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Neuromorphic-enabled video-activated cell
sorting

Weihua He1,6, Junwen Zhu1,6, Yongxiang Feng1, Fei Liang 1, Kaichao You2,
Huichao Chai 1, Zhipeng Sui1, Haiqing Hao1, Guoqi Li 3, Jingjing Zhao4,
Lei Deng 5, Rong Zhao 5 & Wenhui Wang 1

Imaging flow cytometry allows image-activated cell sorting (IACS) with
enhanced feature dimensions in cellular morphology, structure, and compo-
sition. However, existing IACS frameworks suffer from the challenges of 3D
information loss and processing latency dilemma in real-time sorting opera-
tion. Herein, we establish a neuromorphic-enabled video-activated cell sorter
(NEVACS) framework, designed to achieve high-dimensional spatiotemporal
characterization content alongside high-throughput sorting of particles in
wide field of view. NEVACS adopts event camera, CPU, spiking neural networks
deployed on a neuromorphic chip, and achieves sorting throughput of 1000
cells/s with relatively economic hybrid hardware solution (~$10 K for control)
and simple-to-make-and-use microfluidic infrastructures. Particularly, the
application of NEVACS in classifying regular red blood cells and blood-disease-
relevant spherocytes highlights the accuracy of using video over a single frame
(i.e., average error of 0.99% vs 19.93%), indicating NEVACS’ potential in cell
morphology screening and disease diagnosis.

Leveraging advances in microfluidics, imaging, and computation
techniques, imaging flow cytometry (IFC) has emerged as an innova-
tive tool for single-cell analysis1–8. Compared to conventional flow
cytometry, which can only obtain low-content data9 such as light
scattering and fluorescent signals, IFC has introduced spatial infor-
mation into non-invasive and high-throughput characterization of
single cells10, enhancing the feature dimensions in cellular morphol-
ogy, structure, and composition11. Dielectrophoresis (DEP) is also a
powerful, label-free characterization technique for cells with different
DEP properties12. However, DEP properties are an indirect measure of
cellular morphology, structure, and composition, so not as competi-
tive as IFC in fulfilling the ‘seeing-is-believing’ philosophy. As the most
comprehensive configurationof IFC, image-activated cell sorter (IACS)
integrates single-cell characterization and on-the-fly sorting, and has
wide applications in immunology, microbiology, and stem cell

biology13–15. However, current IACS frameworks rely on a single
instantaneous image of a flowing cell with a stationary orientation
w.r.t. the imaging sensor16, leading to substantial loss of spatio-
temporal information when attempting to represent a passing-by 3D
object within a 2D image16,17. Enhanced availability of spatial or tem-
poral information could substantially reinforcecellular identity suchas
internal complexity and 3D morphology, enabling further sub-
population classification18–25. This advancement holds the potential
to fuel various applications in drug discovery, population analysis,
precision medicine, and protein research26–33.

The two most important performance indicators of IACS are
sorting accuracy and throughput, which are prioritized by different
users but contradict each other in development. The former is largely
dependent on characterization content, while the latter is reliant on
processing speed. Nonetheless, as the characterization content
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increases13, IACS encounters escalating latency in information pro-
cessing, including data acquisition, synchronization, transfer, and
analysis. This dilemma is evident in the existing two mainstream IACS
imaging schemes: single-pixel photodetectors13,15 and multi-pixelated
imaging devices14. Single-pixel photodetector IACS features less ima-
ging data volumes and low-latency response from one single imaging
sensor34–37, yet its limited imaging resolution constrains the char-
acterization content and potential applications. While the use of
multiple sensors can enhance the characterization content13,15, the
associated synchronization overhead substantially curtails the pro-
cessing speed. By contrast, multi-pixelated imaging IACS takes
advantage of high-content imaging with densely arrayed pixels,
resulting in a large field of view (FOV) for imaging6,14,38. Nevertheless, it
requires multiple computation nodes14 to handle the enormous data
volume in a real-time manner, demanding extensive efforts in data
transmission, synchronization, and parallel analysis for multi-channel
images. Meanwhile, the existing tomographic imaging flow cytometry
methods (TIFC)19,24,32,33 are able to access 3D morphology information
and indeed boost the characterization content. However, its high-
content phase imaging data and computationally intensive 3D recon-
struction stop its real-time performance for sorting16, thus usually
following the paradigm of offline processing. In summary, existing
IACS frameworks suffer from the challenges of 3D information loss and
processing latency dilemmas in real-time sorting operations, which
lock their potential.

In this work, we establish a neuromorphic-enabled video-activated
cell sorter (NEVACS) framework, designed to achieve high-dimensional
spatiotemporal characterization content alongside real-time sorting of
particles. NEVACS aims to maximize effective data acquisition by
transitioning from 2D imaging to 3D video data, capturing volumetric
information over a large FOV to increase the characterization content.
However, this transition introduces significant challenges in processing
latency dilemmas within existing IACS frameworks due to the explo-
sively increased data volume. To tackle this bottleneck problem, we
adopt the so-called strategy of reducing-redundancy-for-efficiency in
imaging information processing. In particular, we propose to use a
neuromorphic vision sensor known as an event camera39–42 to capture
sparse, asynchronous event video data mainly for particles while
minimizing background data in the FOV. Correspondingly, with the
adoption of spiking neural network (SNN)43, an efficient neuromorphic
spatiotemporal processing paradigm based on simple multi-object-
tracking (MOT)-SNN pipeline and the brain-inspired neuromorphic
chip44,45 is exploited to perform asynchronous, sparsity-driven light-
weight computation for accurate and high-throughput particle sorting.
The one-neuromorphic-camera-for-large-FOV configuration avoids the
need for synchronization among sensors, and the neuromorphic spa-
tiotemporal processing module fully harnesses the sparse and asyn-
chronous habit of event modality, resulting in requisition of only one
computation node in deployment, thereby avoiding synchronization
among computation nodes. Hence, NEVACS would set free the high
demands in system infrastructure to offer favorable convenience and
also concerned users in real operation while achieving better perfor-
mance in sorting accuracy and throughput.

Here, we show that the above NEVACS framework has been suc-
cessfully implemented with a rather simple infrastructure, demon-
strating its promising performance. The event camera is coupled with
invertedmicroscopy for cell imaging in a large FOV (800× 400 pixels,
with image-plane pixel size 0.243μm), and the cell medium is then
introduced into a simple-to-make-and-use microfluidic device. The
large-FOV covers a properly selected microfluidic channel region and
is analyzed by a hybrid asynchronous neuromorphic processing
module mainly including MOT-SNN pipeline and a neuromorphic
many-core chip HP201 to provide passing-through video and classifi-
cation result of each particle, as well as the sort decision. Data trans-
mission, data analysis, and sort decision-making can be completed

within 1 ms, enabling NEVACS to achieve 1000 cells/s sorting
throughput. Compared to current state-of-the-art IACS methods,
NEVACS achieves comparable sorting throughput and a relatively fast
processing time per cell (average 394.96μs), with the reasonably
economic infrastructures (i.e., personal computer, commercially
available neuromorphic chip, and simple-to-make-and-use micro-
fluidic chip using 10% flow speed) and a hybrid of neuromorphic and
conventional components and algorithms. We demonstrate the
application of classifying regular red blood cells (RBCs) and blood-
disease-relevant spherocytes to highlight the better accuracy of using
video over a single frame (i.e., the average error of 0.99% vs 19.93%),
showcasingNEVACS’potential inbloodcellmorphology screening and
blood-disease diagnosis. We also demonstrate NEVACS’ extended
sorting capability of many microparticles of similar sizes but with
distinctive morphology and status in various environments through
single-FOV perception of multi-channel bright-fluorescent imaging.
Overall, NEVACS is a hybrid system of neuromorphic and conventional
components and algorithms, dedicated to video-activated cell sorting
with simple infrastructure and many potentials.

Results
System architecture
As shown in Fig. 1A, B, NEVACS is a hybrid of neuromorphic and con-
ventional components and algorithms, composed of three sub-
systems, including: (1) microfluidic subsystem for sample
manipulation (i.e., rolling, focusing, and sorting); (2) imaging sub-
system for neuromorphic spatiotemporal imaging, and optionalmulti-
channelfluorescent-bright imaging; (3) control subsystemempowered
by central processing unit (CPU), neuromorphic chip (HP201, Lynxi)
and field-programmable gate array (FPGA) for computation, hybrid
asynchronous neuromorphic algorithm for video data analysis and
sort decision, and further offline reconstruction. The microfluidic
subsystem features favorable merit in the simplicity of the structure
and fabrication, which has only a funnel-like main channel coupled
with sheath channels for piezoelectric sorting. The imaging subsystem
has a field of view (FOV) covering the funnel-like region of the micro-
fluidic channel and provides a spatiotemporal data stream, which is
analyzed by the control subsystem. The control subsystem relies on a
compact hardware setup and neuromorphic algorithm to perform
sorting control of the microfluidic system with asynchronous multi-
object parallelism and low latency. As shown in Supplementary
Movie 1, the three subsystemswork together to carry out real-time cell
sorting activated by neuromorphic spatiotemporal imaging in a low-
latencymanner (average 716.73μs).More detailed infrastructure setup
can be found in Supplementary Fig. 1 and Supplementary Fig. 2, and
more details about themethod can be found in the “Methods” section.

For the microfluidic subsystem, the cell suspension sample is first
introduced into the wide channel (160μm) for parallel operation and
field imaging, then the cells are focused into the narrow channel
(20μm) with a fixed order for precision sorting. The wide channel is
sized to fit the imaging FOV. When one cell passes through the elec-
trodes placed before the sorting point, an electrical signal will be
generated to activate the FPGA, which returns the sort decision result
for the current cell. Since the order of the cells is fixed after focus by a
narrow channel andmaintainedby sheathflow, the FPGAneeds only to
query the sort decision list and return the sort decision in line with the
cell order. The fixed distance from the electrodes to the sorting point
allows the FPGA to fire the piezoelectric sorter at a constant delay. The
flow speed in the wide channel is 0.0125m/s or 51.4 kpixels/s and
reaches 0.1 m/s in the narrow channel, only 10% of the value in other
IACS frameworks, indicating that the system has low requirements on
microfluidic chips. Note that the flow rate is normally relevant to a
number of factors, including the bandwidth limitation of the event
camera, the processing capability of the neuromorphic chip, and the
frequency response of the sorter, etc. Here, the 0.1m/s flow rate is
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mainly limited by the frequency response of the piezoelectric sorter
but can lead the throughput to 1000 cells/s. This relatively low flow
rate would facilitate NEVACS operation in real use.

For the imaging subsystem, a particle sample is imaged by the
event camera through a microscope and triggers a sparse event
stream, which is rich in spatiotemporal features. The asynchronously
event-driven processing fashion and independent pixels empower the
event camera with the advantages of blur-free, high temporal resolu-
tion (up to 1μs sampling rate) in imaging (Fig. 1C). Due to the sparsity
of the event stream, we achieve significant advantages over dense
images in raw signal processing and transmission bandwidth, thus a
substantially large FOV is permitted (18× greater than the small FOV in
traditional IACS13). The enlargement of FOV enables NEVACS to pro-
cess and analyze multiple objects at the same time, as well as obtain a
video for each of these objects passing through the FOV. Particles
could be manipulated by various means to have dynamic changes in
the video, which leads to increasing accuracy in sort decisions and

characterization. For example, the particle could be rolled forward and
its video could be used to reconstruct 3D morphology. Another
example is to divide the FOV into multiple sub-FOVs, each for one
bright-field or fluorescent-field imaging, allowing multi-channel ima-
ging of the same particle and thus better classification.

For the control subsystem, as shown in Fig. 1D, it consists of four
main nodes having paths for signal wiring, data transfer, command
communications, and computing. These nodes are carefully deployed
on a hybrid hardware platform centered on a host computer to exe-
cute the control algorithm. Firstly the blobs in the high temporal
resolution event stream are detected46 synchronously and repeatedly
every cycle (i.e., 1ms) to resolve the coordinates of all particles in the
FOV. The detection results of particles across cycles are associated
with a lean and efficient multi-object tracking (MOT) module SORT47,
and particle trajectories and identities are returned by MOT, to obtain
the video for each particle in the FOV. These video frames are input to
the neuromorphic classification node for particle sorting decisions,

Fig. 1 | The proposed NEVACS framework and infrastructure. A System back-
bones include an event camera, microscope, host personal computer, FPGA, and
microfluidic chip. The cell suspension sample is first introduced into the wide
channel (bird-view) for microfluidic operation and field imaging and then focused
into the narrow channel. The FOV is imaged throughmicroscopy and event camera
with high spatiotemporal resolution, and analyzed by deploying a spiking neural
network (SNN) model in the host computer to get the sort decision list. The elec-
trical signals are triggered by electrodes in the microfluidic chip as the cells in the
narrow channel pass through, informing the FPGA to query the sort decision list
and activate piezoelectric sorting. See Supplementary Fig. 1 for details.

B Experimental setup of NEVACS. C The working mechanism of the neuromorphic
vision sensor, event camera. D Functional modules of the microfluidic, imaging,
and control subsystems. After vision acquisition and preprocessing, the blobs in
the FOV are analyzed by themulti-object trackingmodule to obtain spatiotemporal
video sequences for each particle. The videos can be used for comprehensive
neuromorphic classification for sort decisions and further offline reconstruction.
See Supplementary Fig. 1 for details. E The SNN classification models deployed
independently and asynchronously on the neuromorphic chip HP201. `Conv' and
`FC' refer to the convolutional layer and fully connected layer, respectively.
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which is sent to the sort driver for sorting execution. Here, the order of
particles entering the narrow channel is registered by tracking them
through the entire FOV, and the video could be used for further
intensity reconstruction and 3D morphology reconstruction. The
novelty here for NEVACS implementation is the use of the neuro-
morphicDVS event camera to allow cheap and quick CPU-based event-
driven tracking to determine a video that can be quickly classified by a
small SNN. In NEVACS, each particle in the FOV has one and only one
dedicated SNN classification model. For multiple particles, there are
the same number of SNN models, which work independently and
asynchronously.

The CPU node is responsible for reading, preprocessing, and
transmission of data from the event camera, blob detection, and MOT.
Different from the event-camera-based works using CNN-based
models48,49, here NEVACS adopts the neuromorphic chip to deploy the
SNN classificationmodels and provide acceleration for model inference
to get classification results from particle videos. Thanks to the many-
coredecentralized architecture of theneuromorphic chip, different SNN
classification models are mapped into different function cores, thus
enabling real-time neuromorphic processing in NEVACS (Fig. 1E). The
FPGA node is used to query the sort decision list for controlling the
piezoelectric sorter once a particle passes through the electrodes and
triggers a signal. Currently, the control subsystem, including the event
camera, PC, FPGA, and the neuromorphic chip, costs about $10K.

The hybrid asynchronous neuromorphic vision information pro-
cessing flow is the key to the control subsystem. As the overall control

flow (Fig. 2A) shows, the event stream is processed cyclically. In every
cycle, particleblobs in the imagedevent streamaredetectedand tracked
synchronously on the CPU to generate binarized video for each particle.
The video frames for one particular particle are sequentially processed
by an SNN classification model (task) dedicated to the particle. In other
words, these video frames drive the SNN sequentially without resetting
between each other. Formultiple particles, these SNNmodels (tasks) are
executed independently and asynchronously on the corresponding
cores of the many-core-architecture neuromorphic chip HP201. The
classification result for each particle is utilized for sorting decisions to
conduct sorting control via FPGA. Figure 2B shows the detailed control
flow in one cycle. Initially, one spike frame, binarized (or clipped to
1 spike count) event count image rectified into ON and OFF channels, is
generated from the event stream for the entire FOV. It is then processed
to generate ROIs for particles. Each ROI (called particle frame) is asso-
ciated with a particular particle by MOT. The particle frame, once
available, is fed to its dedicated SNN for one feedforward step. All SNN
input units are activated synchronously when the particle frame arrives
and thendrive theneurons tofire sparsely.Only if theparticlehas left the
FOV, the CPU informs the system. Then the SNNmodel gives an output
by rate coding, gets reset, and waits for the next task. The ROI size is
chosen to be larger than the tracker boxes to test the processing cap-
ability of the neuromorphic chip. It was found that 120× 120 ROIs could
handle particles with size up to ~29μm.

Towards the real-time neuromorphic processing of the event
stream in NEVACS, the software/hardware co-design is conducted

Fig. 2 | The control flow for the hybrid asynchronous neuromorphic vision
information processing architecture. A Overall control flow. In every cycle, par-
ticle blobs in the imaged event stream are detected and tracked synchronously on
the CPU to generate binarized video for each particle. The video frames for one
particular particle are sequentially processed by a dedicated spiking neural net-
work (SNN) classification model (task). For multiple particles, these SNN models
(tasks) are executed independently and asynchronously on the corresponding
cores of the neuromorphic chip HP201. Note that because particles (e.g., particle
1 slower than 2 or 3) may have different speeds in the FOV, their SNNs may have
different task start and end timing. The classification result for each particle is

utilized for sorting decisions to conduct sorting control via FPGA. `Sync.' and
`Async.' refer to synchronous phase and asynchronous phase, respectively. B The
detailed control flow in one cycle. Initially, the event stream is used to generate
bounding boxes for particles in the FOV, and one binarized spike frame. These two
are used to generate ROIs for particles. Each ROI (called particle frame) is asso-
ciated with a particular particle by the MOT module, and fed immediately to its
dedicated SNN for one feedforward step. TheCPUdecides andnotifies SNNand the
subsequent sorting control, depending on whether the particle has left the
FOV or not.
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considering the aspects of algorithm design, hardware architecture,
and execution configuration. In the aspect of algorithm design, the
classic SNNwas found towork well and chosen to harness the sparsity-
driven and spatiotemporal nature of the particle video. In the aspect of
hardware architecture, as a commercially available version of the
neuromorphic chip Tianjic44,45, HP201 adopts the many-core decen-
tralized architecture that is widely used for neuromorphic chips and
integrates 60 configurable functional cores, performing as a suitable
candidate for the asynchronous multitask neuromorphic computing
design in NEVACS. Finally, in the aspect of execution configuration,
each classification task (dedicated to one particle) is assigned to two
functional cores, enabling the hardware infrastructure to support
classification tasks for up to 30 particles in the FOV asynchronously.

Basic performance via cell-bead sorting
The basic performance of NEVACS is demonstrated through sorting
enrichment of cells from 1:1 cell-bead mixture suspension. 6-μm
polystyrene (PS) beads and Hela cells generate event streams with
different patterns, the generated blobs (Fig. 3A) are then detected
(Fig. 3B) and associated by theMOT algorithm to obtain video for each
particle (Fig. 3C), which 99.7% particles in the FOV are tracked con-
tinuouslywithout identity switches. The video could be further used to
perform intensity reconstruction (Fig. 3D, Supplementary Fig. 3) in an
offline process, which has nothing to do with the online classification.
In this experiment, the particles are not well controlled to roll, but flow

naturally in the microfluidic channel and would also show some dif-
ference in its morphology through the video. To validate the
advancement of the video-activated paradigm, we change NEVACS
into the single-frame-activated sorter (see Supplementary Informa-
tion), where a single frame is randomly selected fromtheparticle video
and analyzed tomake the sorting decision. As shown inSupplementary
Movie 1, NEVACS is robust to those intermediate and occasional wrong
classification confidence, which happens more often in the single-
frame-activated sorter that relies only on one particular frame prob-
ably having a similar 2D projection with other particles. By contrast,
NEVACS uses all video frames during the particle passing through the
entire FOV for sorting decisions and thus is able to correct those
instantaneous errors. The classification result byNEVACS is better than
that by the single-frame-activated sorter. For example, the false iden-
tification rate of cells and beads is 4.68% and 2.68% on the test set for
the single-frame-activated sorter, while 0.72% and 0.11% for NEVACS
(Fig. 3E). This is also clear through the receiver operating characteristic
(ROC) curves (Supplementary Fig. 4A).

To compare the performance of the neuromorphic chip and
commonly used graphics processing unit (GPU) under the same
NEVACS framework, we obtain the inference time of the SNN classifi-
cation model and the overall efficiency of the control subsystem by
classifying 500 particles for both configurations. The GPU is Nvidia
RTX3080. As can be seen in Fig. 3F, the neuromorphic chip HP201
achieves 394.96 ± 81.42μs per inference, while RTX3080 increases to
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and 0.11%, respectively. F–H Comparisons of inference time (F) 500 biological
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subsystem overall efficiency (G), and power consumption (H) for NEVACS with
different accelerator configurations (RTX3080 and HP201), respectively. 20 bio-
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scopic visualization of cell sorting results for the cell-bead mixture, with>98%
purity of collection. Insets show the rare, false sorting cases. The experiment was
repeated 20 times independently with similar results.
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675.67 ± 309.11μs per inference. Note, in this paper, that each SNN
classifier dedicated to one particular particle, is not reset anywhere in
the particle video. Therefore, under the current setting, no matter
what SNN is deployed on (HP201 or RTX3080), video frames could not
be processed in parallel in batch mode using weight sharing. They
need to be processed sequentially. For overall efficiency, the control
subsystem in NEVACS with the co-designed neuromorphic solution
obtains a throughput of 1134.10 ± 20.86 tasks/s continuously, while the
throughput declines to 634.05 ± 47.60 tasks/s with RTX3080 (Fig. 3G).
With the co-designed neuromorphic solution making full use of the
sparse and asynchronous nature of the event stream to speed up
computation, NEVACS achieves an average throughput of ~1000 cells/
s in general. Table 1 summarizes the comparison of some key para-
meters between NEVACS and IACS.

The considerable benefit in power consumption is worth noting.
From the aspect of the camera alone, the neuromorphic event camera
with up to 1.5W power consumption gains a huge advantage com-
pared to the traditional high-speed camera (e.g., Fastcam SA-1, Pho-
tron, typically 90W). From the aspect of processing, the power
consumption of the two accelerators is 14.36 ± 0.02W (HP201) and
137.55 ± 1.15W (RTX3080) respectively (Fig. 3H). The neuromorphic
vision sensor andneuromorphic chip are 1 order ofmagnitude lower in
power consumption. Currently, the overall power consumption of
NEVACS is about 106W and can be further reduced by adopting neu-
romorphic modules with lower static power consumption and power-
economic CPU when necessary, leading to potential applications in
portable settings.

The target particles flow through to the collection outlet under
the control of NEVACS or the single-frame-activated sorter for piezo-
electric sorting (Fig. 3I). Through microscopic imaging of the sorted
samples (Fig. 3J), NEVACS achieves a purity of 98.21%, outperforming
the best performance of the single-frame-activated sorter (92.84%). As
a note, because the two particles here have a very clear boundary with
nooverlapping in size distribution, particle size canbe certainly amore
straightforward and effective sorting criterion than binarized spike
frames. But that is not our focus in this paper.

Additionally, the image-plane pixel size (0.243μm) in spatio-
temporal imaging lends NEVACS the capability to obtain high-quality
images, while the large FOV (800× 400 pixels) enables NEVACS to
characterizemultiple particles in parallel. Note here the event camera’s
full FOV is not used, to match the hardware processing ability and
ensure real-time classification and sorting. Spatiotemporal character-
ization, high-quality imaging, and multiple particle processing further
allowNEVACS to demonstrate its capabilitywith high accuracy and low
latency in the two subsequent representative applications, which are
not performed well by the single-frame-activated sorter.

Healthy vs sick red blood cell classification
3D morphology largely reflects the specificity of particles and can be
used to enhance particle classification. For example, regular red blood
cells (RBCs) are disk-like and some red blood cells will appear spherical
(spherocytes),which showsignificantdifferences in3Dmorphology. For
the patients with hereditary spherocytosis or hemolytic anemia, the
ratio of spherocytes could exceed 15%, in comparison to <3% for healthy

adults50. Therefore, it is crucial for health diagnosis to preciselymeasure
the proportion of spherocytes. However, current IACS couldonly obtain
2D imaging, i.e., using one instantaneous snapshotmay result in the lack
of 3D specificity and inevitably cause erroneous classification.

By rolling the cells through the FOV,NEVACSgenerates a video for
each cell where 2D imaging stacks from different angles are obtained.
Note, the rolling manipulation is achieved by adding a sheath flow
above themain channel (Fig. 4A). The 3Dmorphology specificity could
be characterized as multi-angle imaging and associated with video
frames, leading to higher accuracy. To demonstrate the capability of
NEVACS with multi-angle enhancement, we conduct spherocytes
classification from the mixture of regular RBCs and spherocytes. Due
to the disk-like morphology, one single image of regular RBCs may
confuse the classic classification algorithm, including the currently
most powerful deep-learning networks, at some specific imaging
angles for the conventional IACS frameworks. The representative
examples in Fig. 4B show the influence of imaging angles on the clas-
sification confidence probability given by the single-frame-activated
sorter (see Supplementary Information). The 2D imaging input of the
two types of particles are very similar at some specific imaging angles
and thus result in the probability reduction in classification confidence
for regular RBCs,which lowers the identification accuracy. By contrast,
based on the spatiotemporal imaging capability, NEVACS obtains
multi-angle morphology of the rolling particle through video. To bet-
ter visualize the benefit, we use the number of events (denoted as
event count) of the particle passing through the entire FOV to reflect
the angle effect. The event count ofRBCfluctuates from2000 to 5000,
and reaches the extremeat a specific angle of the disk-like shape, while
the event count of spherocyte is in 3000–3500 due to the rather
regular spherical shape, as shown in Fig. 4C. As can be seen, there is a
great portion in the FOV for the two particles to be classified as the
same if only one single frame is to be used. To further validate the
advancement of the spatiotemporal video-activated paradigm, we
input all video frames (NOT event count) intoNEVACS and compare its
performance with the single-frame-activated sorter for the sort deci-
sion. Here, we test mixed cell samples with known spherocyte pro-
portions of 0%, 3%, 5%, 10%, 15%, 50%, and 80%, and obtain the
classification results by NEVACS and the single-frame-activated sorter.
As shown in Fig. 4D, the calculated results from the single-frame-
activated sorter are 21.73%, 25.84%, 28.56%, 32.13%, 34.28%, 41.39%, and
58.62%, while 0.33%, 2.61%, 4.23%, 9.05%, 13.79%, 49.34%, and 77.36%
byNEVACS. These results can be supportedby the ROC curves (Fig. 4E,
Supplementary Fig. 4CD). The recognition accuracy is greatly
improvedbyusing video insteadof single-frame, especially for the low-
percentage spherocyte cases.

In clinics, the current diagnosis benchmark for hereditary spher-
ocytosis or hemolytic anemia is not based on the spherocyte propor-
tion. However, this proportion was found to be able to work as a
valuable indicator for the diagnosis of hemolytic disease. According to
ref. 51, for example, ABO blood type relevant hemolytic disease of the
newborn (ABO-HDN) is one critical hemolytic disease. When the
threshold of the spherocyte proportion was set as 5%, the diagnostic
sensitivity as ABO-HDNwas 66.7%, and the specificity was 88.2%.When
the threshold was set as 10%, the sensitivity decreased to 9.3%, and the

Table 1 | Comparison of key parameters of state-of-the-art IACS and NEVACS

Vision acquisition Flow speed 1 Cell sorting throughput Image-plane pixel size Processing time per cell 2

Intelligent IACS13 FDM4 1m/s ~100 cells/s 0.25μm×0.84μm 98.8% <32ms

Intelligent IACS2.0(VIFFI)14 VIFFI6 1m/s ~1000 cells/s 0.325μm 99.8% <32ms

BD CellView IACS15 FIRE37 1.1m/s ~15,000 cells/s 1.5 μm <400 μs

NEVACS (ours) EVK442 0.0125m/s(wide) 0.1m/s
(narrow)

~1000 cells/s 0.243 μm 394.96 μs

1 NEVACS achieves a comparable sorting throughput (1000 cell/s) with the most simple-to-make-and-use microfluidic chip using 10% flow speed.
2 There are on average 22.85 different particles in the FOV in NEVACS under throughput of ~1000 cells/s.
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specificity reached 98.5%. Thus, from the technical point of view, the
most important thing is to make the proportion measurement accu-
rate. Therefore, we select five very close to the 3−15% threshold pro-
portions, and two a bit far away. The accuracy for these proportions is
much higher (i.e., the average error is 0.99% vs 19.93%) than that given
by the single-frame-activated sorter, and can better serve as the diag-
nosis indicator. In particular, for the two tested spherocyte propor-
tions (0% and 3%), the single-frame-activated sorter gets the wrong
proportions (>20%). Considering that healthy adults have <3% spher-
ocytes, if we rely on a single-frame-activated manner for diagnosis of
hereditary spherocytosis or hemolytic anemia,wewould judge healthy
ones as unhealthy. This strongly shows NEVACS’ superiority in blood
cell morphology screening and blood-disease diagnosis.

We further demonstrate NEVACS’ extra benefit by showing the
reconstructed 3Dmorphology (SupplementaryMovie 2, Supplementary

Fig. 5) of particles through offline processing. Note that this benefit is
mainly for visualization purposes to alignwith IACS, such that interested
users have themeans to investigate the 3Dmorphology of sorted target
particles.

Visible plus fluorescent split image cell sorting
Plastic microparticles have been recently observed in various envir-
onments (e.g. water, air, foodstuffs52), and even within the human
body53, posing great hazardous concerns in human health. In many
fluidic samples (e.g., blood), thesemicroparticles would bemixedwith
cells, from which living cells may be required to sort out for further
analysis to investigate the effect of plastic microparticles. There are
many other similar and important situations, such as various micro-
particles in atmospheric aerosols. In IACS, multi-channel including
fluorescent- and bright-field imaging is a general protocol. There are

Fig. 4 | Classification of regular red blood cells (RBCs) and spherocytes with
multi-angle enhancement feature of NEVACS. A Overall, side-view schematic of
NEVACS configured for multi-angle imaging enhanced classification. Particles are
subject to rolling by a sheath flow input above the main channel. B The classifica-
tion confidence (obtained by the single-frame-activated sorter) using only one
snapshot for both RBCs and spherocytes under typical imaging angles. 4000 bio-
logical replicates are performed, and data are presented as mean values ± SD. For
these two types of particles, RBCs could be classified as RBC with relatively high
confidence when a particular snapshot of RBCs (e.g., 90∘) is fed, while spherocytes
would be classified asRBCor spherocytewith nearly the sameconfidencewhen any

snapshot of spherocytes is fed. This indicates great confusion in classifying the
mixture of these two particles in the single-frame-activated sorter, which uses only
one frame. C The dynamic trends of event count for the two particles rotating
throughout the FOV. The event counts are greater in the squeezing region because
particles have the highest velocity in this region.DComparison of the classification
results for the two particles by NEVACS and the single-frame-activated sorter.EThe
receiver operating characteristic (ROC) curves and area under the curve (AUC) of
NEVACS and the single-frame-activated sorter in classifying the regular RBCs and
spherocytes under all the spherocyte proportions.
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two existing mainstream IACS imaging schemes: single-pixel photo-
detectors and multi-pixelated imaging devices. The IACS based on
single-pixel photodetectors typically necessitates a dedicated sensor
for each channel13,15. In IACS based on multi-pixelated imaging
devices6,14, indeed a single multi-pixelated imaging device can be
employed to simultaneously capture multiple fluorescence channels.
However, this scheme would require multiple computation nodes14 to
handle the enormous data volume in a real-time manner, demanding
extensive efforts in data transmission, synchronization, and parallel
analysis across these computation nodes. The synchronization and
linkage among multiple sensors or multiple computation nodes raise
challenges and complexity in system infrastructure, hampering the
sorting throughput and potential applications. In contrast, NEVACS
can split the large FOV into sub-fields, each of which is responsible for
one channel of imaging, and thus achieve multi-channel bright-
fluorescent-field spatiotemporal imaging via a single vision sensor
and processingwith a single computation node, largely simplifying the
system infrastructure and thus leading to latency reduction.

To demonstrate the sorting accuracy of FOV-splitting multi-
channel bright-fluorescent spatiotemporal imaging, the experiment is
conducted to sort living Hela cells from a mixture of unknown-
condition Hela cells and 15-μmPS beads via NEVACS. Herein, Hela cells
and PS beads are used as a model of biological cells mixed with plastic
microparticles of identical size and similar spherical morphology. The
mixed suspension is stained with SYTOX Green (Thermo Fisher, USA)
to label dead cells with fluorescent signals. As a proof-of-concept, the
FOV is divided into two fields, i.e., fluorescent- and bright-field via a
customized FOV-splitting filter F3 (Fig. 5A, B). The rotating particles
first pass through the fluorescent field, where only the dead cells can
be observed, then the bright field, as shown in Fig. 5C and Supple-
mentaryMovie 3. Fluorescent imaging enhances the dynamic trends of
event count, which can be used to separate the dead Hela cells
(Fig. 5D). Note that the emission light from the particles will be
recorded to present a halo effect by the event camera due to its sen-
sitivity to the intensity change, in contrast to conventional cameras in
IACS techniques. By adjusting the light source intensity and the aper-
ture size, one can weaken the halo effect in the fluorescent image.
Next, the morphological representation in the bright field is analyzed
and classified by the SNN classification model to distinguish the living
cells and beads. The MOTmodule associates the different channels of
the same particle passing through the FOV, thus ensuring the robust-
ness and accuracy of sort decision (Fig. 5E). To validate the advantage
of spatiotemporal video-activated paradigm, we also compare the
performance of NEVACS with the single-frame-activated sorter (see
Supplementary Information). The experimental results show that the
collected living cell purity in the single-frame-activated sorter was
87.23%, while in NEVACS 95.74% (Fig. 5F, combining both bright field
and fluorescence field). In contrast, with only a bright-field NEVACS
achieved a living cell purity of 89.67%. We also tested the mixture
without rotating the particles, andNEVACS achieved a living cell purity
of 92.72%. These results show the significance of spatiotemporal and
multi-channel imaging.

In addition to the >8% purity improvement, the benefit of latency
reduction is more significantly considerable. NEVACS still requires
synchronizing the event camera timestamps, the CPU, the electrode
detectors, and the piezoelectric actuator. However, FOV-splitting
imaging in NEVACS enables a single vision sensor to perform multi-
channel imaging, which avoids the synchronization among multiple
imaging sensors otherwise used in IACS. A dual-sensor NEVACS is
intentionally set up to quantitatively evaluate the time difference in
fluorescent-bright imaging, in which each channel is equipped with a
dedicated event camera to acquire a bright-field or fluorescent image
from half an FOV (i.e., 400 × 400 pixels), keeping the same data
volume as the FOV-splitting NEVACS. For comparison between the
FOV-splitting NEVACS and dual-sensor NEVACS, the sensor

synchronization time is recorded for 10,000 cycles. In dual-sensor
NEVACS, the sensor synchronization takes an extra 772.75μs on
average, while FOV-splitting NEVACS does not need sensor synchro-
nization at all. Considering that the average classification time of
NEVACS is 394.96 μs, this synchronization-induced overhead is sig-
nificantly noticeable, leading to the overall efficiency of FOV-splitting
NEVACS (1134.10 ± 20.86 tasks/s) nearly double that of dual-sensor
NEVACS (574.95 ± 161.04 task/s) (Fig. 5G). More seriously, sensor syn-
chronization exhibits significant latency fluctuation
(508.38μs–1.2ms), and this would result in system instability. Alto-
gether, by avoiding sensor synchronization via FOV-splitting imaging,
NEVACS is likely to yield less overhead compared to the existingmulti-
sensor paradigm in multi-channel IACS, thus is a powerful framework
to improve throughput and system robustness.

Discussion
Fromfluorescence-activated cell sorting (FACS) to image-activated cell
sorting (IACS), the existing strategies are to evolve with advanced
imaging methods and complex system infrastructures to handle the
trade-off between extended characterization content and processing
speed for real-time sorting. However, it is not well sustainable to count
on the only computational capacity to handle increaseddata volume In
this work, NEVACS adopts the neuromorphic engineering strategy of
reducing-redundancy-for-efficiency and thus reduces the complexity
and cost of system infrastructures We demonstrate one NEVACS
implementation scheme through reasonably economical infra-
structures, including a personal computer, neuromorphic asynchro-
nous vision sensor (event camera), lightweight neuromorphic
algorithm (SNN), powerful neuromorphic chip (HP201), and simple-to-
make-and-use microfluidic chip requiring only 10% flow speed, show-
casing the breakthrough in accuracy enabled by high-dimensional
spatiotemporal characterization with real-time video-activated sort-
ing. In particular, NEVACS is able to measure the spherocyte percen-
tage with very high accuracy (i.e., the average error of 0.99%),
highlighting its potential in red blood cell morphology screening and
blood-disease diagnosis (hereditary spherocytosis or hemolytic ane-
mia) otherwise not achievable by the image-activatedmanner of IACS,
which may judge healthy persons as unhealthy. By filling up this gap,
NEVACS could make a big impact in biomedical fields. Even with such
lean infrastructures, in comparison with current state-of-the-art IACS
methods (Table 1), NEVACS achieves the relatively fast processing time
per cell (average 394.96μs), offers the additional feature of temporal
resolution via video sequences and thus offline 3D morphology
reconstruction for the target, and achieves a comparable sorting
throughput (1000 cell/s). Overall, NEVACS proves its capability as one
of the new-concept high-throughput cell sorting paradigms. It pro-
vides means available in cell sorting, enriching the capabilities like
multispectral imaging13 and cell membrane impedance
measurement54,55 available in other interesting works.

There are also application scenarios engaging with more than
bright-field morphology-based characterization and sorting of parti-
cles in conventional IACS. To align with such capabilities of IACS,
NEVACS can be configuredwith FOV-splittingmultiplefields, as shown
in this work to cater for fluorescence imaging purposes. Here, we do
notmean that using FOV-slitting configuration is exclusive to NEVACS,
but that NEVACS can be made compatible with a wide range of appli-
cations intended for IACS. However, we do want to emphasize that the
FOV-splitting configuration in NEVACS brings up the benefit of less
overhead compared to the existing multi-sensor paradigm in multi-
channel IACS, thus being suitable for improving throughput and sys-
tem robustness. Based on this configuration, NEVACS is shown to sort
living cells out of complex microparticle samples using the model of
plastic microparticles mixed with cells, leveraging the capabilities of
both spatiotemporal video-activated characterization and fluores-
cence labeling. There aremany other similar and important situations,
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Fig. 5 | FOV-splittingmulti-channel bright-fluorescent spatiotemporal imaging
and sorting of different particles. A Side-view schematic of FOV-splitting multi-
channel imaging via a single event camera. `F' and `OL' refer to the filter andoptical
lens, respectively. B The customized FOV-splitting F3 filter assembled with the
photodiode (PD) sensor of the event camera. One-half of the PD sensor array
images the fluorescent field, while the other half images the bright field. C Typical
images of three particles in the fluorescent field, the field junction, and the bright
field, where the red dotted linemarks thebright-fluorescent field junction. Only the
deadHela cells could be seen in the fluorescent field. The experiment was repeated
20 times independently with similar results. D The detected event blobs in FOV-
splitting NEVACS, where the red dotted line and black dotted line mark the bright-
fluorescent-field junction and the boundary of the funnel-likemicrofluidic channel,

respectively. The halo of emission light in a fluorescent field is recorded by the
event camera due to its sensitivity to the intensity change, causing reduced image
quality in fluorescence images. The experiment was repeated 20 times indepen-
dently with similar results. E Representative dynamic trends of event count for
different particles passing throughout the FOV. The event counts are greater in the
squeezing region because particles have the highest velocity in this region.
F Representative, bright-field, and fluorescent microscopic images of collected
particles after sorting by the single-frame-activated sorter (top) and NEVACS
(bottom) for the living Hela-deadHela-beadmixture. The experiment was repeated
20 times independently with similar results. G Comparison of the control sub-
system overall efficiency for FOV-splitting NEVACS and dual-sensor NEVACS. 20
biological replicates are performed, and data are presented as mean values ± SD.
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such as various microparticles (e.g. pollutants, spores56) in the atmo-
spheric aerosols.Due to the lackof commonly acceptedbenchmarking
separation platforms, we were not able to use real samples of these
microparticles in the experiment. According to literature52,57, however,
a limited number of suchmicroparticles collected through specifically
designed protocols are not as regular as the PS beads used here. Their
irregular morphology would make a fit for NEVACS capability of spa-
tiotemporal video-activated sorting with multi-angle enhancement
and FOV-splitting multi-channel imaging. We, therefore, envision that
NEVACS presents a suitable candidate platform for the accurate
separation of many microparticles with distinctive morphology and
status in various environments.

NEVACS can be further optimized from some aspects. Theoreti-
cally, NEVACS has little limitation on the imaging methods, as long as
the patterns or features of the particles are so different to be captured
in imaging. Currently, we show bright-field analysis as one typical
imaging method. From the phase contrast images (Supplementary
Fig. 6)weobtained via the event camera, andwith confidence inbright-
field analysis, NEVACS could be extended for phase contrast, differ-
ential interference contrast, or even high-resolution imagingmethods.
Currently, the fluorescent field only serves as an indicator of cell via-
bility and does not contribute to 3D morphological sorting. This lim-
itation is attributed to the halo effect in fluorescent imaging with the
event camera, which records the intensity change rather than the
intensity. In addition, the rotation manipulation would worsen the
imaging quality as the cellular structures are differently orientated in
rotation. In this regard, current IACS methods have better image
quality to draw morphological inferences for cell sorting. Thus, one
can improve NEVACS in optics settings and advanced algorithms, so
that NEVACS would gain some capability to draw fluorescence-based
morphological inferences for cell sorting. The existing setup of
NEVACS is designed to capture as many projection snapshots of a
particle as possible when the particle passes through the FOV. To
ensure computation efficiency, the spike frame for eachparticle is now
down-sampled to 20 × 20 pixels, which does not have a spatial reso-
lution as high as IACS. The spatial resolution could be improved if
more powerful hardware like neuromorphic vision sensors and neu-
romorphic chips become available in the future. Under the current
flow velocity (0.0125m/s), it typically takes 15.6ms for a particle to
pass through the FOV, corresponding to 15–16 frames in the particle
video at the configuration of 1000 fps event frame. As shown by
Figs. 4C and 5E, the biggest difference between the two particles lies in
some segments in the FOV. This indicates that the NEVACS’ setup
could be optimized to tradeoff against accuracy and efficiency
according to different requirements, for example, increasing time
between spike frames instead of spatial down-sampling. Another
example might be using some specific features in classification, e.g.,
blob size/aspect ratio of ellipsoid shapefit fordead/live cells. However,
to make NEVACS generic and adaptive, using spike frames in SNN
classification is a better choice to allow NEVACS to classify particles
with more complexity and diversity.

Furthermore, we can expect more potential from NEVACS. First,
spatiotemporal imaging would enable the analysis of active or passive
dynamic changes of target particles. For example, one can useNEVACS
to analyze the morphological changes of particles in response to cer-
tain stimuli (e.g., physical, chemical, biological) like drugs54,55. One can
also useNEVACS to probe the activities (e.g., morphology deformation
and attitude change w.r.t. the fluid) of some living biological particles,
like sperms, for which mobility is very important and can be analyzed
through theparticle video. Second, the simplemicrofluidic chipdesign
would allow NEVACS with flexibility to handle various particles of
different sizes. Here, a 20 × 25μm sorting channel was intended to
accommodate the range of particle sizes (e,g., 6-μmbeads, 7-μmRBCs,
15-μm Hela cells) used in our current experiments as an example.
Actually, as long as the sorting channel is greater than the particle size

to minimize clogging, the system would work well. When larger par-
ticles are to be sorted, one can adapt the sorting channel dimensions
easily to accommodate the customized need. Third, NEVACS could
allow further improvement in scalability and flexibility. In this regard,
themain efforts could bemade to offer a larger FOVwhilemaintaining
the imaging resolution, possibly by engineering an array of event
cameras in one imaging system like58. With such a larger FOV at high
resolution (i.e., 12mmx 10mm FOV at 0.8μm/pixel resolution repor-
ted in ref. 58), we can place multiple parallel microfluidic channels to
boost the throughput aswedid before in drug screening59, and contain
more fluorescent channels in the FOV-splitting configuration. Corre-
spondingly, NEVACS should also adopt more powerful neuromorphic
chips to meet the increasing computing needs. In the meantime, a
larger FOV would offer flexibility for the users to integrate more on-
chip particlemanipulation and analysismodules. In those cases, event-
driven trackers60,61, especially when combined with inter-event pre-
diction of particle location using particle velocity62, could be applied to
handle particles passing through geometry-complex microfluidic
channels in particular applications. As NEVACS is an open framework,
the implementation of video-activated sorting can be fine-tuned with
the most suitable and powerful option for customization in each
component in hardware and algorithm. Thismay attract researchers in
the neuromorphic community and inspire various interestingworks to
come. Last but not least, the simplification of the system infrastructure
in both imaging and processing shows the great future of NEVACS in
miniaturization, integration, and cost reduction for many resource-
limited application scenarios.

Finally, the current implementationof NEVACS is not the only way
to achieve video-activated sorting. Alternatives could be setting dif-
ferent times between frames, shuffling frame order in classification,
using pure CPU/FPGA implementation, adopting a CNN driven by an
ROI stack in batch or multi-channel mode on GPU, and so on. As one
example, in the basic performance via cell-bead sorting task, because
the two particles (cells and beads) have very clear boundaries with no
overlapping in size distribution (Supplementary Fig. 10), size can be
certainly a straightforward and effective sorting criterion. It is, there-
fore, possible to run CPU computation for size sorting and even to run
tiny neural networks on CPU or FPGA (e.g., via hls4ml synthesis). As
another example, we tested NEVACS by randomly shuffling the spike
frame order in each particle video and using them to train and test the
SNNmodel for healthy-sick RBC classification. Hereby, the SNNmodel
was configured to reset between frames. Compared to AUC=0.99 for
the video input, the randomly-ordered multi-frame classification
achievedAUC=0.93. This gave rise to anaverage error of ~5%w.r.t. the
correct spherocyte portions when shuffling the spike frame order. For
those low proportions (<15%), this is severe. Therefore, for both
infrastructure (i.e., HP 201) operation convenience and classification
accuracy, each SNN classifier processes spike frames in temporal order
and is not reset between frames of the entire video. If, for some reason,
users prefer GPU-based infrastructure and randomly-ordered multi-
frame classification, they can indeeduse aCNNdriven by a stack of ROI
images and process them in batch mode.

Methods
Microfluidic subsystem
Microfluidic device design and fabrication. The microfluidic device
mainly fulfills three functions. (i) Introducing particles into the imaging
FOVarea,which is designed as a funnel-like channelwithdimensions of
160-μm width, 320-μm length, 25-μm height, and 20-μm constricted
width, for 10–20μm diameter single cells flowing through. Note that
the size of the FOV can be adjusted for cells of other sizes, and here we
use 800 × 400. (ii) Delivering particles from the detection area to the
sorting area with a predictable delay aided by sheath flow and impe-
dance sensing. The sensing electrodes are placed in the narrow chan-
nel for the sorting trigger, with 30μm length and 20μm spacing. (iii)
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Sorting the target particles to the collection outlet by a piezoelectric
transducer (PZT). The sorting channel with dimensions of 90μm in
width, and25μminheight. Two sheathflowchannels are32.5μmwide,
forming a converging junction at the onset of the sorting channel,
while a collection and a waste channel are at the end. These two outlet
channels are designed to be asymmetrically wide in order to let the
unwanted particles flow straight into the waste channel. Correspond-
ingly, the schematic diagram of the microfluidic chip is shown in
Supplementary Fig. 2, consisting of three layers (from top to bottom):
(i) a bare glass substrate for supporting to avoid the deformation of
PDMS, (ii) a polydimethylsiloxane (PDMS) microfluidic layer with
microstructures, and (iii) a glass cover layer with a pair of impedance
sensing electrodes, drilled via holes, and an integrated PZT. Note here,
that each pair of electrodes adopts the widely used three-electrode
configuration to generate a noise-free differential signal, and uses
double peaks in the signal to indicate a cell event.

The PDMS layer is fabricated by the soft lithography technique.
First, cleaned and dried glass is spin-coated with negative photoresist
SU-8 2025 (MicroChem) at 3200 rpm to form a photoresist film with a
thickness of ~25μm. After soft-baking, UV exposure, and post-baking,
thephotoresist is developed at roomtemperature to obtain themaster
mold. PDMS (Sylgard 184, DowCorning) is then used for replication. A
mixture of base and curing agent (10:1 ratio by weight) is prepared,
degassed, and thenpouredonto themastermold. After curing at 60 °C
for at least 3 h, the solidified PDMS is peeled off from themold and cut
into pieces.

The electrode layer is patterned with 10 nm Cr and 100nm Au to
the glass substrate by lift-off technique. In brief, negative photoresist
ROL-7133 (RDMicro, China) is spin-coated on the clean glass and then
photo-patterned. Then 10 nmofCr and 100nmof Au are subsequently
sputtered on the patterned glass. The degumming agent is utilized to
remove the photoresist and leave the patterned electrodes. In addi-
tion, the glass with electrodes is drilled with an actuation hole using a
numerical drilling machine (54103A, Sherline, Vista, CA). The PZT (FT-
27 T-4.1A1, Yuansheng Electronics, CA) is cemented onto the top glass
layerwith aUVglue (AA3100, Loctite, Germany). Steel pipe connectors
are also glued to each via a hole for connecting with PTFE tubing (The
Lee Company, Westbrook, CT). The two layers are then aligned and
firmly bonded together with oxygen plasma treatment. The fabricated
device and corresponding microscopic image are shown in Supple-
mentary Fig. 2C and Supplementary Fig. 2B respectively. After fabri-
cation, the actuationhole on themicrofluidic chip isfilledwithDIwater
for the preparation of sorting, and the inlet and outlets are completely
sealed with adhesive tape (MSB 1001, Bio-Rad, Hercules, CA), and all
the other inlets and outlets are not plugged. Finally, the device is sol-
dered on a printed circuit board to facilitate the wiring of excitation
and measurement signals.

Experimental setup. In the experiment, samples were loaded at a sui-
table constant flow rate using a syringe pump (Legato 200, KD Scien-
tific).With a suitableflowrate (i.e., 5μL/min) andcell concentration (i.e.,
107/mL), the flow speed reaches over 0.1m/s at the sorting point, and
the throughput reach over 1000 cells/s. The cell mediumwas chosen as
the sheath fluid. For the sorting operation, flow rates of the upper
sheath fluid and lower sheath fluidwere set to 10μL/min and 7.5μL/min
respectively, to ensure the location of the cells when flowing through
the sorting area. To minimize the potential adhesion between cells and
PDMS channel walls, themicrochannel is pretreatedwith 1 wt% Pluronic
F-127 surfactant (in 1× PBS) for 15min before sample loading. For single-
cell imaging, the event camera (EVK4, Prophesee) is mounted on the
C-port of the inverted microscope (Ti-U, Nikon). For single-cell sorting,
the lock-in amplifier system (HF2LI, Zurich Instruments) is set to dif-
ferential mode and connected to the differential sensing electrodes of
themicrofluidic chip for excitation and signal read-out respectively, and
the excitation signal is 0.7 Vp−p amplitude and 0.1 MHz frequency.

Structure and working process of the sorter. The sorter is mainly
composed of a PZT and a drilled via hole as the on-chip reservoir63.
The PZT after waterproof packaging is directly in contact with the
liquid in the reservoir, thereby providing a sufficiently large driving
stroke. An FPGA is used to generate the sorting signal, jointly con-
trolled by image recognition results from the host computer and the
trigger signal from the lock-in amplifier. The sorting signal from the IO
port of FPGA is connected to a voltage amplification module for
enlargement to 150 V with a rise time of 1.4ms and then applied to
PZT for triggering. In the default case (no sorting), cells flowout to the
outlet along the original streamline. When performing the sorting
operation, PZT deforms and squeezes the liquid in the reservoir to
flowout. At this time, the sorter provides a sufficient driving stroke to
shift the target cell with a certain distance to the other outlet for
sorting. The details of the single-cell sorter can be seen in Supple-
mentary Fig. 2.

Working process of making sort decision. The determination of the
sort decision consists of two steps. Firstly, particles are detected and
classified by the event camera and corresponding SNN classification
model, where the number of target cells is recorded. Next, all particles
flow through the coplanar electrodes and are detected through
impedance measurement as trigger signals. The classification result
and trigger signal for each particle are analyzed jointly to determine
the actual sort decision. When the cells are focused forward to the
sorting area by upper and lower sheath fluid, the sorter will be trig-
gered or not according to the sort decision. The details of the single-
cell sorter can be seen in Supplementary Fig. 2.

Cell culture and sample preparation. Cancer cell lines (i.e., Hela) are
cultured using an incubator (Forma 381, Thermo Scientific, USA) at
37 °C in 5% CO2. HeLa cell lines were purchased from Procell Life
Technology (Wuhan, China) with a catalog number CL-0101. The cul-
ture medium is high-glucose Dulbecco’s Modified Eagle’s Medium
(DMEM, Life technologies, USA), supplemented with 10% fetal bovine
serum (FBS, Life Technologies, USA) and 1% penicillin-streptomycin
(Life technologies, USA). The adherent cells are detached with 0.05%
trypsin (Life Technologies, USA), and followed by centrifuging to
remove the supernatant. The collected cells are then re-suspended in
phosphate-buffered saline (PBS, 1.6 S/m) solution supplementedwith 1
wt% Pluronic F-127 surfactant (Sigma-Aldrich, USA) to avoid adhesion.
RBCs and spherocytes were purchased from Shanghai Yuanye Bio-
Technology, with catalog numbers MP20107 and MP20109. For the
cell-bead sorting task, cells and spherical PS beads with a diameter of
6μm or 15μm are mixed in a 1X-PBS buffer solution. For fluorescence
analysis of cell viability, the fixed Hela cells (dead cell samples) are
obtained by treating the living cells with 4% paraformaldehyde solu-
tion for 20 min. Common viability fluorescent dyes SYTOX Green
(Thermo Fisher, USA) are added to the cell suspension at a con-
centration of 0.1% and stand for 5min in the dark. Note that, before the
experiment, all experimental sample suspension is typically config-
ured to a concentration of 107/ml and filtered out by the strainer
(40μm, Biologix).

Optical subsystem
Event camera and event generation model. As a neuromorphic
vision sensor, the event camera (EVK4, Prophesee) asynchronously
triggers events when the log intensity change per pixel exceeds a
threshold. In contrast to conventional frame-based cameras, which
capture entire images at an external clock-determined rate, the dis-
tinctive operating manner empowers the event camera with high
temporal resolution ( ~1μs), high dynamic range ( ~140dB), low power
consumption, and high data sparsity. The obtained event ex,y,t,p in the
event stream is triggered once the log intensity change Δlog(Ix,y,t)
reaches the threshold τ at pixel (x, y) and time t in a noise-free
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scenario40, i.e.,

ΔlogðIx, y, tÞ=pτ: ð1Þ
The event polarity p∈ {+1, −1} is the sign of positive or negative

intensity change, respectively. The asynchronous triggering fashion of
the event camera enables the sampling rate up to 1MHz, making the
event camera capture intensity change with extremely low latency in
an event-driven and frame-less manner. Tightly arranged in an array,
the precise photodiode (PD) pixels enable the event camera to obtain
high-spatial-resolution imaging (up to 1280 × 720, and the image-plane
pixel size of 0.243μm). The event camera’s asynchronous fashion
allows imaging of the entire process of particles passing through the
FOV and leads to dimension enhancement of characterization feature
space in IFC. More details of the event camera can be found in Sup-
plementary Fig. 1C.

The spatiotemporal imaging sensitivity of event camera. The spa-
tiotemporal imaging sensitivity of the event camera in NEVACS is
determined by the contrast threshold τ, which is dependent on the pixel
bias currents. Events with different polarity p∈ {+1, −1} are generated
according to the threshold τ, which is typically set to 10%−50% illumi-
nation change. The lower threshold would be advantageous to obtain
higher temporal imaging sensitivity, i.e., lower detect latency. However,
this could only happen under extraordinarily strong illumination and
ideal background conditions. Trade-off remains between the desired
latency (i.e., temporal sensitivity) and signal-to-noise ratio (SNR) (i.e.,
spatial sensitivity) due to the existing shot noise. In most traditional
scenarios theoverly low threshold could result in severe noise due to the
illumination fluctuation and the variability of independent pixels. The
noise in the readout current also brings harm to imaging sensitivity. In
NEVACS, the background is usually fixed while the illumination is gen-
erally set the strongest, yieldinghigher imaging sensitivity and lessnoise.

Multi-channel imaging setup. To obtain more information from a
one-shot FOV image, we combine a customized extension setup to
allow simultaneous bright- and fluorescent-field imaging on a standard
commercial inverted microscope (Ti-U, Nikon). To make the fluor-
escent signal separated from the bright-field information, we limit the
spectra to different bands. For the bright-field imaging, a halogen lamp
is mounted at the top of the microscope (illumination: 86,300 lm/m2),
and its spectrum is restricted to 645 ± 75 nm by a band pass filter F1
(ET645/75m, Chroma). For the fluorescent imaging, a mercury lamp
(C-LHG1, Nikon) mounted on the back lamp-port is used as another
light source. An excitation filter F2 (ET490/20×, Chroma) and a
dichroic mirror (T505lpxr, Chroma) are mounted in a filter cube to
separate the excitation from the emission light of the fluorophore, and
then a customized emission filter F3 is installed after the side-port to
acquire both bright and fluorescent images in one field. The square
semi-coated filter F3 (ChenSpectrum, China) with a bandpass wave-
length of 524 ± 11.5 nm is used to filter the fluorescent signal from the
mixed light. A 20×microscope objective OL (Nikon, NA =0.45) is used
for imaging. In particular, cell suspension is treated with fluorescent
staining (SYTOX Green, Ex 504 nm/Em 523 nm, Thermo Fisher) to
identify cell death. The fluorescence emission signal (peak wavelength
λ = 523 nm) and the bright-field light signal (λ = 645 ± 37.5 nm) are
coupled out at the side-port of the microscope.

Control subsystem
Here we give the overall procedures for the SNN to work from the raw
event data to the final classification result (Supplementary Fig. 7). DVS
raw events are not directly fed to SNN, because of the limitation in the
interface from PC to SNN. Thus, after identifying clusters event-by-
event to detect the blobs, we collapse the raw event stream into a so-
called ‘spike frame’ (Supplementary Fig. 7A). The preprocessing results

act as the input for the subsequent frame-based MOT module, which
generates multiple ROIs, each for one particular particle. The ROIs,
called particle frames, of the same particle are compiled by the PCCPU
as the so-called “particle video” (Supplementary Fig. 7B) and used to
provide the input for the SNN classification model. Note that the par-
ticle video consists of ON/OFF spikes, maintaining the sparsity and
temporal resolution feature of the original event stream, and is thus
compatible with SNN. In SNN, max pooling is conducted as illustrated
by Supplementary Fig. 7C, and the outputs of the two cells of SNN are
spike trains (Supplementary Fig. 7D),whose average spike numbers per
unit time are used to determine the classification result via rate
coding64,65. Here, one particle has one and only one dedicated SNN for
classification. For N particles, there are N SNNs working independently
(Supplementary Fig. 7E). These SNNs are deployed in the neuro-
morphic chip, which is currently able to accommodateN = 30 themost.

Event stream acquisition. The event stream acquisition is based on the
open-source OpenEB 3.1.0 software development kit (SDK). The acqui-
sition and preprocessing of the event stream is performed on Ubuntu
20.04 by calling the C++ application program interface (API) of OpenEB.
Due to the instability of the external clock signal, the default setting of
OpenEB SDK often leads to the loss of the event signal or fluctuation of
the time window (1 ms per spike frame) of each spike frame. In order to
make the time windowmore stable, here we use the timestamp t of the
event instead of the default external clock signal. The average cell speed
was about 51 kpixel/s and the average number of events per cell was
2039.15. The average event rate for each pixel was 140.19Hz.

Preprocessing of event representation. The raw form of the event
streamdata is a series of ‘1’s at various time stamps, and not friendly to
standard neural network models, e.g., convolutional neural networks
(CNNs), and spiking neural networks (SNNs). Thus, preprocessing of
event data, i.e., the projection of event data into frame-based repre-
sentation within a certain period of time (Supplementary Fig. 7A) is a
common choice for adaptation of neural networkmodels. In this work,
we transfer the raw event stream into the frame form with

Ex, y,p = clip
X

ex, y, t,p
� �

ðt 2 TÞ, ð2Þ

inwhichT = 1ms, x∈ [0, 800], y∈ [0, 400] andp∈ {+1,−1}.Weusep = 1
to indicate the ON channel, and p = −1 to the OFF channel of the spike
frame. The function ‘clip’ is defined as: clip(x) = 1, if x ≠0; clip(x) = 0, if
x =0. The transformation is performed at the beginning of the control
subsystem, providing input (Supplementary Fig. 7B) for the sub-
sequent neuromorphic processing module.

Training data preparation. The training data for the SNN classification
model is prepared in an automatic manner through morphological
operation basedonOpenCV66. A suspensionmediumcontaining only a
single type of particle is introduced into the microfluidic chip and
imaged. The sparse spike frame is first dilated to get the connected
event firing mask, then eroded for denoising. The mask is finally dila-
ted again to get the final mask of particles. The minimum circum-
scribed circle of the mask area is automatically obtained by OpenCV,
based on which the bounding boxes of the particles are labeled. As
mentioned above, the category of the particles is certain due to the
single-type particle suspension input. The sameprocess is repeated for
other types of particles. Finally, randomdata shuffle and enhancement
(including scaling, rotation, translation, etc) are performed to improve
the distribution and diversity of the data set, respectively. 30% of the
data set is randomly selected as a test set,while the remaining 70%data
is used as the training set.

Object tracking. Single objects are each assigned with a certain and
accurate ID and their flow trajectories on the detection area are
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tracked in real time with a simple and high-efficiency multi-object
tracking algorithm SORT47. The tracking algorithm includes two main
parts: (i) Kalman motion prediction, and (ii) Hungarian correlation
matching. Firstly, with the bounding box obtained by the detection
algorithm46 (For the 16-core CPU (R7 5700G, AMD) used, the average
CPU load for each core is 24.3% for tracking under 1 K cells/s
throughput), we can get the motion state

x= ½u, v, s, r, _u, _v, _s�T , ð3Þ

where u and v represent the horizontal and vertical coordinates of the
target center, s and r represent the size and proportion of the target
detection box. Therefore, the last three quantities ( _u, _v, _s), which
represent the motion state of the next predicted frame, can be esti-
mated via the Kalman filter.

Secondly, the predictedmotion state needs to be assigned to each
track. Here the Hungarian correlation matching algorithm67 is intro-
duced for this purpose. The degree of motionmatching is determined
by theMahalanobisdistance (d) between thedetectedposition and the
predicted position of the original target in the current frame

dði, jÞ= ðdj � yiÞTS�1
i ðdj � yiÞ: ð4Þ

Eq. (4) represents the motion matching degree between the j-th
detection and the i-th trajectory, where Si is the covariance matrix of
the observation space at the currentmoment predicted by the Kalman
filter, and yi is the predicted observation amount of the trajectory at
the current moment. Hence, when the detection result is associated
with the target, object tracking can be achieved.

Spiking-based classification. Spiking neural networks (SNNs)43, are a
family of neuromorphic computational models inspired by brain cir-
cuits. Rather than continuous activation in artificial neural networks
(ANNs), neurons in SNNs communicate with each other in a binary
spike manner, as well as carrying both spatial and temporal informa-
tion. The event-driven paradigm and rich spatiotemporal dynamics
enable the SNN with great potential in spike pattern recognition and
classification68,69. The behaviors of an SNN layer with leaky integrate
and fire (LIF)70 neurons can be described as

τ dunðtÞ
dt = � unðtÞ+Wnon�1ðtÞ

oni ðtÞ= 1&un
i ðtÞ=u0, if u

n
i ðtÞ≥uth

oni ðtÞ=0, if un
i ðtÞ<uth,

(
8>><
>>: ð5Þ

where themembrane potential (u) and output spike activity (o) are two
state variables in a LIF neuron. t denotes time, n and i are indices of the
layer and neuron, respectively. τ is a time constant, and W is the
synapticweightmatrix between two adjacent layers. The neuron fires a
spike and resets u = u0 only when u exceeds a firing threshold (uth),
otherwise, the membrane potential would just leak. Notice that o0(t)
denotes the network input.

In NEVACS, the SNN classification model is configured and sum-
marized in Table 2.

Sparsity is a critical and valuable feature we can use to estimate
the inference efficiency. Like the way in literature49,71 that exploits
activation sparsity with dedicated CNN neural accelerators, we use the
sparsity-driven SNNmodel and deploy it on the neuromorphic chip to
further leverage the sparsity in NEVACS. The measured activation
sparsity in the 120 × 120 input of the SNN classification model is
85.84%. With the same sparse input, the single-frame-activated sorter
(see Supplementary Information) model achieves an activation spar-
sity of 45.11%, while the SNN model is 89.24%, which is better. The
reason is, that regular convolutions in the single-frame-activated sorter
generate dense activationmaps and therefore yield low sparsity.While

the SNN model conducts sparse activation and thus maintains higher
sparsity.

System deployment. The control subsystem is deployed in the form
of multi-threading on the host computer, which is composed of a
single CPU (R7 5700G, AMD) and neuromorphic chip (HP201, Lynxi).
The threads include (i) CPU-based synchronous event stream acqui-
sition, preprocessing, and multi-object tracking SORT47, which obtain
spatiotemporal imaging sequence for eachparticle; (ii) neuromorphic-
chip-accelerated asynchronous SNN classification module, which
determines the sort decision list; (iii) display of current state in the
FOV. The adjacent threads in the above order are synchronized
according to the producer-consumer model. The bounded buffer in
the producer-consumer model limits the impact of running fluctua-
tions of threads. Moreover, with the preset route before the electro-
des,which provides sufficient time to furthermitigate fluctuations, the
whole system is able to handle the exception cases (in which total
processing time ≥1ms) and sustain real-time sorting continuously.
Intensity and/or 3Dmorphology reconstruction based on the acquired
spatiotemporal imaging sequence is conducted offline for more
characterization in a non-real-time manner. The SNN classification
model generally takes the most time cost in the real-time running of
the system and, thus is optimized and accelerated by the neuro-
morphic chip HP201 (integrating 2 KA200 chips) with LynBIDL 1.3.0
software framework, where the asynchronous classification tasks
(Supplementary Fig. 7D) are assigned to different functional cores of
themany-core-architecture chip. For the electrode signal as the trigger
signal, thepeakdetection is performedby the FPGA (CycloneEP4CE10,
Altera) after passing through the lock-in amplifier (LIA, HF2LI, Zurich
Instruments) to determine whether there is a cell passing through. The
FPGA combines the cell detection-tracking result and the trigger
electrode signal to obtain the final sorter control signal.

Intensity image reconstruction. The event generation model (Eq. (1))
describes the relationship between the obtained event stream and the
brightness change. Considering a small Δt, the intensity increment at
pixel (x, y) could be approximated by Taylor’s expansion

ΔlogðIx, y, tÞ �
∂logðIx, y, tÞ

∂t
Δt: ð6Þ

The temporal derivative information of the brightness could be
further interpreted by events and written as

∂logðIx, y, tÞ
∂t

� pτ
Δt

: ð7Þ

Table 2 | Configuration of the SNN model for video-activated
spatiotemporal classification

Description Configuration

Network
structure 1

– Input-MP6-8C3-MP2-8C3-MP2-200-
FC-2

uth Firing threshold 0.3

e
dt
t Leakage factor 0.3

T Timestep number Equals to synchronous tracking num-
ber during particle appearing in FOV

Op/frame – 115.6 K

Trainable
weights

– 1138

lr Learning rate 1e−4

Training
algorithm

– Spatiotemporal backpropagation
(STBP)80

1. Note: nC3-Conv layer with n output feature maps and 3 × 3 weight kernel size, MP2-max
pooling (Supplementary Fig. 7C) with 2 × 2 pooling kernel size.
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From Eq. (7), the brightness at pixel (x, y) could be indirectly
measured by an acquired event. However, it is not feasible to estimate
the absolute brightness directly from this ideal model. The variability
of independent pixels leads to inconsistent τ of each pixel, while the
existing shot noise also challenges the brightness estimation.
Although the relatively ideal scenarios in NEVACS mitigate these
challenges, it is still hard for the algorithm to improve estimation
performance. Thus we choose deep-learning-based E2VID
framework72,73 in this work to estimate the absolute brightness and
conduct intensity reconstruction. The recurrent neural network
module is used for constructing learned spatiotemporal relationships
in the spike frames, while the calibrated perceptual loss LPIPS, based
on the well-known VGG model, is applied on mid-level network fea-
tures to encourage the reconstructed images to have natural image
statistics72,73. Since the reconstruction scenarios in NEVACS are rela-
tively similar and simple, the UNet-like backbone in the E2VID fra-
mework is simplified to a more lightweight one to speed up the
inference.We trainedon the paired event-RGB sequences providedby
SPADE-E2VID to obtain a pre-trained model. Ground-truth RGB
sequences in NEVACS scenarios are acquired by a high-speed camera
(Fastcam SA-Z, Photron) to produce synthetic paired event-RGB
sequences using the V2E simulator, which are used for further fine-
tuning of the pre-trained model to avoid domain gap between dif-
ferent scenarios. The reconstruction framework and network archi-
tecture can be found in Supplementary Fig. 3.

3D morphology reconstruction. Enabled by out-of-plane rotation, a
stack of cell contours can be imaged in several rounds and recon-
structed to form the 3D morphology of the cell25,74–76. The individual
gray-level image of one round obtained via image reconstruction is
thresholded into a binary image. The threshold is set to segment the
cell contour from the surrounding background. Cell contour is
extracted from the binary images and all the 3D contour points are
used to sketchapoint cloud, forwhich theAlpha Shape algorithm77,78 is
used to reconstruct the 3D morphology. To eliminate the noise in
contour points, in practice, we extract contour points from several
rounds.

Statistics and reproducibility
Data collection was based on OpenCV 3.3.0, OpenEB 3.1.0, and
Python 3.8, while data analysis was based onOpenCV 3.3.0, OpenEB
3.1.0, Python 3.6, PyTorch 1.9.0, LynBIDL 1.3.0, and mmcv 1.5.0.
Data was reported as mean ± SD unless stated otherwise. No sta-
tistical method was used to predetermine the sample size. Sample
sizes were chosen based on accepted standards in the field, aiming
to demonstrate the robustness of any effects. No data were exclu-
ded from the analyses, except samples with obviously incorrect
labels when collecting the dataset for training. The partitioning of
training & test set, and the frame selection in single-frame-
activated sorting were random. Investigators were blinded to
group allocation when possible during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The training data used in this study are available in the Zenodo data-
base at https://doi.org/10.5281/zenodo.13957676. The experimental
result data generated in this study have been deposited in the Zenodo
database at 10.5281/zenodo.13957626. The remaining data are avail-
able within the article, Supplementary Information or Source Data file.
Correspondence and material requests should be addressed to the
corresponding author. Source data are provided with this paper79.

Code availability
Source codes for reproducing the results in this paper79 are available at
https://github.com/hewh16/NEVACSor https://doi.org/10.5281/zenodo.
13957625.
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