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Large language models (LLMs) have enabled the generation of high-quality synthetic

text, often indistinguishable from human-written content, at a scale that can markedly
affect the nature of the information ecosystem’~3. Watermarking can help identify
synthetic text and limitaccidental or deliberate misuse®*, but has not been adopted in
production systems owing to stringent quality, detectability and computational
efficiency requirements. Here we describe SynthID-Text, a production-ready text
watermarking scheme that preserves text quality and enables high detection
accuracy, with minimal latency overhead. SynthID-Text does not affect LLM training
and modifies only the sampling procedure; watermark detection is computationally
efficient, without using the underlying LLM. To enable watermarking at scale, we
develop an algorithm integrating watermarking with speculative sampling, an
efficiency technique frequently used in production systems®. Evaluations across
multiple LLMs empirically show that SynthID-Text provides improved detectability
over comparable methods, and standard benchmarks and human side-by-side ratings
indicate no change in LLM capabilities. To demonstrate the feasibility of watermarking
inlarge-scale-production systems, we conducted a live experiment that assessed
feedback from nearly 20 million Gemini® responses, again confirming the preservation
of text quality. We hope that the availability of SynthID-Text’ will facilitate further
development of watermarking and responsible use of LLM systems.

Large language models (LLMs) are widely adopted tools for synthetic
text generation, finding applications in language-based assistants,
code generation, writing support and various other domains. As LLMs
advance in quality, coherence, coverage and expertise, it can become
difficult to distinguish synthetically generated text from human-written
text' . Given the widespread use of LLMs in education, software develop-
mentand web content generation, identification and attribution of LLM
textis critical to ensure safe and responsible use of the technology®™.

Multiple strategies have emerged to address this problem. Oneisa
retrieval-based approach, whichinvolves keeping agrowing record of
allgenerated texts and checking against it for matches™. Thisrequires
scale and coordination, and raises privacy concerns as it requires
accessing and storing all LLM interactions. Another approach is post
hoc detection, often using the statistical features of text or training a
machine-learning-based classifier to distinguish human-written from
artificial-intelligence-generated text™ ™, This approach can potentially
provide broader detection without the need for record-keeping or any
intervention at the text generation stage. However, post hoc detection
systems can themselves be computationally expensive to run, and
their practical usage is limited by their inconsistent performance’. In
particular, they are known to perform poorly on out-of-domain data

and may have higher false-positive rates for certain groups, such as
non-native speakers”. Furthermore, such classifiers fundamentally rely
onunderlying differences between machine and human text, which may
diminishas LLMsimprove. This necessitates continuous maintenance
of the classifier, including re-training and re-calibrating.

Athird approachis text watermarking—away of marking the generated
textsothatitcansubsequently be identified. Text watermarking canbe
doneduring the generative process (generative watermarking), by edit-
ingalready generated text (edit-based watermarking) or by altering the
LLM’s training data (data-driven watermarking)*. Edit-based watermark-
ing frequently relies on applying rule-based transformations such as
synonymsubstitution or inserting special Unicode characters', whereas
data-driven watermarkinginvolves training the LLM on specific trigger
phrases'. With data-driven watermarking, the model outputs are water-
marked only whenthe modelis prompted with specific trigger phrases;
the primary objectiveis toidentify unauthorized misuse of LLMs rather
than attributing pieces of text to an LLM more broadly. Furthermore,
both of these approaches can leave noticeable artefacts in the text*.

Whenwatermarking an LLM deployed withinalarge-scale-production
setting, it is important to carefully control any impact from water-
marking on text quality and, by extension, user experience. It is also
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Fig.1|Overview of LLM text generation and generative watermarking.
Top:LLM text generation typically involves generating text from left to right
byrepeatedly sampling fromthe LLM distribution. Bottom: a generative
watermarking scheme typically consists of the three components, in the blue

important that we are able to watermark with minimal computational
costs. To meet both of these criteria, this work focuses on generative
watermarking, which allows us to embed watermarks while carefully
controlling theimpact on quality and maintaining low computational
cost. However, we note that no text detection method is foolproof, and
many of the approaches discussed in this section are complementary
and can be used in conjunction®.

Generating text withan LLM is often autoregressive: the LLM assigns
probabilities to the elements (tokens) of the vocabulary and thenselects
the nexttoken by sampling according to these probabilities conditional
ontext generated so far (Fig. 1, top). Generative watermarking (Fig. 1,
bottom) works by carefully modifying the next-token sampling proce-
duretoinject subtle, context-specific modificationsinto the generated
text distribution. Such modificationsintroduce a statistical signature
into the generated text; during the watermark detection phase, the
signature can be measured to determine whether the text was indeed
generated by the watermarked LLM. A key benefit of the approach is
that the detection process does not require performing computation-
ally expensive operations or evenaccess to the underlying LLM (which
is often proprietary).

In this work, we propose a generative watermarking scheme,
SynthID-Text, which builds on previous generative watermarking
components, but uses a novel sampling algorithm, Tournament
sampling. SynthID-Text can be configured to be non-distortionary
(preserving text quality) or distortionary (improving watermark
detectability at the cost of text quality). We show thatinboth settings,
SynthID-Text provides improved detection rates, compared with the
best existing approaches in each category. We show empirically that
non-distortionary SynthID-Text preserves text quality, including
through alarge-scale user feedback assessment over nearly 20 million
responses from live Geminiinteractions. Consequently, SynthID-Text
hasbeen used to watermark Gemini and Gemini Advanced®. This serves
as practical proofthat generative text watermarking canbe successfully
implemented and scaled to real-world production systems, serving
millions of users and playing an integral role in the identification and
management of artificial-intelligence-generated content.

Furthermore, we provide analgorithm to combine generative water-
marking with speculative sampling®—a frequently used technique to
increase LLM text generation speed—allowing for the integration of

not watermarked

boxes:random seed generator, sampling algorithm and scoring function.
These canbe used to provide a text generation method and awatermark
detection method. In the SynthID-Text generative watermarking scheme,
we use the Tournament sampling algorithm.

SynthID-Text into large-scale production systems with negligible addi-
tional computational overhead.

Watermarking with SynthID-Text

LLMs generate text based on preceding context (for example, a
response to a provided prompt). More precisely, given a sequence of
input text x._, =X, ..., X, consisting of ¢ — 1 tokens from a vocabulary
V, the LLM computes the probability distribution p, ,(-|x.,) of the next
token x, given the preceding text x_.. To generate the full response, x,
issampled from p,,(-|x.,), and the process repeats until either a maxi-
mum length is reached or an end-token is generated. The process is
illustrated in Fig. 1 (top).

A generative watermarking scheme typically comprises three com-
ponents: arandom seed generator, asamplingalgorithm and ascoring
function?. AsshowninFig.1(bottom), the random seed generator pro-
videsarandom seed r,on each generation step ¢ (potentially based on
the preceding text along with the watermarking key), and the sampling
algorithmuses r,to sample the next token x, from p, ,(-|x.,). Importantly,
the samplingalgorithmintroduces correlations betweenr,andx,; during
watermark detection, these correlations are measured by the scoring
function. Given a piece of text and the watermarking key, the scoring
function provides ascore that quantifies the strength of the correlation
(thatis, the watermarking evidence); this canbe compared with a thresh-
oldtodetermine whether the text originates from the watermarked LLM.

In this work, we present the sampling algorithm Tournament sam-
pling, whichis described in the following section. For the random seed
generator, in our experiments we use the existing sliding-window
method??, where the random seed is a hash of the most recent Htokens
(X --.» X, We use H=4) along with the watermarkingkey (Fig. 2, top);
butwe note that Tournament sampling can be paired with any random
seed generator. We experiment with several scoring functions, some of
which are from existing work and others are from this work; we discuss
theminthefollowing sections. Together, our generative watermarking
schemeis called SynthID-Text.

SynthID-Text’s Tournament sampling approach
The key idea of Tournament sampling is to use a tournament-like
process to choose an output token that scores highly with respect to
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somerandom watermarking functions. Anillustrationis givenin Fig.2
(top). First, we take the random seed r, provided by the random seed
generator. This seed is passed to m (in this case, m = 3) watermark-
ing functions g, 2,, &, ..., 8,—these are independent pseudorandom
number functions that assign a score g,(x,, r,) (in this case,a 0 or 1) to
any candidate tokenx, € V.

In the second stage (Fig. 2, bottom), we start by sampling M =2"
candidate tokens from the LLM distribution p, (- |x.,) (some tokens may
appear multiple times): these are the initial participants of the m-layer
tournament. We randomly divide these candidates into M/2 pairs, and,
in the first tournament layer, in each pair the token with the higher
score under g;(-, r,) is selected, and the other discarded (any ties are
brokenrandomly). The remaining M/2 tokens are regrouped randomly
into M/4 pairs, and the functiong,(-, r,) determines the winners for this
second tournament layer. This iterative process continues until one
token emerges as the final winner, which becomes the output token
X..Aformal description of Tournament samplingis given in Algorithm
2inMethods.

Watermark detection

By design, Tournament sampling selects a token from the LLM distribu-
tionthatislikely to score higher under the random watermarking func-
tions g,(-, r,), ..., 8n(-, r). To detect whether a piece of text x=x;, ..., X7
iswatermarked, we measure how highly x scores with respect to these
functions. Specifically, we compute the mean g-values of the text:

1 T m
Score (x) = T tZ gl 8,0, 1.

—
N

Given the selection of tokens x, based on higher g-values, we expect
watermarked text generally to score higher under this score than unwa-
termarked text.

Thereare two primary factors that affect the detection performance
ofthescoring function. Thefirstis the length of the text x: longer texts
contain more watermarking evidence, and so we have more statistical
certainty when makingadecision. The second is theamount of entropy
inthe LLM distribution when it generates the watermarked text x. For
example, ifthe LLM distributionis very low entropy, meaning it almost
always returns the exact same response to the given prompt, then
Tournament sampling cannot choose tokens that score more highly
under the g functions. In short, like other generative watermarks?,
Tournament sampling performs better when there is more entropy in
the LLM distribution, and is less effective when there is less entropy.
In Supplementary Information section H, we provide a theoretical
analysis describing the watermarking strength of alayer of Tournament
sampling as a function of a certain kind of entropy; similar analyses
have been done for other generative watermarks® >, The entropy of
the LLM distribution itself depends on several factors, including the
model—forexample, larger or more advanced models tend tobe more
certain and thus lower entropy?, and reinforcement learning from
human feedback can reduce entropy (also known as ‘mode collapse’)*.
Other factors that affect LLM distribution entropy include the prompts,
the temperature and other decoding settings such as top-k and top-p
sampling settings (see ‘The LLM distribution”in Methods).

Increasing the number of tournament layers m provides additional
watermarking evidence per token, and decreases the variance of
the score in equation (1). This allows SynthID-Text to provide better
detectability than other methods (see ‘Evaluation’). However, detect-
ability does not increase indefinitely with the number of layers. Each
layer of the tournament uses some of the available entropy to embed
awatermark, and the strength of the watermark corresponding to a
layer diminishes deeper into the tournament. For our experiments, we
generally use m = 30 layers unless otherwise stated; see Supplementary
Information section C.1for full details.
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LLM probabilities and random watermarking functions
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Fig.2|SynthID-Text’s Tournament-based watermarking. Top: to generatea
new tokenx,, we first score each token in the vocabulary using multiple (in this
case, m=3)random watermarking functionsg, ..., g,,. These assign random
values usingarandomseed, whichis generated based onboth the recent
context and awatermarking key. Bottom: then, we choose the next token using
atournament process. First, we sample 2™ = 8 (possibly non-unique) tokens
from p,y(|x.). Theseare splitinto pairs of competing tokens; in each pair, the
highestscoringone (based ong,) ischosen, breaking tiesrandomly. The
resulting tokens compete in the next layer, where winners are chosenbased on
g, untilinthelasttournament layer the final winneris selected basedong,,:
thisbecomes the next generated token x,.

Finally, we note that there are other scoring functions beyond equa-
tion (1); in Supplementary Information section A, we describe several
others, and find that some can improve detection performance.

Preserving the quality of generative text

As previously mentioned, a watermarking scheme can be non-
distortionary, a property relating to quality preservation; however,
the phrase and its variants have been used in the literature to mean
several distinct definitions?**%, causing some confusion. In this
work, we resolve the confusion by providing clear definitions of
non-distortion, from weakest to strongest. The weakest version is
single-token non-distortion, which says that, on average over the
random seed r,, the distribution of the output token x, generated by
the watermarking sampling algorithm is equal to the original LLM
distribution p,(-|x.) (Fig. 1). Stronger versions of non-distortion
expand this definition to one or more sequences of text, ensuring that
on average the probability of the watermarking scheme generating
a particular text or sequence of texts is the same as for the original
LLM. Full definitions are provided in Supplementary Information
section G.

In Supplementary Information section G.1, we show that when
Tournament sampling is configured with exactly two ‘competitors’
for each matchin the tournament (as in the example in Fig. 2), then
Tournament sampling is single-token non-distortionary. Furthermore,
in Supplementary Information section G.2, we show that by applying
repeated context masking”, we can make the scheme non-distortionary
for one or more sequences. Choosing the level of non-distortion
involves a trade-off; weaker levels of non-distortion can reduce text
quality and diversity, whereas stronger levels of non-distortion can
reduce detectability and increase computational complexity (Sup-
plementary Information section G.3). For our experiments, we con-
figure SynthID-Text to be single-sequence non-distortionary; this



preserves text quality and provides good detectability, while having
some reduction tointer-response diversity. We call this configuration
‘non-distortionary SynthID-Text’ (and where not otherwise specified,
‘SynthID-Text’ also refers to this).

Alternatively, for instances where strong watermark detectability
is critical, SynthID-Text can take a distortionary configuration that
provides higher detectability, at the cost of some quality loss. In this
configuration of Tournament sampling, there are more than two com-
petitorsineach match of the tournament (aformal definitionis givenin
Algorithm 2 in Methods). We show that in this case, Tournament sam-
pling is distortionary at the token level (Supplementary Information
section G.1); however, it applies a stronger watermark (Supplementary
Information section H.3). We call this configuration ‘distortionary
SynthID-Text'.

In ‘Evaluation’, we compare non-distortionary and distortionary
SynthID-Text to the best existing methods in each category and show
that SynthID-Text provides better detectability in both categories.

Ensuring computational scalability

Generative watermarking schemes (Fig. 1, bottom) are typically com-
putationally inexpensive as the text generation process involves a
modification to only the sampling layer, which is often negligible in
the context of the LLM’s forward pass. For Tournament sampling, in
some cases, it is more efficient to use a vectorized implementation,
which we describe in Supplementary Information section E. We pro-
vide a theoretical complexity analysis of both implementations, and
existing baselines in Supplementary Information section F. Overall, we
show empirically in‘Evaluation’ that, in practice, SynthID-Text induces
negligible additional latency.

Inlarge-scale productionized systems, the text generation process
is often more complex than the simple loop depictedin Fig.1(top). For
example, productionized systems often use speculative sampling®, a
method to accelerate text generation from large models. Speculative
sampling works by having a smaller draft model propose the next few
tokens; these are then checked against the large target model, which
either accepts or rejects the proposed tokens. Combining generative
watermarking with speculative samplingis animportant step to make
watermarking practically useful to production systems; however, to
our knowledge, it has not yet been investigated.

To make progress in this area, we propose two generative water-
marking with speculative sampling algorithms, which can combine
agenerative watermarking scheme with speculative sampling (Sup-
plementaryInformationsectionl).First, we propose high-detectability
watermarked speculative sampling, which preserves the detectability
of the watermark, but may decrease the efficiency (and thus increase
the overall latency) of speculative sampling (Supplementary Infor-
mation section 1.4). Alternatively, we propose fast watermarked
speculative sampling, which (provided the watermark s single-token
non-distortionary) preserves the efficiency of speculative sampling,
but may decrease the detectability of the watermark (Supplemen-
tary Information section 1.5). For this approach, we also propose a
learned Bayesian scoring function that improves the detectability of
this method (Supplementary Information section 1.5.2). Fast water-
marked speculative samplingis most helpful when speed isimportant
in production environments.

Evaluation

We compare SynthID-Textto, at the time of writing, the best-performing
non-distortionary and distortionary generative text watermarking
schemes and show empirically that SynthID-Text provides superior
detectability in both categories. In the non-distortionary category,
we compare against Gumbel sampling?®?, and in the distortionary
category, we compare against the Soft Red List sampling algorithm?;
see Supplementary Information section B.1for afull description and

discussion of how we chose our baselines. To create a like-for-like
comparison, we focus on comparing our sampling algorithm, Tour-
nament sampling, against the Gumbel and Soft Red List sampling
algorithms while keeping the other parts of the watermarking
scheme the same (Fig. 1). Accordingly, for all baselines we use the
samesliding-window random seed generator, and the same repeated
context masking methodology as described in ‘Watermarking with
SynthID-Text’—this means that (like non-distortionary SynthID-Text)
the Gumbel baseline is single-sequence non-distortionary and
preserves text quality. Furthermore, we note that the hashing and
scoring schemes from refs. 24,25 can be directly adapted with
SynthID-Text, and a detailed comparison of the benefits and draw-
backs of various hashing and scoring procedures (for example,
the edit-distance based scoring as in ref. 24) is beyond the scope of
this work.

In the remainder of this section, we empirically demonstrate that
SynthID-Text, like some other generative watermarks, has several key
desirable properties (quality and scalability) that enable its deploy-
mentinlarge-scale production, while also offering additional desirable
properties such asimproved detectability and diversity of the gener-
ated text. First, we show that (like other non-distortionary watermarks)
non-distortionary SynthID-Text preserves response quality; our evalu-
ationsinclude the first large-scale human evaluation in a production-
ized system. Then, across multiple models, we show that SynthID-Text
provides improved detection performance while also preserving a
greater amount of the underlying diversity within the LLM responses.
We also show that SynthID-Text, similar to other generative watermark-
ing schemes, has negligible computational impact in the context of a
large-production LLM.

SynthID-Text preserves quality including in alarge-scale-
production system

Toevaluatethe productionreadiness of non-distortionary SynthID-Text,
we ranalive experiment with the Gemini production system (previously
known as Bard). A random fraction of queries were routed to a water-
marked modeland an equivalent number to the unwatermarked coun-
terpart. The Gemini userinterface allows users to provide feedback on
model responses viaathumbs-up (good response) and athumbs-down
(bad response). We analysed approximately 20 million watermarked
and unwatermarked responses and computed the thumbs-up and
thumbs-downrates (both asafraction of the total number of thumbs-up
and thumbs-down feedback received). We found that the thumbs-up
rate for the two models differed by 0.01% (with the watermarked model
being higher); and the thumbs-down rate differed by 0.02% (with the
watermarked model being lower). We found both of these differences
to be statistically insignificant, and well within the 95% confidence
intervals.

From this experiment, we conclude that over a wide variety of real
chatbot interactions, the difference in response quality and utility,
as judged by humans, is negligible. Subsequently, non-distortionary
SynthID-Text has been productionized and is currently watermarking
responses in Gemini and Gemini Advanced. To the best of our knowl-
edge, this evaluation represents the first systematic watermarking
investigation of its kind within a large-scale production system.

To provide areproducible human evaluation, we also runasmaller-
scale controlled human preference test, for which we also publish the
collected data. In this experiment, we ask raters to compare water-
marked versus unwatermarked Gemma 7B-IT responses to 3,000 ELI5
questions, assessing five aspects of response quality in a side-by-side
comparison. For all five aspects—grammaticality/coherence, relevance,
correctness, helpfulness and overall quality—we find no significant
difference in rater preference (Extended Data Table 1). This holds
both in a three-way analysis that includes tie ratings and conducts a
trinomial test, as well as when restricting the analysis to the non-tie
responses, using bootstrap resampling over the watermarked versus
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Fig.3|Detection performance of SynthID-Text. a, For non-distortionary
watermarking, we compare watermark detectability asafunction of text
length (number of tokens), for non-distortionary SynthID-Text and the Gumbel
sampling®*** watermark. Watermark detectability is measured using the
true-positiverate (TPR) when the false-positive rate (FPR) is set to 1%. Responses
aregenerated from Gemma 7B-IT with temperature = 0.7 using prompts from
the ELIS dataset; other models and temperatures are provided in Extended
DataFig.1.b, The fraction of watermarked and unwatermarked texts that the
selective prediction mechanism (Supplementary Information section C.8)
abstainsontoachieve atrue-positive rate of 95% and a false-positive rate of 1%.
The mechanism makes predictions only when the scoring functionis confident,
andis thus able tomaintainalow error rate when making predictions, at the
cost of abstaining on some of the data. The model set-up and the prompts are

unwatermarked preference ratio (full details in Supplementary Infor-
mation section C.4).

Tofurther validate the quality-neutral property of non-distortionary
SynthID-Text, we conduct additional automatic evaluations across
different models and metrics. We find no significant difference
betweennon-distortionary SynthID-Text and the equivalent unwater-
marked model in terms of perplexity or performance on automated
benchmarks. Full details are provided in Supplementary Information
section C.5.

To summarize: human quality feedback, both from a large-scale
live experiment and a small-scale controlled study, perplexity sta-
tistics and standard model capability benchmarks all indicate that
non-distortionary SynthID-Text causes no loss in text quality.

SynthID-Text provides better detectability than existing
watermarks
We evaluate watermark detectability empirically across several pub-
licly available models, including the instruction-tuned (IT) variants of
Gemma 2B and Gemma 7B, and the Mistral 7B-IT* model (see ‘LLMs
and LLM configurations’ in Methods for details). We prompt the models
with questions from the ELI5 dataset® (see ‘Data’ in Methods).
Inthenon-distortionary category, Fig.3ashowsthatnon-distortionary
SynthID-Text provides better detectability than Gumbel sampling,
for the same length text. We find that the SynthID-Text’s improve-
ment over Gumbel sampling is greater in lower-entropy settings
(for example, lower temperatures); when the entropy is higher, the
detectability of the two methods is more comparable (Extended
DataFig.1). In Extended Data Fig. 4, we also show that although both
non-distortionary SynthID-Text and the Gumbel sampling baseline
reduceinter-response diversity, SynthID-Text provides a better diver-
sity/detectability trade-off than Gumbel sampling. In scenarios where
low error rates are desirable, we can use aselective prediction mecha-
nism (Supplementary Information section C.8) to abstain on samples
forwhich the scoring functionis uncertain, thus achieving the desired
error rates on the remaining data (Fig. 3b).
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sameas thatina; other temperaturesarein Extended DataFig.3.c, For
distortionary watermarking, we compare detectability of watermarks that
allow text quality to be traded off against detectability by adjusting astrength
hyperparameter. Texts are of length 200 tokens generated by Gemma 7B-IT
withtemperature=0.7; other textlengths and temperatures are provided
inExtended DataFig.2. Compared with the distortionary Soft Red List
watermark?, distortionary SynthID-Text offers amore favourable trade-off,
with substantially higher detection rates for the same effect on text quality

as measured by log(perplexity). The arrows indicates the direction for
performance improvement. The dashed lines correspond to abootstrap
estimate (500 resamples) of the mean of the metric on the y axis and the shaded
regions correspond to the 90% confidence interval on the mean estimate.

In the distortionary category, we compare the trade-off of detect-
ability and text quality for distortionary SynthID-Text and Soft Red List.
Both methods have a strength parameter that controls this trade-off;
inFig.3c, we see that the trade-offis more favourable for distortionary
SynthID-Text.

SynthID-Text has minimal computational impact

As discussed in ‘Watermarking with SynthID-Text’ and Supplemen-
tary Information section F, Tournament sampling does in some cases
have greater computational complexity than Gumbel or Soft Red List
sampling, but these differences are minimal relative to the cost of
generating text from an LLM. For example, the Gemma 7B-IT model
served on 4 v5e tensor processing units® generates text at a rate of
15.527 ms per token; thisincreases to15.615 ms per token with 30-layer
Tournament sampling, alatency increase of only 0.57%. In comparison,
Gumbelsamplingincreaseslatency by 0.26% and Soft Red List by 0.28%.
Furthermore, the computational complexity of all three watermarks
remains constant even as the LLM grows. Thus, as large production
models cangrow by orders of magnitude larger than Gemma7Bin terms
of computational complexity, so too does the relative complexity of
watermarking shrink by orders of magnitude.

As described in ‘Watermarking with SynthID-Text’, we propose an
algorithm—fast watermarked speculative sampling—to integrate gen-
erative watermarking with speculative sampling and thus enable fast
deployment of watermarked LLMs at scale. We evaluate our algorithm
with non-distortionary SynthID-Text, using Gemma 7B-IT as the target
model and Gemma2B-IT as the smaller draft model that proposes three
‘lookahead’ tokens at a time. When paired with a non-distortionary
watermark (Supplementary Information section1.3), fast watermarked
speculative samplingis theoretically guaranteed to preserve the accept-
ance rate (that is, the average number of lookahead tokens accepted
by the target model). We confirm this experimentally, finding that
the acceptance rate (and thus overall latency) is very similar with and
without watermarking (Supplementary Information section 1.5.3).
Although we ran our experiment with non-distortionary SynthID-Text,



we expect the same result would hold for any non-distortionary gen-
erative watermark.

Discussion

We have introduced SynthID-Text, amethod for watermarking LLM text.
SynthID-Text uses certain elements introduced in previous work>%%,
but differs in the use of the sampling algorithm, Tournament sam-
pling, which we find provides superior detectability compared with
existing methods. SynthID-Text comes with rigorous and customiz-
able non-distortion properties that can be configured to guarantee
text quality preservation; we confirm this empirically, including via
real user feedback measured over approximately 20 million Gemini
chatbotinteractions. We have also proposed an algorithm to combine
generative watermarking with speculative sampling, thus enabling the
efficient deployment of generative watermarks in high-performance,
large-scale-production LLMs.

Limitations

Generative watermarks such as SynthID-Text provide several advan-
tages compared with other approaches. For example, in Supplementary
Information section C.7, we show that SynthID-Text performs consist-
ently across different languages. In comparison, a post hoc detector
performs poorly on languages that its underlying machine-learning
model was not trained on. However, generative watermarks such as
SynthID-Text do not offer acomplete solution to artificial-intelligence
text detection; rather they are complementary to other approaches.
In particular, generative watermarks require coordination between
actors running the LLM text generation services to apply the water-
mark. To detect artificial-intelligence-generated text produced by
otheractors who do not toimplement watermarking, other approaches
are required, such as post hoc detection. Furthermore, the rise of
open-source models presents a challenge, as enforcing watermark-
ing on these models deployed in a decentralized manner is difficult.
Another limitation of generative watermarks is their vulnerability to
stealing, spoofing and scrubbing attacks, which is an area of ongo-
ing research®. In particular, generative watermarks are weakened by
edits to the text, such as through LLM paraphrasing®—although this
usually does change the text significantly. We provide evaluations of
SynthID-Text’s performance under edits and paraphrasing in Supple-
mentary Information section C.6.

Conclusion

Overall, our work provides proof of the real-world viability of gen-
erative text watermarks. SynthID-Text has been productionizedin the
user-facing Gemini and Gemini Advanced chatbots, which is, to our
knowledge, the first deployment of agenerative text watermark at scale,
serving millions of users. As such, our work sets a practical milestone
foraccountable, transparent and responsible LLM deployment.
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Methods

Detailed SynthID-Text method
Inthis section, we provide a detailed description of SynthID-Text.

The LLM distribution. Most LLMs are autoregressive, providing the
probability p, (x,|x.,) of the next token x, given the text so far x_.. Text
istypically generated from the LLM using an autoregressive decod-
ing method, which optionally modifies the LLM distribution p, ,(-|x.,)
before sampling fromit. Such modificationsinclude top-k and top-p**
sampling, which truncate p,,(-|x.,) to the k most likely tokens or the
tokens covering the top-p probability mass; this canbe combined with
applyingatemperature parameter 7 (ref. 35). Although these modifica-
tions increase or decrease the amount of entropy in p y(-|x.,),
SynthID-Text is compatible with any autoregressive decoding method
that has non-zero entropy in the modified distribution. Thus,
SynthID-Text is compatible with top-ksampling for all k> 2, top-p sam-
plingforall p € (0, 1], and all temperatures 7> 0.

SynthID-Textis applied after any such modifications have beenmade,
sofor the purposes of this paper we define the LLM distribution p, ,(-|x.,)
to be the distribution after any such modifications.

Definition 1 (LLM distribution). Given an autoregressive LLM, an
autoregressivedecoding method, andx.,=x,, ..., X,_;, asequence of tokens
fromthevocabularyV,the LLMdistribution p, (- |x.,) isthe probability dis-
tributionfromwhich the decoding method samplesthe nexttokenx,€ V.

Watermarking framework. We present SynthID-Text as comprising a
randomseed generator, asampling algorithm and a scoring function;
thisissimilar to the generative watermarking framework of ref. 21. Intui-
tively, the sampling algorithm samples text from the LLM inaway that
is biased by random seeds provided on each step by the random seed
generator; later we can identify the watermark by detecting this bias
through the scoring function. We describe the random seed generator
and sampling algorithm in this section and describe several scoring
functionsinSupplementary Information section A. See Supplementary
Information section B for a detailed discussion of related generative
watermarking approaches.

Random seed generator. To generate a piece of watermarked text
Xy, ..., Xp, Wwerequire a sequence of random seedsr, ..., i € R (Where
R is the space of all random seeds) to bias the sampling from the
LLM distribution on each step. The random seed generator is the pro-
cess by which we generate these random seeds. One approach is to
make the random seed generator a deterministic function f, that
takes asinput the sequence of tokens so farx_, = x;, ..., X,;and awater-
marking key kand outputs arandomseedr, :=f (x.,, k) € R.Rando-
mizing the key k should randomize the seed; that is, for all
Xepr Peeumieery LS, (ep, K)1=Unif (R).

There are several possible choices for f, (ref. 21); for our experiments,

we use the sliding window f,(x_,, k) := h(x,_, ..., X,;, k), which is a hash
function A of the last H tokens (for some context length H>1) and
of the key k. This random seed generator is the same as that used by
refs. 22,23. In this work, we also assume the watermarking key k and
random seed r, existin the same space of n...-bitintegers, where n..is
the security parameter.
Definition2 (randomseed space, randomseed distribution). Given
a security parameter n,, the random seed space R = {0, 1}"s= is the
spaceofallng.-bitintegers. Therandom seed distribution is the uniform
distribution over all such integers Unif (R).

We also assume that the family of functions{a(-, ..., -, k)};cr isapseu-
dorandom function family, meaning that (1) A(x,_, ..., X, k) is effi-
ciently computable for any x,_, ..., x,; and k, and (2) the distribution
of {h(:, ..., ", K)}x-unifry is computationally indistinguishable from a
function sampled uniformly randomly from the set of all functions
from Vt0{0, 1}""sec,

g-values. As illustrated in Fig. 2, Tournament sampling requires
g-values to decide which tokens win each match in the tournament.
Intuitively, we want a function that takes a token x € V,arandom seed
r € Rand the layer number £ € {1, ..., m}, and outputs a g-value g,(x, r)
thatis a pseudorandom sample from some probability distribution f,
(the g-value distribution).

Forexample, inFig. 2, the g-value distributionis Bernoulli(0.5). Given
therandom seed r, g,(x, r) produces pseudorandom g-values of O or 1
foreachtokenxinthevocabulary,foreachlayerf=1, 2, 3. Inthis paper,
we primarily use the Bernoulli(0.5) g-value distribution, although we
also explore Uniform[0, 1]. In general, any g-value distribution can be
chosen, as a hyperparameter of the Tournament sampling method.
Definition 3 (g-value distribution). The g-value distribution is a prob-
ability distribution of any real-valued random variable. We write F . to
denote the cumulative distribution function, and f, to denote the prob-
ability density function (if continuous) or probability mass function
(if discrete).

Next, we need awaytoproduceahashh(x,#,r) € RofatokenxeV,
anintegerfe{l, ..., m}andarandomseedr € R.Let’sassume we have
a pseudorandom function family {h(-, -, r)},cx similar to the one
described in the ‘Random seed generator’ section, such that the dis-
tribution of {h(:, -, r)},.unifr) is computationally indistinguishable from
afunction sampled uniformly randomly from the set of all functions
from Vx [m] to{0, 1}"sec.

Definition 4 (g-value). Given a g-value distribution with cumulative
density function. F,, arandom seedr € R, and integer £ €1, ..., m, the
layer-8 g-value of a token x € Vis given by:

h(x, f,r)]

2Msec

g, (x,r) :=F;£

where F, lis the generalized inverse distribution function of F,andhis
a hashfunction as described above.

Intuitively, Definition 4 says that we take a hash h(x, ¢, r) of x, £ and

r,whichgives us a uniformly distributed n-bitinteger, and divide it by
2"to get anumberin [0, 1]. For large n, this converges to a uniformly
distributed numberin [0, 1]. We then performinverse transform sam-
pling to turn this number into a sample from the g-value distribution
givenby F,.
Tournament sampling algorithm. Definition 5 (watermarking
samplingalgorithm). /n a watermarking scheme, asampling algorithm
S:AVXR > Visanalgorithmthattakes asinput a probability distribu-
tionp € AVand arandomseedr € R and returns a token S(p,r) € V.
If S always returns the same token given the same p and r, it is deter-
ministic. Otherwise, S is probabilistic.

We propose a new probabilistic sampling algorithm called Tourna-
ment sampling. We present the simplest, single-layer version of Tour-
nament sampling in Algorithm 1. Instead of sampling directly from
Pun(-1x.), we sample Ntokens from p, (- |x.,), compute their g-values as
described inthe previous section and choose uniformly among those
that have the maximal g-value.

Algorithm 2 presents the full multilayer version of Tournament sam-
pling, which has an additional hyperparameter m, the number of layers.
The process canbe thought of as a knockout tournament with m stages,
where each match is an instantiation of the single-layer algorithm;
this continues until there is one winner. Importantly, each layer £ of
the tournament uses different g-values g,(-, r,) to decide the winners.
Figure 2 gives a concrete example for m =3 layers, N=2samplesanda
Bernoulli(0.5) g-value distribution.

Algorithm 1. Sampling a token with single-layer Tournament sampling

Require: LLM distribution p y(-|x.), random seedr, € R, number of
samples N > 2, gfunction with g-value distributionf, (see Definition 4).

1:Draw Y=1[y,,¥>, ..., ¥p]l containing Nindependent samples from

Pu(-lx.,) (may contain repeats).
2y =[yer:g(y,r)= rygg)y(gl(y’, r,)]1(may contain repeats).



3:Sample x, ~ Unif(Y*)

4:returnx;
Algorithm 2. Sampling atoken with multilayer Tournament sampling.

Require: LLM distribution p y(-|x.,), random seedr, € R, number of
samplesN > 2, gfunction withg-value distributionf, (see Definition 4),
number of layers m>1.

1: Draw N"independent samples 3, y?, ...,y on_, - p,,Clx<,) (may

containrepeats).

2:forl<f<mdo

3: forO<j<N"‘-1do

4. Y:= [yI\LZi_l’yI\LZi:rll’ ._.,y@j\,_l] (may contain repeats).

5 Y =[yeY:g (y,r)= l;‘,l?y(gf(y’, r,)](may contain repeats).
6

Sampleyj" ~ Unif (Y*).
7: endfor
8: end for
9:returnx, :=y;"

Repeated context masking. To generate afull response, we could sim-
ply apply Algorithm2 on every decoding step, using the sliding-window
random seed generator (‘Random seed generator’ section) to generate
therandomseed r,for each step. However, it is possible that the same
window of context, and thus the same random seed might occur more
than once (particularly if the sliding-window size His small or the res-
ponse is long). It has been shown that in this scenario, the watermark
canintroduce a repeated bias that affects the quality of the text, for
example, causing repeating loops?*%. One way to avoid this problem
istoapply repeated context masking®, which prevents the watermark
frombeingapplied onstep tif the context window (x,_,,, ..., x,.;) hasbeen
used to watermark previously.

We present the method in Algorithm 3, which we call K-sequence
repeated context masking. The integer parameter K >1 controls for
how long context windows are held in the history. In the simplest case
of K=1,weonly hold the context history for the duration of generating
asingle response. For larger integers K > 1, we check against a history
of contexts used in the last K responses. In the extreme case, we could
set K= andretain the context history indefinitely. In Supplementary
Information section G.2, we show that applying K-sequence repeated
context masking achieves K-sequence non-distortion, an important
property for quality preservation. In Supplementary Information sec-
tion G.3, we discuss the trade-offs of smaller and larger K. For most of
our experimentswe use K=1.

Algorithm 3. Generating watermarked responses with sliding-window
random seed generation and K-sequence repeated context masking.

Require: LLM p,(-]-), context window size H, pseudorandom hash
function h, watermarkingkey k € R, sampling algorithmS: AVx R >V,
integer K > 1, stream of prompts (X}, X, ...).

1:fori>1do
C=0
3: t:=nwherenisthelengthofx'=x, ...

4: whilex!#EOSdo

5: t:=t+1

6:  if(xi_p, ..., xt) €GUC U - U Gy, then
7: {

8

9

i
» Xn

Samplex; - p;(-X%,)

else
r=h(x_,, ..., X, k)
10 Sample X := S(p, (x5, r,)
11: CG=GU{(X} gy e, X1}
12: endif

13: end while o
14: returnResponsey': =X}, .,
15: end for

Scoring functions. A scoring function takes a piece of text x;, ..., X1
alongwiththerandomseedsr,, ..., rrand computes ascore, which can

thenbe compared withathreshold to classify the text as watermarked
or unwatermarked. Here the random seeds r, = f,(x,, k) are from the
randomseed generator (‘Random seed generator’ section). Itis noted
thatascoring function only requires access to the tokenized text, the
watermarkingkey kand the random seed generator f,; noaccesstothe
LLMisrequired.

For SynthID-Text, we propose several scoring functions, which are
inSupplementary Informationsection A. All the scores are computed
from the g-values of the text. The simplest of these is the mean score,
whichissimply the mean of the g-values across all timesteps and layers.
We also propose aweighted meanscore, which re-weights the evidence
of each tournament layer. We propose frequentist versions of these
scores, which perform a hypothesis test on these means to produce a
Pvalue. Lastly, we propose a parameterized Bayesian scoring function,
whichachievesbetter performancebylearning fromdata (watermarked
and unwatermarked texts) to compute the posterior probability that
atextis watermarked.

Experimental details

LLMs and LLM configurations. In our experiments, we use the IT vari-
ants of the Gemma 2B and 7B models®. We also use the v0.2 Mistral
7B-IT model®. To generate text, we use top-k sampling>®. Following
default settings, we use k =100 for the IT models. We experiment with
temperatures of 0.5, 0.7 and 1.0, as varying the temperature changes
the entropy of the model, which affects watermark detectability.

Data. To prompt our models we use the ELI5* dataset, which consists
of English questions that require explanatory multi-sentence answers.
This simulates a more task-oriented setting. For experiments with
non-distortionary watermarking, our ELIS test set and the development
set each containsets 0f10,000 disjoint prompts that are used to prompt
the modelto obtain watermarked responses. For experiments with dis-
tortionary watermarking, we use 1,500 prompts from ELIS5 for the test
setto prompt the watermarked model. For the unwatermarked samples
used as negatives, we use two disjoint sets of human-written responses
t010,000 questions from the ELI5 for the development and test sets.

Text lengths. For some experiments, we evaluate texts of fixed length—
for example, 200 tokens. To obtain text of length exactly 200 tokens,
we select the subset of texts that are longer than 200 tokens and then
truncate them to have exactly 200 tokens.

Detectability metric. Toreport detectability, we use the true-positive
rate (TPR) for afixed false-positive rate (FPR) of x%, measured empiri-
cally. We denote this metric as TPR @ FPR=x%. For example to compute
TPR @ FPR =1%, we take the scores (under some scoring function) of
the unwatermarked texts and compute a threshold corresponding
to the top-1% highest scores. Then we compute the true-positive rate
by measuring the fraction of watermarked texts that score above this
threshold. Although some scoring functions allow a precise theoretical
guarantee on the false-positive rate—for example, the frequentist scor-
ing functions (Supplementary Information section A.3) which provide
aPvalue—inthis work we take the empirical approach described above.

Random seed generator settings. For all watermarking experi-
ments (including Tournament, Gumbel and Soft Red List sampling
algorithms), we use the same sliding-window-based random seed gen-
erator describedinthe ‘Random seed generator’ section, with context
window size H = 4. We apply one-sequence repeated context masking
(‘Repeated context masking’ section).

SynthID-Text settings. Unless otherwise mentioned, for all SynthID-
Text experiments, we use m = 30 tournament layers, a Bernoulli(0.5)
g-valuedistributionf, (Algorithm 2) and the Bayesian scoring function
(Supplementary Information section A.4).
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Data availability

The datafromthe human evaluation study described in Supplementary
Information section C.4 (model responses and human annotations) is
availableinref.7.

Code availability

The codeto generate and detect text with SynthID-Text watermarking
isavailableinref.7.
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Extended DataFig.1|Detectability comparison of non-distortionary
SynthID-Text vs Gumbel sampling, for additional model and temperature
combinations. We show arange of temperatures from 0.5-1.0, whichis the
range most often used in practice. SynthID-Text generally providesimproved
detection over Gumbel sampling, with theimprovements being greatestin
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D for details. Dashedlines correspond to abootstrap estimate (500 resamples)
ofthe mean TPR@FPR=1%, and the shaded regions correspond to the 90%
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Extended Data Table 1| Human preference ratings for unwatermarked responses vs. responses watermarked with
non-distortionary SynthID-Text

Quality Prefer Prefer Tie: high Tie: low A:B [%] Trinom.
Aspect watm. unwatm. quality quality excl. ties test p
Gramm./Coher. 369 328 2089 214 52.9 [49.2, 56.7] 0.12
Relevance 358 325 1931 386 52.4 [48.6, 56.1] 0.21
Correctness 450 460 1677 413 49.5 [46.3, 52.8] 0.75
Helpfulness 793 751 1011 445 51.4 [48.8, 53.9] 0.29
Overall quality 859 805 887 449 51.6 [49.2, 54.1] 0.19

Responses are generated by Gemma 7B-IT in response to 3,000 ELI5 questions. We find no statistically significant difference in the preference for watermarked vs. unwatermarked responses.
On the right, relative ratio of prefer watermarked vs. prefer unwatermarked outcomes with bootstrapped symmetric 95% confidence interval (A:B, excluding ties); and the p-value under a
trinomial test for a symmetric distribution between watermarked and unwatermarked responses, in which ties are included and grouped as the third possible outcome. See Supplementary
Information section C.4 for more details.
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