamics might nevertheless be impacted.

For robustness to any remaining offsets and low-frequency noise
sources, we suggest here to improve the algorithm by introducing
choppers. Chopper stabilization is a common method for offset cor-
rection in amplifier circuit design27. We use choppers to modulate the
incoming signal before gradient accumulation, and subsequently
demodulate during the reading of the accumulated gradient.

In more detail, we introduce choppers cj ∈ { −1, 1} that flip the
sign of each of the activations xj before the gradient accumulation on �A,
that is cjxj (or in vector notation with element-wise product c ⊙ x).

When reading the k-th row of �A to be transferred onto H, we apply
the corresponding chopper ck to recover the correct sign of the signal.
Thus, the overall structure of the update remains the same as illustrated
in Fig. 1, however, it is now set x̂ � c� x and zk � ck �A� �R

� �
vk .

In summary, the gradient update now becomes (compare also to
Supplementary Fig. 2)

������������������������������!/ λA dðc�xÞT

parallel update SupplementaryAlg: 1
�A

�������������!
ckλH �A��Rð Þvk

every ns anMVMread
hk�������������!

/ hkb c0vTk
write single pulses

�W

ð11Þ

The choppers are flipped randomly with a probability ρ every
read cycle (see Supplementary Alg. 2 for the detailed algorithm). In
this manner, any low frequency component that is caused by the
asymmetry or any remaining offsets and transients on �A is not
modulated by the chopper and thus canceled out by the sign flips.
We call this algorithm Chopped-TTv2 (c-TTv2) stochastic gradient
descent.

Overall performance. Since only sign changes are introduced the
c-TTv2 algorithms has largely the same runtime performance num-
bers as the baseline TTv2 (see “Methods” section “Recap of the Tiki-
Taka (version 2) algorithm”). Since applying and flipping a sign is very
fast, we omit these operations, however, the current signs must
be loaded and stored every ns input samples, so that the average
number of memory operations per input sample increases by
2N/ns bits.

AGAD algorithm. While the chopper together with the low-pass fil-
tering greatly improve the resilience to any remaining offsets (see
“Results” section), if offsets become too large simply low-pass filtering
will not be effective enough.

Moreover, if the training was perfectly inert to any offsets or then
the differential read could be replaced by a direct read of �A (using
constant reference conductance to balance the currents), whichwould
significantly reduce the chip design complexity and the chip area
needed for �R. In addition, the SP of �A would neither need to be esti-
mated nor programmed, improving handling in practice.

To address these issues, we suggest the recent history of the
transient conductance dynamics as reference instead of the trouble-
some programming of predetermined values that depend on the
individual device characteristics. In more detail, we propose to use
choppers as in c-TTv2, so again x̂ � c� x in Fig. 1, however, nowwe set
zk � ck �A

0
vk � pref

k

� �
. where we use additional digital compute and

memory to store a digital reference matrix Pref. Note that the readout
from �A

0
could be simply a direct readout of �A since Pref is used as

reference values. The additional conductance �R are thus not needed.
However, to align the comparison with the other algorithms, we use
�A
0 � �A� �R in the numerical simulations.

With that, the schematics becomes

������������������������������!/ λA dðc�xÞT

parallel update SupplementaryAlg: 1
�A

�������������!
ckλH �A0vk�pref

kð Þ
every ns anMVMread

hk�������������!
/ hkb c0vTk!

write single pulses
�W

ð12Þ

To set the digital reference matrix Pref, another digital matrix P is
computed row-by-row as an leaky average of the recent past readouts
of the k-the row of �A

0
, i.e., ω � �A

0
vk :

pk ð1� βÞpk � βω ð13Þ

where 0 ≤ β ≤ 1 is the time constant of the leaky average. Then the
reference matrix (row) is set pref

k pk only when the chopper sign ck

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 12

flips. The chopperflips could be either randomly (withprobabilityρ) or
at a fixed period of readouts of row k.

The reasoning of Eq. (13) is that the chopper flips are unrelated to
the direction of gradient information. Therefore, if a significant aver-
age gradient is currently present, the direction of updates onto �A has
to change its direction when the chopper flips. Thus, the recent past
values of �A before the sign flip can serve as good reference point for
the following chopper period until the next sign flip.

This algorithm is called (AGAD). See Supplementary Alg. 3 and
Supplementary Fig. 2 for implementation details. Note that here two
additional FP matrices P and Pref need to be stored in local memory.
However, it is possible to reduce the requirement to one matrix Pref if
the leaky average of the recent past Eq. (13) is omitted and only the
previous readout is used instead (that iswhen formallyβ = 1 in Eq. (13)).
See “Results” section for a discussion of these choices.

Overallperformance. TheAGADalgorithmonly introduces additional
digital compute in the transfer cycle. Thus, the runtime performance
and analog compute of c-TTv2 still holds. However, to subtract the
vector pref it needs OðN=nsÞ additional digital operations per input
sample. Moreover, if β ≠ 1, then extraOð3N=nsÞ digital operations (two
scaling and one addition) are needed for updating p. In terms of
memory, the digital matrix Pref needs 8 ⋅ N2 bits memory storage.
Additionally, P needs 8 ⋅ N2 bits memory storage as well if used in case
of β ≠ 1. The number of memory operations per input sample also
increases by Oð8 � 2N=nsÞ or Oð8 � 4N=nsÞ, respectively, when β = 1 or
β ≠ 1, for loading and storing the additional rows p and pref.

Determining the learning rates
In the original formulation of the TTv2 algorithm24, the learning rate λH
for writing onto the hidden matrix H was not specified explicitly
(compare to Fig. 1). We here suggest to use

λH =
λns n

γ0δ �WλA
ð14Þ

where n is the number of rows of the weight matrix, ns the number of
gradient updates done before a single row-read of �A, and δ �W is the
average update response size at the SP of �W (see “Methods” section
“Device material model”).

Here λ is the learning rate of the standard SGD, which might be
scheduled. Note that we thus scale H by the overall SGD learning rate
andnot thewritingonto �A. Thehyper-parameter γ0 specifies the length
of accumulation, with larger values averaging the read gradients for
longer. Note, however, that the same effect is done by adjusting λ so
that tuning one of both is enough in practice.

Note that a readout of a given matrix element of �A happens every
ns n input vectors (as the rows are sequentially read, see Fig. 1). Thus,
after t input vectors,m= b t

ns n
c additions aremade to the hiddenmatrix.

Therefore, we set the learning rate λH in Eq. (14) proportional with
λH ∝ ns n to avoid a weight update magnitude dependence on the
potentially different layer sizes across the DNN.

To recover the original gradient magnitudes of the SGD that are
written onto �W approximately, the learning rate λH in Eq. (14) is to be
divided with λA, which scales the gradient accumulation onto �A
(however, note that we drop this dependence again for our empirical
“Results” section, see paragraph “High-noise and high device asym-
metry limit”). The value of λA is dynamically adjusted. Since the con-
ductance range is limited, the amount accumulated must be large
enough to cause a significant change in the conductances of �A.We thus
scale the learning rate λA appropriately. Since the gradient magnitude
often differs for individual layers, andmight also change over time, we
dynamically divide λA by the recent running average μx and μd of the
absolute maximum of the inputs mx =maxjjxjj and input gradients

md =maxijdij, respectively.

λA =
η0lmaxδ�A

μxμd
ð15Þ

Note that mx and md are needed for the gradient update already
(see Supplementary Alg. 1), so that this does not require any additional
computations, except for the scalar leaky average computations. Since
lmaxδ�A is approximately the maximum that the device material can
change during one update (lmax is the number of pulses used, see
Supplementary Alg. 1), the Eq. (15) means in case of η0 = 1 that an
element of the weight gradient is going to be clipped if xidj > μxμd. The
default value of η0 is 1, although in some cases higher values improve
learning.

Expectedweight updatemagnitude in limit cases. It is instructive to
investigate theoreticallywhatweight update the algorithms arewriting
onto the weight matrix. Let’s first assume an ideal device case without
considering any feedback from the loss function in a typical gradient
descent setting. Assume for simplicity that the gradientdxT is constant
for each n-dimensional input vector x and n-dimensional back-
propagated error vector d, that is xjdi ≡ g. Thus, after t (identical) input
vectors, the accumulated change of eachweight element shouldbe λgt
(ignoring the sign of the descent), where λ is the SGD learning rate.

Let’s further assume that the learning rate λA (see Eq. (15)) is
roughly constant in the period of t updates. According to the algo-

rithms (see Fig. 1), each element �a of �A is read after a periodofnsn input
vectors and would then be �ansn

= λAg nsn in the ideal device case. Note

that we write �at for the value of �a after t input vectors. Since the

algorithms will access each element of �Am= b t
ns n
c times and add

the readout ontoH, the value of the elements h after t input vectors are
ht=λH =

Pm
i= 1 �ainsn

=
Pm

i= 1 i �ansn
= λAgnsn

Pm
i= 1 i. Note that the term

cm �
Pm

i= 1 i=
ðm+ 1Þm

2 results from the fact that (in the ideal case) the

devices of �A are not saturating or reset between reads.
Thus, we find ht = cmλHλAgnsn. With Eq. (14) it is ht = cm

λns n
γ0δ �W

gnsn.
SinceW is updated with δ �W if h > 1 and h is then reset according to the
algorithms,wehavewt = cm

λns n
γ0

gnsn andwith t ≈ ns nm ≈ ns n (m + 1) it
iswt ≈ λ g t t

2γ0
. Note that if onewould set γ0 =

t
2 the SGDweight update

amplitude is matched. For instance, t could be the batch size (times re-
use factor for convolutions).

With choppers. However, when we are using a chopper as in c-TTv2
and AGAD then the change of the chopper sign every 1

ρ readouts
essentially resets the gradient accumulation on �A. If we correct (divide)
the writing onto H for the k-th read within a chopper cycle by k then
the pre-factor cm becomes just the number of reads in t that ism. Thus,
for the chopped algorithm (with multiple-read correction) it
is wt≈λ g t ns n

γ0
.

High-noise and high device asymmetry limit. In case of high device

asymmetry and device noise, the accumulation on �A quickly decays
(with typical time constant of 1

δ�A
, see Eq. (7)). Thus, if the readout

interval and device asymmetry is large, i.e., nsn≫ 1
δ�A
, then the accu-

mulated value is proportional to a filtered version of the instantaneous
gradient ansn

/ λA hgi with constant c rather than proportional to nsn

as in the ideal device case above. Thus, it is cm ≈m, and the updated
gradients are wt ≈ λ hgi t c

γ0
. Therefore, the nsn dependence drops,

which is the reason for the choice of Eq. (14).
In fact, it turns out empirically that the λA dependence of Eq. (14),

which re-scales the update on the weight with the incoming gradient
magnitude, canbedropped aswell. Effectively, the learning rate is then
automatically normalized per layer based on the recent average

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 13

gradient magnitude (μxμd), since it is then wt ≈ λ hgi t c
γ0
λA / 1

μxμd
with

Eq. (15). We find that this simplification works well in practice for our
simulations where we assume noisy ReRAM-like devices (see “Results”
section). However,we also confirmed that one canget similar accuracy
results when adding the dependence of λA as in Eq. (14) if the constant
γ0 is appropriately adjusted. The latter might be the preferred choice
for larger or more heterogeneous DNNs to not alter the effective
learning rate per layer and the overall dynamics of the learning in
comparison to training in with standard FP SGD.

Data availability
The training and test datasets used for this study are publicly
available34,37,52. The raw data that support the findings of this study can
be made available by the corresponding authors upon request after
IBM management approval.

Code availability
The full simulation codeused for this study cannotbepublicly released
without IBMmanagement approval and is restricted for export by the
US Export Administration Regulations under Export Control Classifi-
cation Number 3A001.a.9. However, the open source Apache License
2.0 (AIHWKIT) at https://github.com/IBM/aihwkit implements all
algorithms discussed here53.

References
1. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E.

Memory devices and applications for in-memory computing. Nat.
Nanotechnol. 15, 529–544 (2020).

2. Burr, G. W. et al. Neuromorphic computing using non-volatile
memory. Adv. Phys. X 2, 89–124 (2017).

3. Haensch, W., Gokmen, T. & Puri, R. The next generation of deep
learning hardware: analog computing. Proc. IEEE 107, 108–122
(2019).

4. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for
computing. Nat. Nanotechnol. 8, 13 (2013).

5. Sze, V., Chen, Y.-H., Yang, T.-J. & Emer, J. S. Efficient processing of
deep neural networks: a tutorial and survey. Proc. IEEE 105,
2295–2329 (2017).

6. Wan, W. et al. A compute-in-memory chip based on resistive
random-access memory. Nature 608, 504–512 (2022).

7. Xue, C.-X. et al. A CMOS-integrated compute-in-memory macro
based on resistive random-accessmemory for ai edge devices.Nat.
Electron. 4, 81–90 (2021).

8. Fick, L., Skrzyniarz, S., Parikh, M., Henry, M. B. & Fick, D. Analog
matrix processor for edge ai real-time video analytics. in 2022 IEEE
International Solid-State Circuits Conference (ISSCC), Vol. 65,
260–262, (2022).

9. Narayanan, P. et al. Fully on-chip Mac at 14nm enabled by accurate
row-wise programming of pcm-based weights and parallel vector-
transport in duration-format. in 2021 Symposium on VLSI Technol-
ogy, 1–2 (IEEE, 2021).

10. Yao, P. et al. Fully hardware-implementedmemristor convolutional
neural network. Nature 577, 641–646 (2020).

11. Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip
based on phase-change memory for deep neural network infer-
ence. Nat. Electron. 6, 1–14, 2023.

12. Ambrogio, S. et al. An analog-ai chip for energy-efficient speech
recognition and transcription. Nature 620, 768–775 (2023).

13. Gokmen, T. & Vlasov, Y. Acceleration of deep neural network
training with resistive cross-point devices: design considerations.
Front. Neurosci. 10, 333 (2016).

14. Jain, S. et al. Neural network accelerator design with resistive
crossbars: opportunities and challenges. IBM J. Res. Dev. 63,
10–1 (2019).

15. Zahoor, F., Azni Zulkifli, T. Z. & Khanday, F. A. Resistive random
access memory (RRAM): an overview of materials, switching
mechanism, performance, multilevel cell (MLC) storage, modeling,
and applications. Nanoscale Res. Lett. 15, 1–26 (2020).

16. Tang, J. et al. ECRAM as scalable synaptic cell for high-speed, low-
power neuromorphic computing (IEDM, 2018).

17. Onen, M. Science 377, 539–543 (2022).
18. Li, Y. et al. Capacitor-based cross-point array for analog neural

network with record symmetry and linearity. Proc. 2018 IEEE Sym-
posium on VLSI Technology, 25–26 (IEEE, 2018).

19. Nandakumar, S. R. et al. Mixed-precision architecture based on
computational memory for training deep neural networks, Proc.
2018 IEEE International Symposium on Circuits and Systems, 1–5
(ISCAS, 2018).

20. Nandakumar, S. R. et al. Mixed-precision deep learning based on
computational memory. Front. Neurosci. 14, 406 (2020).

21. Agarwal, S. et al. Resistivememorydevice requirements for a neural
algorithm accelerator. Proc. 2016 International Joint Conference on
Neural Networks (IJCNN), 929–938 (IEEE, 2016).

22. Rasch,M. J.,Gokmen, T. &Haensch,W. Training large-scale artificial
neural networks on simulated resistive crossbar arrays. IEEE Des.
Test. 37, 19–29 (2019).

23. Gokmen, T. & Haensch, W. Algorithm for training neural networks
on resistive device arrays. Front. Neurosci. 14, 103 (2020).

24. Gokmen, T. Enabling training of neural networks on noisy hardware.
Front. Artif. Intell. 4, 1–14 (2021).

25. Gong, N. et al. Deep learning acceleration in 14nm cmos compa-
tible RERAM array: device, material and algorithm co-optimization.
Proc. 2022 International Electron Devices Meeting (IEDM), 33–7
(IEEE, 2022).

26. Kim, H. et al. Zero-shifting technique for deep neural network
training on resistive cross-point arrays, arXiv preprint
arXiv:1907.10228, 2019.

27. Enz, C. C. & Temes, G. C. Circuit techniques for reducing the effects
of op-amp imperfections: autozeroing, correlateddouble sampling,
and chopper stabilization. Proc. IEEE 84, 1584–1614 (1996).

28. Paszke, A. et al. Pytorch: an imperative style, high-performance
deep learning library. Adv. Neural Inf. Process. Syst. 32, 2019.

29. Rasch, M. et al. A flexible and fast pytorch toolkit for simulating
training and inference on analog crossbar arrays. Proc. IEEE Inter-
national Conference on Artificial Intelligence Circuits and Systems
(AICAS), 1–4 (IEEE, 2021).

30. Onen, M. et al. Neural network training with asymmetric crosspoint
elements. Front. Artif. Intell. 5, 891624 (2022).

31. Büchel, J. et al. Gradient descent-based programming of analog in-
memory computing cores. Proc. 2022 International Electron Devi-
ces Meeting (IEDM). 33–1 (IEEE, 2022).

32. Rasch, M. J. et al. Hardware-aware training for large-scale and
diverse deep learning inference workloads using in-memory com-
puting-based accelerators. Nat. Commun. 14, 5282 (2023).

33. Gokmen, T., Onen, M. & Haensch, W. Training deep convolutional
neural networks with resistive cross-point devices. Front. Neurosci.
11, 538 (2017).

34. Deng, L. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Process. Mag. 29,
141–142 (2012).

35. Gokmen, T., Rasch, M. J. & Haensch, W. Training LSTM
networks with resistive cross-point devices. Front. Neurosci.
12, 745 (2018).

36. Lee, S. H. Lee, S. & Song, B. C. Improving vision transformers to
learn small-size dataset from scratch. IEEE Access 10,
123212–123224 (2022).

37. Krizhevsky, A. et al. Learning Multiple Layers of Features from Tiny
Images (University of Toronto, 2009).

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 14

https://github.com/IBM/aihwkit

38. Chen, Y. Reram: history, status, and future. IEEE Trans. Electron
Devices 67, 1420–1433 (2020).

39. Jain, S. et al. A heterogeneous and programmable compute-in-
memory accelerator architecture for analog-ai using dense 2-d
mesh. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 31,
114–127 (2022).

40. Lee, S. K. et al. A 7-nm four-core mixed-precision ai chip with 26.2-
tflops hybrid-fp8 training, 104.9-tops int4 inference, and workload-
aware throttling. IEEE J. Solid-State Circuits 57, 182–197 (2022).

41. Bhattacharjee, A., Moitra, A., Kim, Y., Venkatesha, Y. & Panda, P.
Examining the role and limits of batchnormoptimization tomitigate
diverse hardware-noise in in-memory computing. Proc. of the Great
Lakes Symposium on VLSI 2023. (GLSVLSI’ 23, ACM, 2023).

42. Meng, J. et al. Temperature-resilient rram-based in-memory com-
puting for dnn inference. IEEE Micro 42, 89–98 (2022).

43. Shankar, S. & A. Reuther, Trends in energy estimates for computing
in ai/machine learning accelerators, supercomputers, and
compute-intensive applications. Proc. 2022 IEEE High Performance
Extreme Computing Conference (HPEC). (IEEE, 2022).

44. Zhou, Y. et al. Rethinking co-design of neural architectures and
hardware accelerators. (2021).

45. Moghimi, R. To chop or auto-zero: that is the question, Analog
Devices Technical Note, MS-2062, (2011).

46. Steinbuch, K. Die Lernmatrix. Kybernetik 1, 36–45 (1961).
47. Khaddam-Aljameh, R. et al. Hermes core–a 14nm cmos and pcm-

based in-memory compute core using an array of 300ps/lsb line-
arized cco-based adcs and local digital processing. Proc. 2021
Symposium on VLSI Circuits. 1–2 (IEEE, 2021).

48. Fusi, S. & Abbott, L. Limits on the memory storage capacity of
bounded synapses. Nat. Neurosci. 10, 485–493 (2007).

49. Frascaroli, J., Brivio, S., Covi, E. & Spiga, S. Evidence of soft bound
behaviour in analogue memristive devices for neuromorphic com-
puting. Sci. Rep. 8, 1–12 (2018).

50. Stecconi, T. et al. Analog resistive switching devices for training
deep neural networks with the novel tiki-taka algorithm, Nano
Lett. 2024.

51. Kingma, D. P. &Ba, J. Adam: amethod for stochastic optimization. In
Proc. International Conference on Learning Representations (ICLR)
(ICLR, 2014).

52. Tolstoy, L., War and Peace. P.O. Box 2782, Champaign, IL 61825-
2782, (USA: Project Gutenberg, 1869).

53. Rasch, M. J. et al., IBM Analog Hardware Accelerator Kit 0.9.1, IBM/
aihwkit, https://doi.org/10.5281/zenodo.11205174, 2024.

Acknowledgements
We thank the IBM Research AI HW Center and RPI for access to the
AIMOS supercomputer, and the IBM Cognitive Compute Cluster for
additional compute resources. We would like to thank Takashi Ando,

Hsinyu (Sydney) Tsai, Nanbo Gong, Paul Solomon, and Vijay Narayanan
for fruitful discussions.

Author contributions
M.J.R. and T.G. conceived the study; M.J.R. conceived the AGAD algo-
rithm, T.G. conceived the c-TTv2 algorithm. M.J.R. conducted all
experiments and analyses, except the LSTM training experiments, done
by F.C., the vision transformer experiments, done by O.I.F., and the
MNIST-CNN experiments, done by M.J.R. and O.I.F.; M.J.R. wrote the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-51221-z.

Correspondence and requests for materials should be addressed to
Malte J. Rasch or Tayfun Gokmen.

Peer review information Nature Communications thanks Sadasivan
Shankar, and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-51221-z

Nature Communications | (2024) 15:7133 15

https://doi.org/10.5281/zenodo.11205174
https://doi.org/10.1038/s41467-024-51221-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Fast and robust analog in-memory deep neural network training
	Results
	Gradient update mechanisms
	Stochastic gradient descent on single linear layer
	DNN training experiments
	Device material requirements
	Endurance
	Retention

	Performance

	Discussion
	Method
	Analog matrix-vector multiplication
	In-memory outer-product update
	Device material model
	Symmetry point

	Recap of the Tiki-Taka (version 2) algorithm
	Overall performance

	Fast and robust in-memory training
	Chopped-TTv2 algorithm
	Overall performance

	AGAD algorithm
	Overall performance

	Determining the learning rates
	Expected weight update magnitude in limit cases
	With choppers
	High-noise and high device asymmetry limit

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

