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Abstract

Acute kidney injury (AKI), which is a common complication of acute 
illnesses, affects the health of individuals in community, acute care 
and post-acute care settings. Although the recognition, prevention and 
management of AKI has advanced over the past decades, its incidence 
and related morbidity, mortality and health care burden remain 
overwhelming. The rapid growth of digital technologies has 
provided a new platform to improve patient care, and reports show 
demonstrable benefits in care processes and, in some instances, in 
patient outcomes. However, despite great progress, the potential 
benefits of using digital technology to manage AKI has not yet been 
fully explored or implemented in clinical practice. Digital health studies 
in AKI have shown variable evidence of benefits, and the digital divide 
means that access to digital technologies is not equitable. Upstream 
research and development costs, limited stakeholder participation 
and acceptance, and poor scalability of digital health solutions have 
hindered their widespread implementation and use. Here, we provide 
recommendations from the Acute Disease Quality Initiative consensus 
meeting, which involved experts in adult and paediatric nephrology, 
critical care, pharmacy and data science, at which the use of digital 
health for risk prediction, prevention, identification and management  
of AKI and its consequences was discussed.
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	2.	 Digital health solutions generate and analyse data from individ-
uals, health systems and populations to connect patients, care 
partners and professionals across the health care continuum, 
create opportunities to foster shared decision-making, improve 
the quality of health care delivery and promote learning across 
health care systems.

According to the FDA, digital health can improve health care and  
health outcomes by unifying people, information, technology 
and connectivity9. People are the central focus and include all the stake-
holders involved in the design, development, implementation, delivery 
and use of health care (that is, patients, caregivers, communities, health 
care workforce, technology developers and policymakers). Information 
encompasses traditional data (for example, data created through the 
process of care delivery, such as electronic health records (EHRs), and 
imaging or device data), as well as emerging data sources (for example, 
from wearables, or societal and environmental data). Technologies refer 
to existing and emerging computational and engineering methods that 
can be used to improve health care delivery, efficiency, experience and 
outcomes. Finally, digital health strengthens connectivity by enhancing 
relationships and interactions within the health care system to improve 
access, empower shared decision-making, enable patient engagement, 
foster quality improvement and improve health outcomes10.

Notably, despite this positive potential, digital health can also have 
unintended negative consequences, such as provider or patient dissat-
isfaction, and increased resource utilization. Such potential negative 
outcomes should therefore be anticipated, recognized and addressed. 
Moreover, the ethical, legal and social implications (ELSIs) of digital 
health, which are relevant to all areas of its development, use and regu-
lation, must also be considered. For example, the interplay between 
inequities and algorithm bias, regulatory aspects (data protection, 
security, privacy and consent), liability, accountability and trust. Of 
note, the rapid pace of innovation in digital health solutions demands 
the use of a simplified and well-defined language that can be used to 
describe them and their unintended ELSIs (Supplementary Table 1).

What are the categories of digital health solutions?
Consensus statements

	1.	 Digital health tools include the technologies (for example, 
computing platforms, connectivity, software, hardware and 
sensors), infrastructure and various applications, upon which 
digital health strategy is built and deployed. Most digital health 
solutions can be classified into broad categories, including 
health information technology (HIT), artificial intelligence (AI), 
telehealth and virtual care, mobile health applications (mHealth), 
wearables and devices, and digitally-enabled therapeutics (DTx). 
These categories are neither exhaustive nor mutually exclusive.

	2.	 Digital health solutions can be customized for different contexts 
(for example, specific country or health jurisdictions) and across 
the care continuum. This customization is enabled by core 
infrastructure and technologies such as standardized and inter-
operable data, AI, cloud computing platforms, cybersecurity, 
sensors and communication channels.

The expansion of digital health is driven by the promise of access 
(through remote monitoring and management) to efficient and 
high-quality health care services (point-of-care access and clinical 
decision support). The integration of digital health into current stand-
ard of care should therefore lead to improved personalized health care, 

Introduction
Acute kidney injury (AKI) is a common complication of acute illnesses 
and can occur in the community, and in acute or post-acute care set-
tings. AKI is associated with considerable clinical outcomes and health 
care costs1–3. However, despite knowledge advances and technological 
innovations, improvements in the care and outcomes of patients with 
AKI worldwide have been limited. Digital innovation in medical technol-
ogies — digital health — is increasingly used in modern health care4,5. Digi-
tal health has been introduced and implemented in multiple domains 
and offers numerous opportunities to improve care throughout the AKI 
care continuum. This continuum comprises various interconnected 
states — AKI risk, kidney injury or dysfunction, and associated short- and 
long-term outcomes — and therefore encompasses AKI prevention, early 
recognition, management and recovery of patients, some of whom will 
be receiving dialysis6,7. Importantly, inequitable access to technology, 
also termed the ‘digital divide’, limits the potential benefits of digital 
health. The 27th Acute Disease Quality Initiative (ADQI) conference 
was convened to develop a framework for appropriate development, 
validation and implementation of digital health in AKI care (DHAKI).

Methods
The 27th ADQI Consensus Conference included a diverse panel of 
30 participants who represented relevant disciplines, including pae-
diatric and adult nephrology, critical care medicine, pharmacy, data 
science, ethics and digital law, from North America, South America 
and Europe. The consensus meeting followed the established ADQI 
process, using a modified Delphi method, as previously described8. 
The broad objective of ADQI is to assess current knowledge and provide 
expertise-based statements that can guide clinicians and investigators, 
and to identify clinical research priorities to address gaps in knowledge. 
The 27th ADQI consensus meeting focused on DHAKI and was held over 
2.5 days in San Diego, California, USA, on 4–6 March 2022.

The activities at the consensus conference were divided into three 
parts. The pre-conference activities involved a comprehensive search 
of the literature for assessment of the current evidence related to the 
diagnostic and management strategies for the AKI continuum, includ-
ing acute and post-acute care, as well as care in the community, using 
digital health solutions. Each workgroup was tasked with summarizing 
the scope, implementation and evaluation strategies currently used to 
develop, validate, and implement DHAKI-driven solutions. Using virtual 
meetings, each workgroup identified the current state of knowledge to 
enable the formulation of the main questions from which discussion 
and consensus would be developed before the panel meeting. The 
consensus meeting included several breakout sessions, during which 
each group created their consensus positions and recommendations, 
before sharing, debating and refining them in a plenary session, which 
involved the whole panel. This process (modified Delphi) was repeated 
three times during the conference before the final statements were 
formulated and shared with the entire group. After the meeting, the 
summary reports from each group were collated to generate a report 
and summary recommendations, followed by revision and approval 
by all ADQI participants.

Current digital health landscape
What is digital health?
Consensus statements

	1.	 Digital health can be described as a strategy to transform the qual-
ity of health care delivery and improve outcomes using digital  
solutions.
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with greater health autonomy (through better patient engagement and 
shared decision-making) and empowerment for individuals to enable 
informed health decisions, and improved population-level interven-
tions (that is, public health initiatives)11,12. Digital health could therefore 
improve clinical care and outcomes in several domains (Fig. 1).

Health information technology. HIT involves the processing, storing  
and exchanging of health information in an electronic environ-
ment. EHRs are a vital part of HIT as they contain the medical and 
treatment histories of patients. These records can be integrated 
with clinical-decision support tools that health care professionals 
and patients can use to make health care decisions, and that enable 
automation and streamlining of health care professional workflows.

Artificial or augmented intelligence. Although health systems are 
increasingly turning to artificial intelligence (AI) to accelerate the 
informed decision process, we must emphasize that the judgment of 
health care professionals still has a crucial role in the decision-making 
process13. AI is an umbrella term that encompasses machine learn-
ing (ML) techniques, algorithms and software applications that mir-
ror and support human decision-making by integrating, analysing 
and using health care data. Augmented intelligence uses AI to assist, 
facilitate, nudge and enhance human decision-making by leveraging 
computational methods such as machine or deep learning.

Telehealth and virtual care. Telehealth, also termed telemedicine, 
enables health care professionals to provide health care through elec-
tronic information and telecommunication technologies. Telehealth 
strategies came to the fore during the COVID-19 pandemic and have 
been used successfully to improve kidney care14.

Mobile health. mHealth is defined as medical and public health practice 
that is facilitated by mobile devices, such as mobile phones, patient 
monitoring devices, personal digital assistants and other wireless tools15.

Wearable sensors and devices. Innovations in wearables, hearables 
(that is, in-ear devices), and nearables (that is, neighbouring devices that 

interact with wearables) are transforming health care delivery, espe-
cially given the widespread availability of smartphones16. In addition, 
continuous progress in the miniaturization of integrated electronics has 
lowered the prices, size, weight and energy consumption of electronic 
sensors, while increasing their processing power, memory and wireless 
connectivity. Combined, these factors have boosted opportunities 
for wearable medical sensors to improve patient care across the care 
continuum. Notably, wearable biosensor technologies can be used to 
influence human behaviour, provide enhanced care at home, facilitate 
remote consults, patient education and connection with peer networks.

Digitally enabled therapeutics. DTx are evidence-based therapeu-
tic interventions delivered to patients through software programs17. 
Although the role of DTx in AKI is not yet well-defined, several DTx 
tools have been successfully implemented in clinical care18. A rele-
vant example of DTx includes fully automated and individualized 
insulin dosing using real-time glycaemic status data in patients 
with insulin-dependent diabetes mellitus19.

Current DHAKI status
What is the evidence that digital health influences patient 
outcomes in the AKI continuum?
Consensus statements

	1.	 AKI alerts driven by concrete criteria improve early detection 
and prompt AKI management.

	2.	 Risk prediction models based on machine learning (ML) and/or 
AI might improve the identification of patients at a high risk of 
AKI who could benefit from tailored surveillance and primary 
prevention.

	3.	 The utility of ML- and/or AI-driven clinical decision support 
system (CDSS) tools to improve early recognition of AKI with-
in the appropriate context, and to enable a multidisciplinary 
team to manage a patient through preventive and therapeutic 
interventions should be evaluated.

Most studies that evaluated electronic AKI alerts were retrospec-
tive and observational, although a few prospective observational 
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Fig. 1 | Categories of digital health interventions 
and strategies for employing digital health 
across the care continuum. A digital health 
strategy centres around the patient and involves 
digital health tools deployed with intention across 
different settings. Importantly, because digital 
health can have unintended consequences, ethical, 
legal and social principles must be embedded into 
digital health solutions as they mature. Adapted 
from the Acute Dialysis Quality Initiative143, 
CC BY 2.0 (https://creativecommons.org/licenses/
by/2.0/). AI, artificial intelligence; FAIR, findable, 
accessible, interoperable and reusable.
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quality improvement projects, quasi-experimental before-and-after 
studies and some randomized controlled trials (RCTs) have also been 
performed. These investigations were mostly directed at AKI recogni-
tion to facilitate timely patient management20–23. CDSS alert systems 
can recognize all stages of AKI. As most patients have stage 1 AKI at the 
time of detection, focusing on and implementing a directed interven-
tion for patients with stage 1 AKI at a high risk of progression to stage 2 
might be more useful than including all patients with stage 1 as most of 
these patients will only have transient kidney impairment. CDSS studies 
with patients at a high risk of AKI mainly include critically ill patients 
receiving nephrotoxins. The use of CDSS in these cases improved AKI 
documentation, recognition and response time21,24–28, and reduced 
nephrotoxin administration27,29–31. Of note, in most studies of such 
screening tools, the focus on achieving high alert sensitivity led to high 
numbers of false positives, which can cause alert fatigue and might 
dilute any improvements in relevant outcomes32.

Several kidney-related outcomes have also been evaluated, includ-
ing AKI duration and progression, length of hospital stay, and the need 
for kidney replacement therapy (KRT)28,30,31,33–35. Among patients who 
have already developed AKI, digital health might also be used to guide 
the personalized prescription of medication or KRT36–38, or to manage 
complications associated with AKI and dialysis (for example, intradia-
lytic hypotension39). However, findings on kidney-related outcomes have 
been inconsistent. Importantly, given that many of these CDSS alerts 
were designed for AKI recognition rather than as a clinical intervention, 
an effect on clinical and patient-centreed outcomes might have been 
unlikely28,30,32,33,40–43. Of note, prospective RCTs and quality improvement 
studies that demonstrated improvements in kidney-related outcomes 
focused on risk and recognition, and typically involved a multidiscipli-
nary team equipped with informatic resources31,34,42. Improved man-
agement of multidisciplinary teams is a proposed solution to improve 
processes of care and might therefore have contributed to the success 
of these CDSS-related trials44. Importantly, successful DHAKI adoption 
and implementation will require stakeholder engagement, which rarely 
occurs in prospective evaluations45.

As risk-based models for generating CDSS evolve, ML and the 
increasing digitalization of patient data yield opportunities for greater 
accuracy and timely prediction of AKI risk. In predominantly retrospec-
tive settings, researchers have demonstrated the ability of ML to predict 
AKI up to 48 h before onset46–54 using routinely collected inpatient clinical 
data. Robust external validation55 and evidence of transportability across 
sites56 are promising, but the lack of prospective implementation and 
analysis of the clinical impact are significant gaps in the current literature. 
Any clinical benefits of digital health solutions will be more palpable as 
preventative or therapeutic strategies for AKI are developed and imple-
mented. The potential successes of AKI prediction models in improving 
care processes or patient outcomes depend on the scale and scope of 
the datasets used to develop and validate these models. In addition, the 
explainability, adaptability and portability of these models affect their 
implementation and ability to guide feasible interventions that can affect 
relevant outcomes. However, nearly all current studies are limited by data 
inadequacy, whether in sample size or diversity, or by a lack of robust vali-
dation. Inadequate data transparency remains another substantial limita-
tion. Furthermore, studies on the use of digital health solutions for the 
management of AKI are nearly impossible to replicate, as their findings 
are heavily dependent on the context of their development, applications 
and populations. Thus, drawing broad conclusions about these solu-
tions is challenging without consensus standards for data management  
procedures, such as data harmonization and interoperability.

Is there evidence that digital health influences population 
outcomes along the AKI continuum?
Consensus statements

	1.	 The digital health influence on the AKI continuum at a population 
level is insufficiently addressed in the current literature.

	2.	 Health system-wide and/or nationwide population-based stud-
ies should be considered for DHAKI to assess its possible bene-
fits, implementation barriers, costs, ease of use and portability, 
establish benchmarking for quality of care, and examine possible  
disadvantages in clinical practice.

Fewer CDSS alert studies have focused on population-based 
assessments compared with those using patient-level evaluations57–63. 
Nonetheless, current data suggest that AKI recognition through 
passive, non-interruptive alerts improves AKI documentation and 
remuneration28. However, population-based evaluations lack granular-
ity with regard to the intervention details, leaving clinicians uncertain 
about optimal implementation strategies.

Is there evidence of the utility of digital health for AKI 
management across different clinical settings?
Consensus statements

	1.	 The evidence of digital health use for AKI recognition, risk clas-
sification, phenotyping and management in clinical settings has 
mainly originated from large academic tertiary care centres in 
resource-rich areas.

	2.	 DHAKI studies would benefit from differentiating AKI recognition 
and management in ambulatory compared with hospitalized 
settings, as well as in intensive care unit (ICU) compared with 
non-ICU settings across areas with different resource levels.

	3.	 The implementation of telehealth to support remote AKI and 
dialysis care in resource-limited areas will require additional 
investigation to assess adoption rates, utility and outcomes.

Current evidence on AKI alerts combined with ML and/or AI mod-
els used data from selected hospitalized patients in the ICU54,64–66, in 
perioperative settings67–69 or in the emergency department70. Of note, 
these have been primarily studies conducted in single health care 
settings in well-resourced areas. Data from community centres, 
particularly in resource-limited regions, are limited but the Inter-
national Society of Nephrology’s 0by25 initiative, which is an ongo-
ing feasibility study focused on resource-limited areas, shows that a 
digital health strategy using telemedicine, coupled with an educa-
tion programme and a point-of-care kidney function test for risk 
assessment, can identify AKI early, and guide treatment and patient 
education71. These findings support the feasibility of DHAKI imple-
mentation within integrated health systems in low-to-middle-income  
areas.

Successful teledialysis assessment for remote KRT management 
in rural acute care hospitals72,73 suggests that this approach should be 
investigated further. Importantly, legal issues, costs and outcomes of 
AKI telemedicine remain unclear74.

Is there evidence that DHAKI can be used for post-AKI 
management?
Consensus statement

	1.	 The utility of DHAKI in post-AKI management remains unclear, 
and substantial knowledge gaps must be addressed to determine  
the potential role of DHAKI in:

http://www.nature.com/nrneph
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•	 monitoring of kidney health in AKI survivors and patients at risk of 
CKD development or progression in ambulatory settings.

•	 patient and clinician education through mobile applications.
•	 patient and caregiver empowerment through enhanced self-care.

Transitioning between the hospital and outpatient settings follow-
ing AKI is challenging, and rehospitalizations are common75,76. DHAKI 
could empower patients to make informed decisions regarding their 
kidney health, especially during AKI recovery. However, although CDSS 
facilitates timely clinician recognition of AKI and subsequent interven-
tion, these systems are not yet optimized to engage patients and car-
egivers. The role of digital mHealth applications and wearables has not 
been explored in AKI aftercare but, among patients with CKD or kidney 
transplant recipients, mHealth has had positive effects on medication 
adherence and safety77–79. Wearables were also beneficial in blood pres-
sure monitoring, volume status assessment and oxygen saturation80,81. 
Future studies could focus on DHAKI-focused interventions that begin 
at or shortly after discharge82.

DHAKI use in AKI management
How should digital health be applied along the AKI care 
continuum?
Consensus statements

	1.	 Patients and health care providers could use digital health to 
improve AKI risk stratification and recognition, personalize care, 
including the use of KRT, and optimize AKI recovery and follow-up.

	2.	 Digital health could guide resource allocation, surveillance and 
data integration at the health care system or population level.

Digital health could guide resource allocation by deploying and 
activating hospital and community nephrology rapid response teams 
(NRRTs) to identify patients at risk of AKI83. Population data from public 
health sources, integrated with social determinants of health, could be 

used to monitor trends in the incidence of community AKI and identify 
novel environmental risk factors. Numerous layers of digital patient 
health could be integrated through digital health technology, infra-
structure and applications. Digital health could also influence patient 
care with prompts and appropriate alerts for AKI complications among 
patients at a high risk after hospital discharge. Digital health tools can 
also interface with pharmacists, nurses, primary care physicians and 
nephrologists to provide continuous updates on the kidney function 
of a patient and facilitate timely, guided and personalized treatment 
recommendations. For example, a digital health tool could guide avoid-
ance of nephrotoxic medications in patients at a high risk, personalized 
resuscitation or de-resuscitation based on wearable technology, and 
AI-guided drug dose adjustment (Fig. 2).

In addition to the acute care setting, digital health tools such as 
point-of-care testing and wearable biosensors could be deployed in the 
community and in post-acute care to select patients at a high risk. For 
example, biosensor-enabled Bluetooth home toilet systems can provide 
biochemical urinalysis by integrating test strips84. Other applications 
of digital health solutions include monitoring kidney function in the 
community among patients who are at a high risk because they receive 
nephrotoxic medications, tracking the AKI-to-CKD transition by detect-
ing the onset or progression of albuminuria early, or the development 
of cardiovascular diseases. Identifying such patients through these 
approaches could guide the implementation of evidence-based post-AKI 
long-term follow-up and prevention strategies. Approaches such as 
telemedicine-enabled virtual AKI clinics can prevent rehospitalization 
and reduce overburdening of patients or health care systems73.

Where in the AKI continuum could digital health be applied to 
improve care?
Consensus statements

	1.	 Digital health could be applied in community (for example, 
at home or in pharmacies), acute (for example, emergency 
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department, hospital ward or ICU), and post-acute (for example, 
in ambulatory care or skilled nursing facilities) care settings. Dig-
ital health solutions must be adapted to the available resources, 
data and technology to maintain continuity across settings.

	2.	 DHAKI stakeholders include patients, care partners, multidis-
ciplinary clinicians, administrators, public health personnel, 
policymakers, payors, legal experts and industry.

Digital health solutions need to be validated in diverse cohorts 
across various AKI care continuums (Supplementary Table 2). These 
solutions must be acceptable and accessible to patients, providers 
and payors across different health care settings. Digital health could 
increase connectedness to transform AKI care, particularly if these 
solutions seamlessly cross the continuum of care to limit disruptions. 
For example, patients can receive virtual health coaching85 before 
admission for a procedure associated with a high risk of AKI, followed 
by EHR-embedded risk prediction throughout the hospitalization 
period to deliver context-appropriate CDSS alerts or prompts to the 
care team86, followed by the use of wearables and remote monitoring to 
facilitate safe post-dismissal care and early detection of deterioration 
or complications87 (Fig. 2).

Digital health applications must also be tailored to the available 
data, technology and resources. For example, using mobile phones 
and point-of-care tests in community and resource-limited settings 
could improve AKI detection and management71. In resource-intensive 
settings such as ICUs, digital health could be used to phenotype 
AKI and predict individual risks and responses to interventions49. 
(Supplementary Table 2).

How could digital health advance care quality, safety and 
education in AKI for patients, care providers and health systems?
Consensus statements

	1.	 Digital health solutions for the AKI care continuum can improve 
access, timeliness, care coordination, self-management sup-
port, education, safety monitoring, quality, outcomes and the 
delivery of personalized care.

	2.	 Digital health could improve clinical decision-making and care 
quality through the development, standardization and monitor-
ing of adherence to best practices, context-appropriate CDSS, 
resource allocation and suitability of care.

Digital systems have been used to improve the quality and safety 
of AKI care. EHRs have enabled the real-time or near real-time activa-
tion of NRRTs86. For example, the UK National Health Service (NHS) 
introduced a standardized electronic detection system for creati-
nine to decrease time-to-management88. For EHRs that support CDSS, 
computerized provider order entry and electronic prescribing, alerts 
related to rising creatinine can notify the clinical team or the patient 
via the EHR system or messaging, thereby providing real-time advice 
on the appropriate course of action and treatment choices89, sending 
an alert to a pharmacist or to an NRRT to prompt action90,91, and pro-
mote AKI prediction and earlier diagnosis92. The effects of employing 
similar systems to improve the quality of care throughout the AKI care 
continuum should be evaluated.

How could digital health advance AKI research?
Consensus statements

	1.	 Digital health supports discovery science and applied precision 
medicine by identifying causal pathways, social determinants 

and mechanisms of AKI, as well as enabling diagnostic and 
therapeutic discoveries, phenotyping and personalization.

	2.	 Digital health facilitates research across the AKI continuum 
through enhanced patient engagement, enrolment, interven-
tion allocation in clinical trials, data collection, analysis and 
dissemination.

	3.	 Digital health interventions warrant independent evaluation for 
their use along the AKI continuum and within various cohorts 
(for example, paediatric and adult patients).

Potential applications of digital health technologies extend across 
the research spectrum from discovery to translational science. AI and/or 
ML now have an integral role in phenotyping, endotyping and genotyp-
ing kidney injury for individualized treatments, as well as in biomarker 
and drug discovery. Digital health solutions can target specific popu
lations (for example, through enrichment of study populations accord-
ing to risk profiles), to change the design, conduct and outcomes of 
AKI-related clinical trials. Other solutions, for example, virtual trial 
enrolment or the use of patient-collected data (obtained through weara-
bles), can also facilitate patient participation in research and increase 
community engagement, thereby accelerating the collaborative devel-
opment of patient-centred research. At a population level, digital health 
can improve the understanding of AKI by tracking disease epidemiology 
and augmenting the generation of real-world evidence. Importantly, 
digital health needs to be evaluated as an intervention itself. The effect 
of digital health applications on patient outcomes remains promising 
but is lacking thorough assessment (Supplementary Table 3).

DHAKI implementation
Which principles should guide the implementation of DHAKI 
solutions?
Consensus statements

	1.	 Implementation of digital health solutions should encompass 
four phases: exploration, deployment, implementation, and 
knowledge transfer or broad implementation.

	2.	 Exploration and preparation during the pre-implementation 
phase should focus on needs assessment, identifying the solution 
and engaging stakeholders.

Implementation science has delineated approaches and meth-
ods to measure the effectiveness of digital health solutions in clinical 
settings93,94 (Fig. 3). Needs assessment95 is a crucial component of 
implementation and comprises identifying important clinical pro
blems within the AKI continuum, defining the target population and 
anticipated outcomes, value proposition, identifying and engaging 
relevant stakeholders, considering the availability of resources and 
expertise, assessing the local context and, finally, identifying the most 
appropriate digital health solution to address the defined needs96. Of 
note, technology readiness assessment is also important and involves 
engaging multiple disciplines with thorough knowledge of the available 
infrastructure, as well as personnel with the requisite expertise, to facil-
itate the uptake and validation of a digital health solution. Importantly, 
currently available tools for readiness assessment and implementation 
can facilitate behaviour change and technology acceptance97.

What are the key factors for a successful deployment and 
implementation of a DHAKI solution?
Consensus statements. Successful implementation of digital health 
tools requires strategic alignment with institutional priorities to 
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enhance and sustain stakeholder engagement and secure adequate 
technological, personnel, educational, financial, and administrative 
resources for deployment, launch, quality assurance and performance 
improvement.

During the implementation phase, the digital health solution must 
be integrated within current workflows to support clinical needs, and 
ensure sustainability and applicability across various settings (Fig. 3). 
Given the heterogeneity in patients, processes of care and AKI settings, 
implementation techniques and methods might vary based on the DHAKI 
solution aims or users in an iterative process. Over time, the missteps and 
successes of the initial implementation should be leveraged to inform 
the sustainable and broader deployment of the tool, whether to other 
clinical service lines in the same location or other institutions.

RCTs can provide a high level of evidence regarding the efficacy and 
effectiveness of a digital health solution, but they also have some limita-
tions, including the lack of external validity (that is, validation outside 
of the setting in which they were conducted), their high cost and com-
plex logistics, the ethical challenges of exposing some patients to inter-
ventions of uncertain benefit or harm, potential cross-contamination 
between the intervention and control groups, (often) the inability to 
mitigate or resolve the constraints and barriers during or after comple-
tion of the trial, and the time required to perform the study. Therefore, 
other study designs, such as effectiveness-oriented research, might 
allow a better understanding of the optimal processes for successful 
implementation and dissemination of the intervention. In addition, 
these alternative study designs might prevent large-scale implementa-
tion delays and help care for all patients, including those traditionally 
at the highest risk of health care disparities.

The target population for DHAKI implementation should be based 
on comorbidity, health, digital literacy, social and cultural factors. 
The digital health solutions should be assessed for feasibility and 
efficacy in distinct clinical settings and patient populations, as well as 
its technical characteristics (such as maturity, performance, depend-
ability, supply chain reliability, useability, acceptability and techni-
cal interdependency with upgrade capability), and human workflow 
integration abilities98. Interactions with pre-existing digital health 
solutions should be considered for synergies, contradictions and 
technical interdependencies. Last, institutional readiness, support 
and resources such as technical expertise also affect the ability to 
implement new tools successfully.

A nephrotoxic medication-associated AKI prevention programme 
that identified children at a higher risk of AKI based on available 
epidemiological data99,100 transitioned from manual to automated 
processes90,101 and evolved from a single-centre experience to success-
ful multicentre dissemination and implementation, while imparting 
knowledge at each stage to accelerate wider dissemination34. The 
multicentre project secured a series of commitments from each centre 
before admission to the collaborative34 (Supplementary Box 1).

What resources and steps are necessary to maintain 
and accelerate DHAKI dissemination after successful 
implementation?
Consensus statements

	1.	 Sustaining an implemented digital health solution is a dynamic 
process to accommodate changes over time.

	2.	 Defining the scope of digital health solution dissemination is 
crucial as broader implementation could be achieved across ser-
vice lines in a single hospital, health system, or a broader entity, 
including several health systems or countries.

To ensure that digital health solutions are sustainable, they should 
be systematically redirected to comply with changing policies and 
maintain stakeholder engagement at the community level94. Moreo-
ver, in most cases, DHAKI solutions such as AKI alerts have not been 
widely adopted102–105, despite their reported benefits28,106,107. The inabil-
ity to successfully implement digital health solutions is primarily due 
to scarcity, conflict, or distrust in existing evidence. Digital health 
dissemination is challenging when standardization in EHRs, proce-
dures, protocols and institutional culture and leadership is limited, 
because it increases the required effort, time, resources, and consensus 
across stakeholders. Digital health dissemination across health systems 
with different institutional and contextual structures requires a deep 
understanding of resources, institutional culture and the capabilities 
of stakeholders.

Challenges of DHAKI utilization in clinical practice
What are the barriers to implementing and sustaining DHAKI 
tools in routine clinical practice?
Consensus statements

	1.	 Implementing digital health across the AKI continuum is com-
plex and influenced by administrative issues, team capabilities, 
hardware and software limitations, and the cultural milieu.

	2.	 Following validation of DHAKI solutions in controlled research 
settings, translational studies are necessary to establish clinical 
benefits.

Several barriers and constraints can affect DHAKI implementation 
(Figs. 4 and 5). Varying access to health care and digital literacy is a fun-
damental problem108,109. Moreover, the datasets used to create AI and/or 
ML approaches to AKI risk management often lack diversity, which limits 
their generalizability54. Digital health resources and expertise in clinical 
environments can be very limited110. The heterogeneity in software and 
hardware environments across health care systems leads to competing 
devices with varying cost-effectiveness, which is a major barrier to digital 
health solution dissemination111,112. Equally important is the human–
technology interaction, which encompasses technology preparedness 
among health care providers, end-user acceptance113,114 and the need 
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Fig. 3 | DHAKI implementation cycle. The four phases of digital health solution 
implementation include exploring the need and resources, deploying the 
resources required for successful project conduct, implementing the digital 
health solution within the workflow, and finally, knowledge transfer and broader 
implementation of the digital health in acute kidney injury (DHAKI) solution across 
institutions, regions, countries and globally. Adapted from the Acute Dialysis 
Quality Initiative143, CC BY 2.0 (https://creativecommons.org/licenses/by/2.0/).
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to localize scientific units and language interfaces across the global 
market115. Digital health solution integration into clinical workflows is 
challenging. Changes in clinical workflows in tandem with the introduc-
tion of a new digital health solution are often necessary to maximize 
efficiency and effectiveness. Moreover, although AI advancements such 
as large language models, promise huge potential for applications such as 
medical documentation, decision support systems and patient educa-
tion, they also raise many ethical and societal issues, especially regarding 
the misalignment of human-intended objectives and AI actions116.

Digital health tools might meet the regulatory definition of a medi-
cal device and be subject to regulatory and approval processes, some 
of which might not be well adapted to specific aspects of digital health. 
Obtaining the necessary regulatory authorizations to introduce these 
tools into clinical use can therefore lead to delays and raise costs. Many 
digital health tools rely on shared data, which can raise complex ELSI 
concerns117. Therefore, improved transparency in the use of private 
health information might promote successful implementation of new 
digital health solutions118.

AKI-specific challenges include AKI heterogeneity, with differ-
ences across subpopulations119,120. The broad AKI spectrum in diverse 
practice settings mandates wide distribution121–123. Perceived thera-
peutic nihilism around current AKI management might also reduce 
end-user acceptance, particularly with competing priorities from other 
acute and chronic medical conditions such as heart or liver failure. 
Evaluation of predictive or diagnostic digital health solutions should 
also include reporting of sensitivity and specificity because too many 
false negatives (that is, missed cases) or false positives (that is, incorrect 
diagnoses) would likely reduce trust and acceptance.

What ethical, legal and social implications create DHAKI 
access and usage barriers?
Consensus statement. Existing inequities in communities, health 
care systems and data can potentially propagate biases during the 

development and implementation of digital health tools, leading 
to further discriminatory practices that disadvantage historically 
excluded groups.

ELSI concerns might arise from issues related to patient safety 
(owing to a lack of supportive evidence), equity (related, for exam-
ple, to affordability, ease of use, health literacy or algorithm biases), 
lack of transparency, regulation (data protection, security, consent, 
conflicts of interest with industry), liability, accountability and unin-
tentional impacts on the patient–clinician relationship124–126. Unequal 
access to care and technology, driven by historical biases and the 
digital divide, can compromise the ability of digital health solutions 
to serve a diverse, global population127. For example, the use of tel-
emedicine increased rapidly during the COVID-19 pandemic. However, 
this increase also exposed the large divide between resource-rich and 
resource-constrained settings, where the lack of stable internet con-
nectivity was a large barrier to access to care128. This multi-faceted 
problem should be tackled on different fronts, including through poli-
cies aimed at bringing equitable access to the internet, through novel 
technologies that can work in areas of poor connectivity or intermittent 
connections129, and by educating the end users in using the relevant 
technology. Hence, systems need to be carefully validated to ensure 
equitable performance across all affected population subgroups130,131. 
Patient-facing tools can also be inaccessible because of language bar-
riers. Moreover, existing datasets and digital health design decisions 
might reflect the needs of a limited subset of patients with AKI, which 
could lead to biased predictions and recommendations54. For example, 
digital health solutions developed for resource-rich settings might not 
be relevant in resource-limited settings132, and the complexity of digi-
tal health solutions might negate the potential benefits to patients. 
Digital health tools using black-box AI and/or ML models (that is, 
models with undisclosed processes or features) might also introduce 
bias and, occasionally, be counterproductive when health care pro-
fessionals, patients and the public misinterpret their reasoning133.  
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Fig. 4 | DHAKI solution implementation steps, barriers and constraints. 
Digital health in acute kidney injury care (DHAKI) implementation is condi
tioned by barriers, enablers and constraints that can inhibit or promote the 
identification of health care needs and of the appropriate choice of digital  
health solutions to improve the prevention, detection or treatment of AKI.  

These factors are also affected by health determinants and the geographical 
scale of implementation. Adapted from the Acute Dialysis Quality Initiative143, 
CC BY 2.0 (https://creativecommons.org/licenses/by/2.0/). CKD, chronic 
kidney disease; Cr, creatinine; DH, digital health; ELSI, ethical, legal and social 
implications.
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Finally, transparency issues can lead to downstream safety and security 
issues in the case of complex models and tools.

We recognize that technology will not solve all existing ELSI 
issues. However, discourse around technology can start to provide 
solutions that address issues in justice, autonomy, privacy, security, 
trust, accountability and transparency134. Promoting responsive and 
sustainable solutions is also important, as emphasized by recent WHO 
guidelines on AI for health care135. For example, current data suggest 
that oxygen saturation and heart rate monitoring in wearable devices 
via photoplethysmography are affected by skin tone and are less accu-
rate in individuals with darker skin tones136. This discrepancy might 
also apply to oxygen saturation monitoring using a pulse oximeter 
in inpatient settings137. Social determinants can also influence access 
to wearable technologies and the willingness to share health data138. 
Therefore, studies of wearables might fail to address the population 
needs appropriately, and perpetuate the under-representation of sub-
sets of patients in collected datasets, and in the subsequent research 
and algorithm design. Additional ethical considerations are addressed 
in the US White House Blueprint for an AI Bill of Rights139, the US Depart-
ment of Health and Human Services Office of the National Coordinator 
for Health Information Technology, the Coalition for Health AI, the 
Health AI Partnership, and the proposed Artificial Intelligence Act from 
the European Union140. In addition, playbooks and auditing tools are 
available to identify and reduce biases141,142.

Conclusion
Digital health tools offer a unique opportunity to enhance the care 
of patients with AKI worldwide by empowering both patients and 
providers to communicate effectively, bridging gaps in care deliv-
ery and reducing barriers of access to care. Given the rapid advance-
ment and growth of digital health solutions, their use for AKI detection 

and management will continue to evolve. Importantly, implementation 
of DHAKI solutions will need to be monitored for unintended con-
sequences, such as the introduction or exacerbation of inequities in 
care delivery.
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