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Hierarchical quantum classifiers
Edward Grant1,2, Marcello Benedetti1,3, Shuxiang Cao4,5, Andrew Hallam 6,7, Joshua Lockhart1, Vid Stojevic8, Andrew G. Green6 and
Simone Severini1

Quantum circuits with hierarchical structure have been used to perform binary classification of classical data encoded in a quantum
state. We demonstrate that more expressive circuits in the same family achieve better accuracy and can be used to classify highly
entangled quantum states, for which there is no known efficient classical method. We compare performance for several different
parameterizations on two classical machine learning datasets, Iris and MNIST, and on a synthetic dataset of quantum states. Finally,
we demonstrate that performance is robust to noise and deploy an Iris dataset classifier on the ibmqx4 quantum computer.
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INTRODUCTION
Neural networks offer state-of-the-art performance in a wide
number of machine learning tasks including computer vision,
natural language processing, generative modeling, and reinforce-
ment learning.1 The hierarchical structure of deep neural networks
can allow them to match the expressiveness of shallower models
with exponentially fewer parameters.2–4 In recent years, there has
been much interest in translating the success of neural networks
to the quantum computing context.5 Despite this, there are many
open questions regarding the advantages that quantum compu-
tation can bring to machine learning.6,7 Do quantum algorithms
offer a clear speed-up over classical approaches for inference and
training? Are quantum machine learning algorithms robust to
noise? What are the best quantum circuit layouts to carry out
machine learning tasks? An exciting way to explore these
questions is through experimentation on available quantum
hardware, and simulation on classical hardware.
Tensor networks are a method for representing an intractable

high rank tensor as a decomposition of tractable lower rank
tensors connected by contraction. They are widely used in many-
body physics for the simulation of strongly correlated quantum
systems, and can be used to represent both quantum states and
quantum circuits.8–11 Tensor networks with hierarchical structure
exhibit many similarities with neural networks and in some cases
have been shown to be equivalent.12,13 Given that tensor
networks can be used to represent both neural networks and
quantum circuits, they are a natural choice for exploring the
intersection of both fields. In this work, we consider the supervised
machine learning tasks of classifying classical and quantum data
on a quantum computer using hierarchical quantum circuits.
To perform classification on a quantum computer the input

data must be encoded in a quantum state. Two ways in which this
can be achieved are by encoding the data in the amplitudes of
individual qubits in a fully separable state (qubit encoding), or in
the amplitudes of an entangled state (amplitude encoding). We
test classifiers using both encoding methods. For classical data we

perform qubit encoding using single qubit rotations. For quantum
data we assume that the data arrives from another quantum
device and is already an entangled amplitude encoded state.
Once the data has been encoded, the classifier consists of a

series of unitary operations applied to the initial quantum state.
Then, a measurement is carried out on a target qubit. In practice,
multiple runs are required to approximate the expectation of the
measurement outcome, and the most frequent outcome is taken
as the predicted class. More runs increase the classifier confidence.
In addition to the pipeline just described, we need to specify

the layout of the hierarchical circuit, and the algorithm for learning
its parameters. The circuits we use here are tree-like and can be
parameterized with a simple gate-set that is compatible with
currently available quantum computers. The first of these circuits
is known as a tree tensor network (TTN).9 We then consider a more
complex circuit layout known as the multi-scale entanglement
renormalization ansatz (MERA).10 MERAs are similar to TTNs, but
make use of additional unitary transformations to effectively
capture a broader range of quantum correlations. Both one-
dimensional (1D) and two-dimensional (2D) versions of TTN and
MERA circuits have been proposed in the literature.14,15

In the 1D case, TTN and MERA circuits can be evaluated
efficiently using classical techniques when the input data is qubit
encoded. Evaluating such circuits on amplitude encoded data is
likely to be classically intractable. In 2D, the TTN circuit is
efficiently simulatable when using qubit encoding, whereas the
2D MERA circuit is not. Because we cannot simulate large 2D
MERA circuits, we restrict our experiments to the 1D case. In all
experiments we find that 1D MERA outperforms 1D TTN,
suggesting that 2D MERA could in principle outperform 2D TTN.
Such a hypothesis should be tested with future experiments as
suitably large near-term quantum computers become available.
Classifiers that possess a 1D structure could be used for sequential
data, such as time-series, while classifiers that possess a 2D
structure would be the natural choice for 2D data, such as a
natural images.
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Optimizing the circuits can be accomplished by stochastic
gradient descent. In the case of efficiently simulatable networks, it
makes sense to use the analytic gradient. For circuits that cannot
be efficiently simulated it is possible to use a quantum computer
and estimate gradients numerically. Moreover, a hybrid approach
that involves a classical pre-training step to initialize some of the
gates has been previously proposed.16 We empirically validate this
approach by initializing a 1D MERA with a pre-trained 1D TTN.
Such pre-training reduces the average number of training steps
needed until convergence on a model with comparable accuracy,
a benefit for implementations on near-term quantum computers.
We demonstrate our techniques using TTNs and MERAs and

compare performance for a number of parameterizations. The first
of these uses only single-qubit rotations and fixed CNOT gates.
The second uses more general two-qubit gates. The third uses
three-qubit gates, where the additional ancilla qubits allow for
non-linear operations. Both real and complex parameterizations
are compared.
We test the ability of each classifier to predict binary labels on

two canonical machine learning datasets, Iris,17 and MNIST
handwritten digits,18 and on synthetic quantum datasets. We also
use the IBM Quantum Experience19 to test robustness to
depolarizing noise, and to deploy the model on the ibmqx4
quantum computer.
The structure of the article is the following. Section 2 contains a

description of the hierarchical quantum classifiers and the results
of experiments on classical data and quantum states. Section 3
contains a discussion of the results, a comparison to existing
methods and directions for future work.

RESULTS
Data encoding
Classification consists of assigning a category to an observation. In
machine learning, an inference model is trained to minimize the
classification error on a finite set of data, also known as the
training set. The actual performance of the classifier, the general-
ization error, is then estimated on a set of data points not used for
training, also known as the test set. The functional form of the
inference model is often critical to the success of the classifier.
State-of-the-art models for high-dimensional datasets with com-
plex structure are typically hierarchical or compositional.1 These
ideas can be translated to the paradigm of quantum computation
using the framework of tensor networks. Before describing the
tensor network architectures used in this work, namely TTN and
MERA, it is important to first clarify what datasets are considered in
this paper to gauge the performance of these networks, and how
they are prepared.
Let us first consider the case of classical data. A classical dataset

for binary classification is a set D ¼ xd; yd
� �� �D

d¼1, where xd 2 RN

are N-dimensional input vectors, and yd ∈ {0, 1} are the
corresponding class labels. Classifying classical data on a quantum
computer requires that the input vectors be encoded in a
quantum state. There are a variety of ways to accomplish this and
different algorithms require different encoding methods. The
most efficient approach in terms of space is to encode classical
data in the amplitudes of a superposition, that is, using N qubits to
encode a 2N-dimensional data vector. However, in the general
case and depending on the quantum classifier used, the
computational cost of preparing data as a superposition can
negate the speedup obtained during classification.7 A simpler
method is to encode each element of a classical data vector in the
amplitude of a single-qubit. This type of encoding requires N
qubits to encode an N dimensional data-vector and, therefore, is
less efficient in terms of space. However, the state preparation is
clearly efficient in terms of time as it only requires single-qubit
rotations. We opt for this type of encoding for classical data. In

particular, we first re-scale the data vectors element-wise to lie in
0; π2
� �

. Then, we encode each vector element in a qubit using the
following scheme:20

ψd
n ¼ cos xdn

� �
0j i þ sin xdn

� �
1j i: (1)

The final data vector is written as ψd ¼ �N
n¼1ψ

d
n , and is ready to be

used in a quantum algorithm.
Let us now consider the case of quantum data. A quantum

dataset for binary classification is a set D ¼ ψd; yd
�� �D

d¼1, where
ψd 2 C2N are 2N-dimensional input vectors of unit length, and
yd∈{0,1} are the corresponding classes. In contrast to classical data,
quantum data, such as the output of a quantum circuit or a
quantum sensor, may already be in superposition. That is, the
quantum states are used as-is, and there is no relevant cost for the
preparation.

Circuit architecture
We now discuss the quantum circuit architectures for classifica-
tion. The first circuit architecture is inspired by TTNs, specifically
binary trees. The TTN circuit begins by applying a set of two-qubit
nearest-neighbor unitaries to the input. We then discard one of
the qubits output from each unitary, halving the number of qubits
in the next layer of the circuit. In the following layer we again
apply two-qubit unitaries to the remaining qubits before
discarding half of them. This process is repeated until only one
qubit remains. The network in full consists of measuring a single-
qubit expectation value on this remaining qubit

Mθ ψd
� � ¼ ψd

� 		Ûy
QC Ui θið Þf gð ÞM̂ÛQC Ui θið Þf gð Þ ψd

		 

; (2)

where ÛQC Uif gð Þ is the quantum circuit made up of unitaries Ui(θi),
θ= {θi} is the set of parameters which define the unitaries, and M̂
is the single-qubit operator whose expectation we are calculating.
A circuit diagram of an eight-qubit TTN is shown in Fig. 1a. The
solid lines encompass the circuit, while the dashed lines represent
its conjugate transpose.
The MERA network is closely related to the TTN. All of the

unitaries that make up a tree network are maintained with an
additional layer of two qubit unitaries added before each layer of
the TTN. These additional unitaries, {Di}, each operate on one qubit
of neighboring unitaries in the upcoming TTN layer. In a
conventional MERA network, the addition of these unitaries allows
quantum correlations on a particular length scale to be captured
at the same layer of the network.10 A circuit diagram of an eight-
qubit MERA is shown in Fig. 1b.

Unitary parameterization
We have explored a number of different ways to parameterize the
unitaries used in these circuits. Some of the input data used is
purely real, we therefore tested the effect of restricting the
unitaries to be real too. That is, we chosen unitaries such that Ui∈
SO(·)⊂ SU(·). We also consider general, complex valued unitaries
Ui∈ SU(·). As has been observed in the context of the time-
dependant variational principle applied to tensor networks, the
use of complex weights often prevents optimization from getting
stuck in local minima.21,22

We also explored a number of other methods for parameteriz-
ing the unitaries; Fig. 2 illustrates three such paramaterizations. In
Fig. 2a, the unitary block is composed of two arbitrary single-qubit
rotations and a CNOTij gate, where i and j are control and target
qubit, respectively. Note that in some cases the direction of the
CNOTij may be reversed in order to respect the causal structure.
For example, in our eight-qubit implementations we reverse the
control and target qubits for blocks U2, U4, and U6 lying in the
lower part of the circuit. In the case of the restriction to SO(4) the
single-qubit rotations are simply Y-rotations.
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In Fig. 2b, the unitary block consists of an arbitrary two-qubit
gate. It is interesting to explore this much more general setting in
simulations, although a practical implementation of such unitary
may be costly. That is, the two-qubit unitary needs to be compiled
into low-level hardware-dependent gates.
Finally, Fig. 2c shows a three-qubit gate involving an ancilla

qubit. By tracing out the ancilla qubit we can effectively
implement a rich class of non-linear functions, e.g. step
functions,23 closely resembling the operations of classical neural
networks. Again, in practice a significant overhead is expected due
to compilation.
The measurement M̂ is performed on a specific qubit and

consists of a simple Pauli measurement in a chosen direction. This

can be implemented in practice by an additional single-qubit
rotation followed by the projective measurement onto 0j i 0h j. This
is sufficient for a binary classification task; by computing and
thresholding the expectation value of M, TTN and MERA classify
the input ψd into one of the two classes. In our example in Fig. 1,
the measurement is performed on qubit number six.

Learning process and complexity
We now discuss the learning process. In principle, the circuit
parameters would be adjusted to directly maximize the classifica-
tion accuracy on the training set or, in other words, minimize the
classification error. Optimizing such an objective function is highly
non-trivial and it is common to optimize a bound instead. Here we
choose to minimize the mean square error between predictions
and true class labels

JðθÞ ¼ 1
D

XD

d¼1

Mθ ψd
� �� yd

� �2
; (3)

where ψd are inputs, yd are class labels, D is the number of training
data points, and θ groups all the adjustable parameters of the
circuit as described above. Although there exist several
approaches to carry out this optimization, artificial neural
networks are commonly optimized by stochastic gradient descent
algorithms. At each iteration t, we estimate the gradient ∇J(t) and
choose a learning rate η(t). Parameters are then updated via a rule
of the kind θ(t+1)← θ(t)+ η(t)∇J(t). This algorithm is stochastic
because at each iteration the gradient is estimated on a small
batch rather than on the full training set. Beside speeding up the
calculation, this noisy gradient may help in escaping from local
minima. Much literature and experimentation has been dedicated
to improving stochastic gradient descent algorithms. In this work,
we employ a variant called Adaptive Moment Estimation
(Adam).24

The cost function is a function of the measurement outcome of
the circuit being trained. In order to obtain these measurement
outcomes, the circuit itself must be evaluated. In Table 1 we
summarize the complexity of obtaining the measurement out-
comes at the end of the different types of circuits in this paper.
The complexity stated is in terms of the number of multiplications
of scalar numbers required to perform the task. The complexities
in the two-dimensional cases are stated for a grid of N × N qudits.
The complexities stated for the 2D networks use the network
architecture introduced in refs 10,25

In the case of efficiently contractable networks we can compute
the exact gradient using off-the-shelf automatic differentiation
software (e.g., TensorFlow26). This applies to many 1D networks
including TTNs and MERA. For networks that cannot be efficiently
contracted a finite-difference method or an approximation to the
true gradient must be used.27 These strategies introduce
additional noise due to finite-sampling error, and intrinsic noise
of near-term quantum devices. We begin exploring the impact of
these with simulations in Section 2.7. Note that all of the circuits

Fig. 1 TTN and MERA classifiers for eight qubits. The quantum
circuit is illustrated by the regions outlined in solid lines comprising
inputs ψ, unitary blocks Uif g7i¼1 and Dif g4i¼1, and a measurement
operator M. The dashed lines represent its conjugate transpose. The
solid and dashed regions together describe a tensor network
operating on input ψ1–8 and evaluating to the expectation value of
observable M

Fig. 2 Three alternative parameterizations of the unitary blocks in
Fig. 1. a Two arbitrary single-qubit rotations followed by a CNOT. The
direction of the CNOT may be reversed to preserve the causal
structure of the network. This simple setting can be readily
implemented in available quantum computers. b An arbitrary two-
qubit gate. Such general setting would in practice require
compilation into low-level hardware-dependent gates. c An arbitrary
three-qubit gate involving an ancilla qubit. The ancilla is traced out
allowing to perform a rich set of non-linear operations. Implementa-
tion of the latter in currently available hardware would require a
compilation step

Table 1. Computational complexity of hierarchical quantum classifiers
under different data encoding

Dimension Classifier Qubit encoding Amplitude encoding

D TTN O(Nχ5) O(NχN+5)

MERA O N6log2χχ4
� �

O N6log2χχNþ4
� �

2D TTN O(N2χ5) O(N2χ2N+5)

MERA O(χ11N−16) O(χ13N−16)

The complexities indicate the number of multiplications of scalar numbers
required to obtain the measurement outcomes. We use Nχ-dimensional
qudits in one dimension and N × Nχ-dimensional qudits in two dimensions
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we train in this paper can be evaluated efficiently on quantum
hardware.

Experimental results: Iris dataset
In this experiment, we tested the ability of a TTN to classify
varieties of Iris. The Iris dataset17 consists of 150 examples in total
of three varieties of Iris flowers. Each example of Iris is described
by four real-valued attributes x1–4. We encoded the four attributes
into four qubits using Eq. (1). We then parameterized unitaries
using the simple gate shown in Fig. 2a, and restricted the single-
qubit rotations to be real (i.e., Y-rotations). To allow for binary
classification, three binary datasets were extracted from the
original set. In each subset, each class comprised 1/2 of the
examples. For each class, 1/3 of examples were used as a test set
and used to compute the accuracy. Mean accuracy and one
standard deviation computed on five random initializations are
given by Table 2. As shown, TTN performed extremely well in all
cases.

Experimental results: Handwritten digits (MNIST). In this experi-
ment we tested the ability of TTN and MERA classifiers on a
number of handwritten digit recognition tasks and compared the
performance of different parameterizations. MNIST18 is a canonical
data-set consisting of 70,000 labeled gray-scale images of
handwritten digit from 0 to 9. From this dataset we generated
four binary classification tasks. In the first we kept only images
containing 0 or 1, and for the second task, only 2 or 7. For the third
tasks we re-labeled all images as even or odd. For the final task we
divided the images into those that were >4 or not. MNIST images
are 28 × 28 pixels. To allow for simulation using eight qubits, we
performed principal component analysis on the images for each
task and kept only the eight components with highest variance.
Finally, we used Eq. (1) to encode the data.
Of the 70,000 examples 55,000 were used for training, 5000 for

validation and 10,000 for testing. Training was performed using
the Adam optimizer24 with batches of 20 examples. Validation and
test accuracy were recorded every 10 training batches, and
training was stopped when validation set accuracy did not

increase for 30 consecutive tests. Figure 3 shows typical learning
curves for train and test datasets.
Mean accuracy and one standard deviation computed on five

random initializations are given by Table 3. The ‘Classifier’ column
describes if the circuit was a TTN, MERA, or hybrid, that is, a MERA
pre-trained with TTN. The ‘Unitaries’ column describes if the circuit
was parameterized using a simple, general or ancilla gate set as
described by Fig. 2. The ‘Rotations’ column specifies the type of
rotation used, either real, SO(4), or complex, SU(4).
Some remarks are in order. First, we note that the restriction to

simple unitaries led to significantly lower accuracy than when
using general unitaries. Complex rotations improved the accuracy
of the classifiers in all tasks except for task ‘0 or 1’ where accuracy
was already >99.5% with real rotations. It is notable that this is the
case despite the input data being real-valued. Second, the MERA
classifiers achieved higher accuracy than TTN classifiers in all
cases, demonstrating the power of the additional unitaries. Third,
the hybrid classifier achieved accuracy comparable to that of the
standard MERA. On average, hybrid classifiers required 2.45 times
more training steps until convergence than standard MERA.
However, the number of post-training steps required was only
0.825 times the number of training steps of standard MERA. This
indicates that classical pre-training may lead to a reduction in the
number of training steps carried out on the quantum computer, a
potential advantage in the near-term. Finally, all networks
outperformed the logistic regression benchmark except those
using the simple gate-set.
One may wonder whether the accuracy on some of the tasks

can be made more competitive with the state-of-the-art results on
MNIST. In order to efficiently simulate all the circuits, each 28 × 28
image was reduced to an eight-dimensional vector using PCA,
thereby discarding a lot of information that could be useful for
classification. To verify this we ran logistic regression without PCA
on the most difficult of the four tasks, “Is > 4”. This model achieved
a test accuracy of 87.09%, a significant improvement over the
logistic regression on the PCA reduced data which achieved 70.7%
instead (Table 3). We concluded that reducing the dimensionality
of the data can have a detrimental effect on the model accuracy
and therefore we expect TTN and MERA classifiers to perform
better when using more principal components, or even raw data.

Experimental results: Quantum data
We now consider the problem of classifying quantum data, that is,
quantum states generated by different physical processes. A
physical process can be simulated by a quantum circuit. By setting
up two different quantum circuit layouts, we can generate
synthetic classification tasks. Let us first define the building block
for our quantum circuit layouts.
Our building block consists of single-qubit rotations Ui for all

qubits i∈ {0, …, N}, followed by all the possible CNOTij gates
where i and j are control and target qubits, respectively, and i < j.
The angles of the single-qubit rotations are the only parameters of
our building block. By stacking several of these building blocks, we
can generate deeper and more complex circuits. In particular, we
chose to identify the class with the number of building blocks in
the stack (e.g., class 5 consists of 5 building blocks).
Now, for each class, we can generate a quantum state by

randomizing all the single-qubit gates, and then executing the

Table 2. Binary classification accuracy on the Iris dataset

Classifier Unitaries Rotations 1 or 2 2 or 3 1 or 3

TTN Simple Real 100.00 ± 0.00 96.77 ± 0.00 100.00 ± 0.00

Mean test accuracy and one standard deviation are reported for TTN classifiers with five different random parameter initializations. The Iris dataset consists of
three classes. From these we constructed three binary classification tasks

Fig. 3 Train and test accuracy vs. number of training steps. Here we
show typical results for a MERA classifier parametrized using general
gates and complex rotations, applied to the “Is > 4” task on the
MNIST dataset with the dimension of each example reduced to
eight using PCA
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circuit on initial state 0j i. This is repeated many times in order to
generate a dataset. As discussed in Section 2, we assume that each
quantum state in the dataset can be directly fed into the quantum
computer where the classifier is executed, hence not requiring any
pre-processing. The tasks of the classifier is to determine which of
two circuit layouts a state was generated from.
Here, we work with circuits of N= 8 qubits. We generated

datasets of D= 5000 quantum states for each of the classes y∈ {1,
2, 3, 5, 10}. To make sure that the synthetic classification task was
well defined, we first looked for a strategy that could correctly
classify the states most of the time. For each state, we computed
the maximum bipartite entanglement entropy,
maxA S ρAð Þ ¼ maxB S ρBð Þ, over all possible partitions A, B of the
eight qubits. Figure 4 shows histograms of this quantity for three
classification tasks. By inspecting the overlap of distributions we
can find an optimal threshold that would classify states correctly
most of the time. This shows that the classification task is
meaningful. We would like to stress that this is an intractable
strategy. The only purpose is to demonstrate that, in principle,
there is a feature of the state that correlates with the class. The
hope is that a hierarchical quantum classifier can find equally
successful strategies in a tractable way.
The classifier used for this task was a TTN like the one shown in

Fig. 1. We considered two parameterizations; the first uses general
gates such as the one shown in Fig. 2b. The second uses arbitrary
three-qubit gates where one of the qubits is an ancilla initialized in

the state 0j i, as illustrated in Fig. 2c. The data described above was
divided into training, validation, and test sets. Each of these sets
were balanced, that is, they had an equal number of states from
each class. A set of 1000 examples from each class was held out as
a test set. Training was performed for 4000 iterations with batches
of 40 states and test accuracy was recorded every 50 iterations.
The best test accuracy was recorded for each task.
Table 4 reports mean classification accuracy and one standard

deviation computed on five random initializations. Results for the
TTN with general two-qubit gates are no better than random class
assignment in all tasks, indicating the need for a more expressive
model. Indeed, when using gates augmented by an ancilla qubit,
TTN was able to classify quantum states with some accuracy,

Table 3. Binary classification accuracy on the MNIST dataset

Classifier Unitaries Rotations Is > 4 Is even 0 or 1 2 or 7

TTN Simple Real 65.59 ± 0.57 72.17 ± 0.89 92.12 ± 2.17 68.07 ± 2.42

TTN General Real 74.89 ± 0.95 83.13 ± 1.08 99.79 ± 0.02 97.64 ± 1.60

MERA General Real 75.20 ± 1.51 82.83 ± 1.19 99.84 ± 0.06 98.02 ± 1.40

Hybrid General Real 76.30 ± 1.04 83.53 ± 0.21 99.87 ± 0.02 98.07 ± 1.46

TTN Simple Complex 70.90 ± 0.73 80.12 ± 0.64 99.37 ± 0.12 94.09 ± 3.37

TTN General Complex 77.56 ± 0.45 83.53 ± 0.69 99.77 ± 0.02 97.63 ± 1.48

MERA General Complex 79.10 ± 0.90 84.85 ± 0.20 99.74 ± 0.02 98.86 ± 0.07

Hybrid General Complex 78.36 ± 0.45 84.38 ± 0.28 99.78 ± 0.02 98.46 ± 0.19

Logistic N/A N/A 70.70 ± 0.01 81.72 ± 0.01 99.53 ± 0.01 96.17 ± 0.01

Mean test accuracy and one standard deviation are reported for TTN, MERA, and hybrid classifiers with five different random initial parameter settings using
two different types of unitary parametrization. Hybrid classifiers consist of pre-training a TTN classifier and that transforming it into a MERA classifier by
training additional unitaries. Bold values indicate the best result for each classificaiton task

Fig. 4 Distribution of the maximum bipartite entanglement entropy for synthetic quantum datasets. Quantum data points were generated by
random circuits with different number of building blocks y∈ {1, 2, 3, 5, 10} as explained in the main text. From this data we created three
classification tasks: a 1 vs. 10, b 3 vs. 10, and c 2 vs. 5. The subplots show histograms of maximum bipartite entanglement entropy for the three
classification tasks. Such property could be used to separate classes and classify data with high accuracy, hence the synthetic classification
tasks are well-posed. We stress that the computation of such property is intractable and do not expect the hierarchical classifiers to be able to
exploit it when classifying input data

Table 4. Binary classification test accuracy on synthetic quantum
datasets

Classifier 1 or 10 3 or 10 2 or 5

TTN (Universal gates) 50.25 ± 0.58 49.95 ± 0.72 50.36 ± 1.05

TTN (Ancilla gates) 64.0 ± 01.12 59.33 ± 0.22 58.02 ± 0.65

Mean test accuracy and one standard deviation are reported for TTN
classifiers with five different random initial parameter settings using two
different types of unitary parametrization. Bold values indicate the best
result for each classification task
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suggesting that those may play a key role. The classification
accuracy is higher for the ‘1 or 10’ task; this is somewhat expected
as the overlap of classes 1 and 10 shown in Fig. 4a is less than that
of the other tasks shown in Fig. 4b, c.
Finally, as a proof of principle, we verified the performance of a

classical logistic regression model. We fed the vector of
amplitudes to the model and trained with off-the-shelf software.
The test accuracy was close to 50%, that is, no better than random.
We shall stress that this approach is not feasible in practice, since
only providing the input in classical form would require full
tomography of the quantum dataset.

Experimental results: Characterizing the effect of noise on
classification performance
Many machine learning models including neural networks are
highly robust against the negative effects of noise. Some kinds of
noise can even help with convergence and generalization.28,29 In
this experiment, we tested the effect of depolarizing noise on the
quantum classifier by simulating a depolarizing channel. It consists
of a completely positive map Δλ parametrized by λ from a 2N-
dimensional state ρ to a linear combination of ρ and a maximally
mixed state

ΔλðρÞ ¼ λρþ 1� λ

2N
I: (4)

We used one of the TTN classifiers for classes 1 and 2 of the Iris
dataset (see Section 2.5) and simulated the noisy circuit using the
IBM Quantum Experience. The depolarizing channel was applied
to the system after the application of each unitary gate in the
circuit, that is, after each single-qubit rotation and CNOT gate. The
entire test set was used to evaluate accuracy.
In order to make a realistic case, we used a finite number of

measurements to estimate the class predictions. For each data
point, we took 401 measurements in the computational basis and
obtained the most likely class by majority vote. The 401
measurements may not be sufficient to estimate the output of
the circuit with high confidence when the probability assigned to
both classes is close to 0.5. In other words, repeating the 401
measurements and taking the majority vote could lead to a
different class assignment for the very same data point. Therefore,
we repeated the computation of the accuracy 200 times and
obtained error bars. Finally, we increased the amount of noise λ
from 0 to 0.2 in increments of 0.01.

Figure 5 shows mean and one standard deviation of the
classification accuracy on the test set. We first noticed that finite
sampling led to some error even when no depolarizing noise was
used. Indeed, we obtained a mean accuracy of 96.5% with λ= 0;
the very same model achieved 100% accuracy under exact
computation (see results for “1 or 2” in Table 2). Second, the mean
accuracy reduced as we injected depolarizing noise, but it
remained above 95% for depolarizing noise up to λ= 0.07 showing
some level of resilience. Finally, as we increased the noise further,
the standard deviation of the accuracy increased as well. This is
expected: as the output state gets closer to the maximally mixed
state according to Eq. (4), the probability assigned to both classes
gets closer to 0.5. Hence, a larger number of measurements would
be needed to estimate the class.

Experimental results: Deployment on a quantum computer
In this experiment, we deployed the Iris classifier for classes 1 and
2 (see Section 2) on the ibmqx4 quantum computer available in
the IBM Quantum Experience. As shown in Fig. 6, this TTN classifier
has three CNOT gates and seven rotations in the Y direction. A test
set of 34 unseen examples was used to determine accuracy. For
each example, the circuit was run 401 times, and the samples were
used to compute the most likely class. The circuit correctly
classified 100% of the test set, and achieved a test cost function
value of 0.0811 (Eq. (3)).

DISCUSSION
Combining the success of deep neural networks and other
machine learning methods with the power of quantum computa-
tion is a tantalizing prospect. Much work to date has focused on
modifying classical machine learning algorithms to incorporate
quantum linear algebra subroutines, thus inheriting their speed-
ups. One such subroutine is the quantum algorithm for solving
linear systems, also known as HHL.30 The algorithm is exponen-
tially faster than the best known classical alternative, although this
comes with some caveats.7 Quantum classifiers that use HHL
include the quantum support vector machine31 and the kernel
least squares.32 Whilst promising, these algorithms also inherit the
limitations of HHL, in particular, the requirement that classical data
be efficiently prepared in amplitude encoding. Another quantum
subroutine that can be readily embedded in a quantum
classification model is Grover’s algorithm which, for example,
has been used to improve both computational and statistical
complexity of the perceptron model.33

While the above proposals assume availability of universal
quantum computers, much of the recent literature has been
focusing on algorithms for noisy intermediate-scale quantum
technologies.34 These consist of hybrid quantum-classical algo-
rithms where the quantum computer is used to execute ansatz
circuits and to measure observables of interest. A classical
optimization routine is used to adjust the ansatz circuit in order

Fig. 5 Effect of depolarizing noise and finite sampling noise on the
accuracy of the TTN Iris classifier. We show mean and one standard
deviation of the classification accuracy computed on the test set.
The mean accuracy remains above 95% for depolarizing noise up to
λ= 0.07 showing some level of resilience in the model. As we
increase the depolarizing noise further, (i) the model gets worse and
mean accuracy reduces, and (ii) the standard deviation increases
indicating the need for more measurements to overcome the finite
sampling noise

Fig. 6 Iris TTN classifier circuit schematic. The TTN classifier uses a
simple unitary parametrization with real rotations. It was trained
classically and then deployed on the ibmqx4 quantum computer
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to minimize a cost function. Originally proposed for quantum
chemistry and combinatorial optimization, these approaches have
been recently investigated for supervised27 and unsupervised35,36

machine learning. The underlying ansatz circuits are often inspired
by the structure of classical neural networks, but without explicit
reference to tensor networks.
Refs 16,37 propose training tree-like tensor networks to be

classifiers. In particular, ref. 37 demonstrates that TTNs can be used
to classify images of handwritten digits and to encode classes of
images in quantum many-body states. The framework proposed in
ref. 16 examines the role of training TTNs to be classifiers in a
quantum computing context and provides numerical evidence
that TTNs can be used to perform supervised and unsupervised
machine learning with the support of a quantum computer. Our
work extends these ideas in a number of respects. Firstly, more
complex networks, such as MERA are studied and their superiority
relative to simpler networks is demonstrated. Secondly, it is shown
that these networks can be used to classify quantum mechanical
data in addition to classical data. Thirdly, networks are demon-
strated that are constructed from simple two-qubit gates that can
be natively implemented on available hardware. Finally, a trained
tensor network is successfully deployed on a real quantum device
(ibmqx4).
In this report, we have demonstrated that hierarchical quantum

circuits can be used to classify classical and quantum data. Circuits
based on the MERA outperform simpler tree-like circuits known as
TTNs. These circuits can be parameterized with a simple gate set
that can be easily implemented on existing quantum computers.
A trained model is shown to be resistant to depolarizing noise and
is successfully deployed on the ibmqx4 quantum computer.
Both MERA and TTN are naturally extendable to larger inputs. In

1D each additional layer doubles the dimensionality of the input. It
is less clear how to increase or decrease the modeling power of a
circuit without changing the dimension of the input. In classical
neural networks this is achieved by increasing the depth and
breadth of the network. One possibility for accomplishing this
with quantum hierarchical classifiers is to use χ-level quantum
systems (qudits) for some suitable χ > 2 as the unit of computa-
tion, rather than qubits (χ= 2). ref. 37 demonstrates that model
expressiveness in tensor network classifiers can be increased by
increasing the input and internal bond dimensions. This is
equivalent to performing computation using qudits. Data can be
encoded in qudits using a generalization of qudit encoding
described in ref. 20. Whilst it is possible to simulate qudits with
qubits, there are practical considerations that can make this
challenging.38

Currently it is unclear what network architecture is ideal for a
classification task, a thorough examination of the role entangle-
ment plays in classification circuits may help illuminate this.
Consider the case of a TTN circuit applied to a product state input.
In this circuit the measurement qubit interacts with each other
qubit in the circuit at most once and therefore its entanglement
with the rest of the circuit will increase as unitaries are applied. If
the measurement qubit is highly entangled with the rest of the
network it will struggle to minimize the cost function Eq. (3) but
clearly it is necessary to introduce some entanglement in the
network for correlations between input qubits to be shared. Such
a trade-off may limit the effectiveness of TTN circuits, especially as
they are scaled to larger inputs.
Constraining machine learning models using regularization can

help them to generalize better to unseen data. Indeed, parameters
with large magnitude are a characteristic of overfitting. The
unitary constraint of quantum circuits naturally prevents para-
meters from becoming large, and it is likely acting as a strong
regularizer. Additional regularization methods from the machine
learning literature will become important in future quantum
machine learning work. For example, the addition of noise during
training of classical neural networks can also have a regularizing

effect28 and help the model to learn invariant representations.29 In
our study, we did not simulate circuit noise during the training
phase, but we did show high resistance to depolarizing noise
during the prediction step.
Much of the success of convolutional neural networks comes

from their ability to learn layers of translation invariant
representations using a shared set of weights. Translation
invariance can be enforced in TTN and MERA by restricting the
unitaries within each layer to be the same. Similarly, scale
invariance can be enforced by restricting the unitaries between
different layers of the circuit to be the same. The role of weight
sharing in hierarchical quantum classifiers is a question for future
research.
In this report, we have identified two cases where the cost of

classical simulation is thought to be exponentially harder than
that on a quantum computer. The first of these, which we do not
test, is when the hierarchical quantum classifier cannot be
classically simulated even when the input is a product state, 2D
MERA circuits being one such example. The second case is when
the input data consists of entangled quantum states. Here, an
entirely classical approach may require expensive tomography
and become intractable as the system size grows. While there are
many existing methods for classifying 2D classical data, develop-
ing methods for classifying quantum data is a promising research
direction.
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