Rapid progress in machine learning is enabling opportunities for improved clinical decision support. Importantly, however, developing, validating and implementing machine learning models for healthcare entail some particular considerations to increase the chances of eventually improving patient care.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Development and validation of machine learning-based models for predicting healthcare-associated bacterial/fungal infections among COVID-19 inpatients: a retrospective cohort study
Antimicrobial Resistance & Infection Control Open Access 14 April 2024
-
The algorithm journey map: a tangible approach to implementing AI solutions in healthcare
npj Digital Medicine Open Access 09 April 2024
-
Empirical data drift detection experiments on real-world medical imaging data
Nature Communications Open Access 29 February 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).
Gulshan, V. et al. JAMA 316, 2402–2410 (2016).
Esteva, A. et al. Nature 542, 115–118 (2017).
Krause, J. et al. Ophthalmology 125, 1264–1272 (2018).
Ehteshami Bejnordi, B. et al. JAMA 318, 2199–2210 (2017).
Poplin, R. et al. Nat. Biomed. Eng. 2, 158–164 (2018).
Ting, D. S. W. & Wong, T. Y. Nat. Biomed. Eng. 2, 140–141 (2018).
Xu, K. et al. Preprint at https://arxiv.org/abs/1502.03044 (2015).
Moher, D. et al. BMJ 340, c869 (2010).
Japkowicz, N. & Stephen, S. Intell. Data Anal. 6, 429–449 (2002).
Rajkomar, A. et al. npj Digit. Med. 1, 18 (2018).
Ren, S., He, K., Girshick, R. & Sun, J. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017).
Liu, Y. et al. Arch. Pathol. Lab. Med. https://doi.org/10.5858/arpa.2018-0147-OA (2018).
Steiner, D. F. et al. Am. J. Surg. Pathol. 42, 1636–1646 (2018).
De Fauw, J. et al. Nat. Med. 24, 1342–1350 (2018).
Sofka, M., Milletari, F., Jia, J. & Rothberg, A. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (eds Cardoso, J. et al.) 258–266 (Springer, 2017).
Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. Preprint at https://arxiv.org/abs/1707.07012 (2017).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. in IEEE Conference on Computer Vision and Pattern Recognition 4510–4520 (IEEE, 2018).
Bishop, C. Pattern Recognition and Machine Learning (Springer, 2006).
Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Preprint at https://arxiv.org/abs/1611.03530 (2016).
Bergstra, J. & Bengio, Y. J. Mach. Learn. Res. 13, 281–305 (2012).
ILSVRC http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015 (2 June 2015).
Alba, A. C. et al. JAMA 318, 1377–1384 (2017).
Niculescu-Mizil, A. & Caruana, R. in Proc. 22nd International Conference on Machine Learning 625–632 (ACM, 2005).
Thabane, L. et al. BMC Med. Res. Methodol. 13, 92 (2013).
Parikh, R., Mathai, A., Parikh, S., Chandra Sekhar, G. & Thomas, R. Indian J. Ophthalmol. 56, 45–50 (2008).
van Smeden, M., Van Calster, B. & Groenwold, R. H. H. JAMA 319, 1725–1726 (2018).
Sayres, R. et al. Ophthalmology 126, 552–564 (2018).
Graham, K. C. & Cvach, M. Am. J. Crit. Care 19, 28–34 (2010).
Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N. & Folk, J. C. npj Digit. Med. 1, 39 (2018).
Shlens, J. Google AI Blog https://ai.googleblog.com/2016/03/train-your-own-image-classifier-with.html (2016).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, PH.C., Liu, Y. & Peng, L. How to develop machine learning models for healthcare. Nat. Mater. 18, 410–414 (2019). https://doi.org/10.1038/s41563-019-0345-0
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-019-0345-0
This article is cited by
-
Development and validation of machine learning-based models for predicting healthcare-associated bacterial/fungal infections among COVID-19 inpatients: a retrospective cohort study
Antimicrobial Resistance & Infection Control (2024)
-
Empirical data drift detection experiments on real-world medical imaging data
Nature Communications (2024)
-
The algorithm journey map: a tangible approach to implementing AI solutions in healthcare
npj Digital Medicine (2024)
-
Multimodal Prediction of 3- and 12-Month Outcomes in ICU Patients with Acute Disorders of Consciousness
Neurocritical Care (2024)
-
ORIENTATE: automated machine learning classifiers for oral health prediction and research
BMC Oral Health (2023)