
818 | Nature | Vol 634 | 24 October 2024

Article

Scalable watermarking for identifying large
language model outputs

Sumanth Dathathri1,3 ✉, Abigail See1,3, Sumedh Ghaisas1,3, Po-Sen Huang1,3, Rob McAdam2,3,
Johannes Welbl1, Vandana Bachani1, Alex Kaskasoli1, Robert Stanforth1,
Tatiana Matejovicova1, Jamie Hayes1, Nidhi Vyas2, Majd Al Merey2, Jonah Brown-Cohen1,
Rudy Bunel1, Borja Balle1, Taylan Cemgil1, Zahra Ahmed1, Kitty Stacpoole1, Ilia Shumailov1,
Ciprian Baetu2, Sven Gowal1, Demis Hassabis1 & Pushmeet Kohli1 ✉

Large language models (LLMs) have enabled the generation of high-quality synthetic
text, often indistinguishable from human-written content, at a scale that can markedly
affect the nature of the information ecosystem1–3. Watermarking can help identify
synthetic text and limit accidental or deliberate misuse4, but has not been adopted in
production systems owing to stringent quality, detectability and computational
efficiency requirements. Here we describe SynthID-Text, a production-ready text
watermarking scheme that preserves text quality and enables high detection
accuracy, with minimal latency overhead. SynthID-Text does not affect LLM training
and modifies only the sampling procedure; watermark detection is computationally
efficient, without using the underlying LLM. To enable watermarking at scale, we
develop an algorithm integrating watermarking with speculative sampling, an
efficiency technique frequently used in production systems5. Evaluations across
multiple LLMs empirically show that SynthID-Text provides improved detectability
over comparable methods, and standard benchmarks and human side-by-side ratings
indicate no change in LLM capabilities. To demonstrate the feasibility of watermarking
in large-scale-production systems, we conducted a live experiment that assessed
feedback from nearly 20 million Gemini6 responses, again confirming the preservation
of text quality. We hope that the availability of SynthID-Text7 will facilitate further
development of watermarking and responsible use of LLM systems.

Large language models (LLMs) are widely adopted tools for synthetic
text generation, finding applications in language-based assistants,
code generation, writing support and various other domains. As LLMs
advance in quality, coherence, coverage and expertise, it can become
difficult to distinguish synthetically generated text from human-written
text1–3. Given the widespread use of LLMs in education, software develop-
ment and web content generation, identification and attribution of LLM
text is critical to ensure safe and responsible use of the technology8–11.

Multiple strategies have emerged to address this problem. One is a
retrieval-based approach, which involves keeping a growing record of
all generated texts and checking against it for matches12. This requires
scale and coordination, and raises privacy concerns as it requires
accessing and storing all LLM interactions. Another approach is post
hoc detection, often using the statistical features of text or training a
machine-learning-based classifier to distinguish human-written from
artificial-intelligence-generated text13–15. This approach can potentially
provide broader detection without the need for record-keeping or any
intervention at the text generation stage. However, post hoc detection
systems can themselves be computationally expensive to run, and
their practical usage is limited by their inconsistent performance16. In
particular, they are known to perform poorly on out-of-domain data

and may have higher false-positive rates for certain groups, such as
non-native speakers17. Furthermore, such classifiers fundamentally rely
on underlying differences between machine and human text, which may
diminish as LLMs improve. This necessitates continuous maintenance
of the classifier, including re-training and re-calibrating.

A third approach is text watermarking—a way of marking the generated
text so that it can subsequently be identified. Text watermarking can be
done during the generative process (generative watermarking), by edit-
ing already generated text (edit-based watermarking) or by altering the
LLM’s training data (data-driven watermarking)4. Edit-based watermark-
ing frequently relies on applying rule-based transformations such as
synonym substitution or inserting special Unicode characters18, whereas
data-driven watermarking involves training the LLM on specific trigger
phrases19. With data-driven watermarking, the model outputs are water-
marked only when the model is prompted with specific trigger phrases;
the primary objective is to identify unauthorized misuse of LLMs rather
than attributing pieces of text to an LLM more broadly. Furthermore,
both of these approaches can leave noticeable artefacts in the text4.

When watermarking an LLM deployed within a large-scale-production
setting, it is important to carefully control any impact from water-
marking on text quality and, by extension, user experience. It is also

https://doi.org/10.1038/s41586-024-08025-4

Received: 8 April 2024

Accepted: 5 September 2024

Published online: 23 October 2024

Open access

 Check for updates

1Google DeepMind, London, UK. 2Google, Mountain View, CA, USA. 3These authors contributed equally: Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam.
✉e-mail: sdathath@google.com; pushmeet@google.com

https://doi.org/10.1038/s41586-024-08025-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-08025-4&domain=pdf
mailto:sdathath@google.com
mailto:pushmeet@google.com

Nature | Vol 634 | 24 October 2024 | 819

important that we are able to watermark with minimal computational
costs. To meet both of these criteria, this work focuses on generative
watermarking, which allows us to embed watermarks while carefully
controlling the impact on quality and maintaining low computational
cost. However, we note that no text detection method is foolproof, and
many of the approaches discussed in this section are complementary
and can be used in conjunction4.

Generating text with an LLM is often autoregressive: the LLM assigns
probabilities to the elements (tokens) of the vocabulary and then selects
the next token by sampling according to these probabilities conditional
on text generated so far (Fig. 1, top). Generative watermarking (Fig. 1,
bottom) works by carefully modifying the next-token sampling proce-
dure to inject subtle, context-specific modifications into the generated
text distribution. Such modifications introduce a statistical signature
into the generated text; during the watermark detection phase, the
signature can be measured to determine whether the text was indeed
generated by the watermarked LLM. A key benefit of the approach is
that the detection process does not require performing computation-
ally expensive operations or even access to the underlying LLM (which
is often proprietary).

In this work, we propose a generative watermarking scheme,
SynthID-Text, which builds on previous generative watermarking
components, but uses a novel sampling algorithm, Tournament
sampling. SynthID-Text can be configured to be non-distortionary
(preserving text quality) or distortionary (improving watermark
detectability at the cost of text quality). We show that in both settings,
SynthID-Text provides improved detection rates, compared with the
best existing approaches in each category. We show empirically that
non-distortionary SynthID-Text preserves text quality, including
through a large-scale user feedback assessment over nearly 20 million
responses from live Gemini interactions. Consequently, SynthID-Text
has been used to watermark Gemini and Gemini Advanced20. This serves
as practical proof that generative text watermarking can be successfully
implemented and scaled to real-world production systems, serving
millions of users and playing an integral role in the identification and
management of artificial-intelligence-generated content.

Furthermore, we provide an algorithm to combine generative water-
marking with speculative sampling5—a frequently used technique to
increase LLM text generation speed—allowing for the integration of

SynthID-Text into large-scale production systems with negligible addi-
tional computational overhead.

Watermarking with SynthID-Text
LLMs generate text based on preceding context (for example, a
response to a provided prompt). More precisely, given a sequence of
input text x<t = x1, …, xt−1 consisting of t − 1 tokens from a vocabulary
V, the LLM computes the probability distribution pLM(⋅∣x<t) of the next
token xt given the preceding text x<t. To generate the full response, xt
is sampled from pLM(⋅∣x<t), and the process repeats until either a maxi-
mum length is reached or an end-token is generated. The process is
illustrated in Fig. 1 (top).

A generative watermarking scheme typically comprises three com-
ponents: a random seed generator, a sampling algorithm and a scoring
function21. As shown in Fig. 1 (bottom), the random seed generator pro-
vides a random seed rt on each generation step t (potentially based on
the preceding text along with the watermarking key), and the sampling
algorithm uses rt to sample the next token xt from pLM(⋅∣x<t). Importantly,
the sampling algorithm introduces correlations between rt and xt; during
watermark detection, these correlations are measured by the scoring
function. Given a piece of text and the watermarking key, the scoring
function provides a score that quantifies the strength of the correlation
(that is, the watermarking evidence); this can be compared with a thresh-
old to determine whether the text originates from the watermarked LLM.

In this work, we present the sampling algorithm Tournament sam-
pling, which is described in the following section. For the random seed
generator, in our experiments we use the existing sliding-window
method22,23, where the random seed is a hash of the most recent H tokens
(xt−H, …, xt−1; we use H = 4) along with the watermarking key (Fig. 2, top);
but we note that Tournament sampling can be paired with any random
seed generator. We experiment with several scoring functions, some of
which are from existing work and others are from this work; we discuss
them in the following sections. Together, our generative watermarking
scheme is called SynthID-Text.

SynthID-Text’s Tournament sampling approach
The key idea of Tournament sampling is to use a tournament-like
process to choose an output token that scores highly with respect to

LLM text generation

Preceding text x<t LLM distribution pLM(• |x<t) Output token xt

Append

Generative watermarking: text generation and watermark detection

Preceding text x<t LLM distribution pLM(• |x<t) Output token xt

Append

Watermarking key Random seed rt

Text x1, …, xT Score(x)
Decision:
Watermarked/
not watermarked

Apply threshold

LLM

LLM

Random seed
generator

Sampling
algorithm

Scoring
function

Sample

Watermarking key

Fig. 1 | Overview of LLM text generation and generative watermarking.
Top: LLM text generation typically involves generating text from left to right
by repeatedly sampling from the LLM distribution. Bottom: a generative
watermarking scheme typically consists of the three components, in the blue

boxes: random seed generator, sampling algorithm and scoring function.
These can be used to provide a text generation method and a watermark
detection method. In the SynthID-Text generative watermarking scheme,
we use the Tournament sampling algorithm.

820 | Nature | Vol 634 | 24 October 2024

Article
some random watermarking functions. An illustration is given in Fig. 2
(top). First, we take the random seed rt provided by the random seed
generator. This seed is passed to m (in this case, m = 3) watermark-
ing functions g1, g2, g3, …, gm—these are independent pseudorandom
number functions that assign a score gℓ(xt, rt) (in this case, a 0 or 1) to
any candidate token xt ∈ V.

In the second stage (Fig. 2, bottom), we start by sampling M = 2m
candidate tokens from the LLM distribution pLM(⋅∣x<t) (some tokens may
appear multiple times): these are the initial participants of the m-layer
tournament. We randomly divide these candidates into M/2 pairs, and,
in the first tournament layer, in each pair the token with the higher
score under g1(⋅, rt) is selected, and the other discarded (any ties are
broken randomly). The remaining M/2 tokens are regrouped randomly
into M/4 pairs, and the function g2(⋅, rt) determines the winners for this
second tournament layer. This iterative process continues until one
token emerges as the final winner, which becomes the output token
xt. A formal description of Tournament sampling is given in Algorithm
2 in Methods.

Watermark detection
By design, Tournament sampling selects a token from the LLM distribu-
tion that is likely to score higher under the random watermarking func-
tions g1(⋅, rt), …, gm(⋅, rt). To detect whether a piece of text x = x1, …, xT
is watermarked, we measure how highly x scores with respect to these
functions. Specifically, we compute the mean g-values of the text:

ℓ
ℓ∑ ∑x

mT
g x rScore () =

1
(,).

t

T m

t t
=1 =1

Given the selection of tokens xt based on higher g-values, we expect
watermarked text generally to score higher under this score than unwa-
termarked text.

There are two primary factors that affect the detection performance
of the scoring function. The first is the length of the text x: longer texts
contain more watermarking evidence, and so we have more statistical
certainty when making a decision. The second is the amount of entropy
in the LLM distribution when it generates the watermarked text x. For
example, if the LLM distribution is very low entropy, meaning it almost
always returns the exact same response to the given prompt, then
Tournament sampling cannot choose tokens that score more highly
under the g functions. In short, like other generative watermarks21,
Tournament sampling performs better when there is more entropy in
the LLM distribution, and is less effective when there is less entropy.
In Supplementary Information section H, we provide a theoretical
analysis describing the watermarking strength of a layer of Tournament
sampling as a function of a certain kind of entropy; similar analyses
have been done for other generative watermarks23–25. The entropy of
the LLM distribution itself depends on several factors, including the
model—for example, larger or more advanced models tend to be more
certain and thus lower entropy21, and reinforcement learning from
human feedback can reduce entropy (also known as ‘mode collapse’)26.
Other factors that affect LLM distribution entropy include the prompts,
the temperature and other decoding settings such as top-k and top-p
sampling settings (see ‘The LLM distribution’ in Methods).

Increasing the number of tournament layers m provides additional
watermarking evidence per token, and decreases the variance of
the score in equation (1). This allows SynthID-Text to provide better
detectability than other methods (see ‘Evaluation’). However, detect-
ability does not increase indefinitely with the number of layers. Each
layer of the tournament uses some of the available entropy to embed
a watermark, and the strength of the watermark corresponding to a
layer diminishes deeper into the tournament. For our experiments, we
generally use m = 30 layers unless otherwise stated; see Supplementary
Information section C.1 for full details.

Finally, we note that there are other scoring functions beyond equa-
tion (1); in Supplementary Information section A, we describe several
others, and find that some can improve detection performance.

Preserving the quality of generative text
As previously mentioned, a watermarking scheme can be non-
distortionary, a property relating to quality preservation; however,
the phrase and its variants have been used in the literature to mean
several distinct definitions24,25,27, causing some confusion. In this
work, we resolve the confusion by providing clear definitions of
non-distortion, from weakest to strongest. The weakest version is
single-token non-distortion, which says that, on average over the
random seed rt, the distribution of the output token xt generated by
the watermarking sampling algorithm is equal to the original LLM
distribution pLM(⋅∣x<t) (Fig. 1). Stronger versions of non-distortion
expand this definition to one or more sequences of text, ensuring that
on average the probability of the watermarking scheme generating
a particular text or sequence of texts is the same as for the original
LLM. Full definitions are provided in Supplementary Information
section G.

In Supplementary Information section G.1, we show that when
Tournament sampling is configured with exactly two ‘competitors’
for each match in the tournament (as in the example in Fig. 2), then
Tournament sampling is single-token non-distortionary. Furthermore,
in Supplementary Information section G.2, we show that by applying
repeated context masking27, we can make the scheme non-distortionary
for one or more sequences. Choosing the level of non-distortion
involves a trade-off; weaker levels of non-distortion can reduce text
quality and diversity, whereas stronger levels of non-distortion can
reduce detectability and increase computational complexity (Sup-
plementary Information section G.3). For our experiments, we con-
figure SynthID-Text to be single-sequence non-distortionary; this

durian 1

mango 1

lychee 0

mango 1

durian 0

mango 0

1

0y 0

papaya 0

lychee 0

mango 1

mango 1

lychee 1

mango 0

0

1

p p

l h

g 0

mango 1

lychee 0
mango

1

0
Output
token

… my favourite tropical fruit is

mango
lychee
papaya
durian

1
0
0
1

0.50
0.30
0.15
0.05

Recent context

Vocabularyy pLM Random watermarking functions

0
1
0
0

1
0
1
0

pical fru

LLM probabilities and random watermarking functions

Tournament sampling: over-generation with watermark-based iterative selection

Watermarking key

Random seed

g1: winner

g1 g3g2

g1: tie

g1: tie

g1: tie

g2: tie

g2: winner

g3: winner

C
an

d
id

at
e

to
ke

ns
 s

am
p

le
d

 fr
om

 p
LM

Random seed
generator

Fig. 2 | SynthID-Text’s Tournament-based watermarking. Top: to generate a
new token xt, we first score each token in the vocabulary using multiple (in this
case, m = 3) random watermarking functions g1, …, gm. These assign random
values using a random seed, which is generated based on both the recent
context and a watermarking key. Bottom: then, we choose the next token using
a tournament process. First, we sample 2m = 8 (possibly non-unique) tokens
from pLM(⋅∣x<t). These are split into pairs of competing tokens; in each pair, the
highest scoring one (based on g1) is chosen, breaking ties randomly. The
resulting tokens compete in the next layer, where winners are chosen based on
g2, until in the last tournament layer the final winner is selected based on gm:
this becomes the next generated token xt.

Nature | Vol 634 | 24 October 2024 | 821

preserves text quality and provides good detectability, while having
some reduction to inter-response diversity. We call this configuration
‘non-distortionary SynthID-Text’ (and where not otherwise specified,
‘SynthID-Text’ also refers to this).

Alternatively, for instances where strong watermark detectability
is critical, SynthID-Text can take a distortionary configuration that
provides higher detectability, at the cost of some quality loss. In this
configuration of Tournament sampling, there are more than two com-
petitors in each match of the tournament (a formal definition is given in
Algorithm 2 in Methods). We show that in this case, Tournament sam-
pling is distortionary at the token level (Supplementary Information
section G.1); however, it applies a stronger watermark (Supplementary
Information section H.3). We call this configuration ‘distortionary
SynthID-Text’.

In ‘Evaluation’, we compare non-distortionary and distortionary
SynthID-Text to the best existing methods in each category and show
that SynthID-Text provides better detectability in both categories.

Ensuring computational scalability
Generative watermarking schemes (Fig. 1, bottom) are typically com-
putationally inexpensive as the text generation process involves a
modification to only the sampling layer, which is often negligible in
the context of the LLM’s forward pass. For Tournament sampling, in
some cases, it is more efficient to use a vectorized implementation,
which we describe in Supplementary Information section E. We pro-
vide a theoretical complexity analysis of both implementations, and
existing baselines in Supplementary Information section F. Overall, we
show empirically in ‘Evaluation’ that, in practice, SynthID-Text induces
negligible additional latency.

In large-scale productionized systems, the text generation process
is often more complex than the simple loop depicted in Fig. 1 (top). For
example, productionized systems often use speculative sampling5, a
method to accelerate text generation from large models. Speculative
sampling works by having a smaller draft model propose the next few
tokens; these are then checked against the large target model, which
either accepts or rejects the proposed tokens. Combining generative
watermarking with speculative sampling is an important step to make
watermarking practically useful to production systems; however, to
our knowledge, it has not yet been investigated.

To make progress in this area, we propose two generative water-
marking with speculative sampling algorithms, which can combine
a generative watermarking scheme with speculative sampling (Sup-
plementary Information section I). First, we propose high-detectability
watermarked speculative sampling, which preserves the detectability
of the watermark, but may decrease the efficiency (and thus increase
the overall latency) of speculative sampling (Supplementary Infor-
mation section I.4). Alternatively, we propose fast watermarked
speculative sampling, which (provided the watermark is single-token
non-distortionary) preserves the efficiency of speculative sampling,
but may decrease the detectability of the watermark (Supplemen-
tary Information section I.5). For this approach, we also propose a
learned Bayesian scoring function that improves the detectability of
this method (Supplementary Information section I.5.2). Fast water-
marked speculative sampling is most helpful when speed is important
in production environments.

Evaluation
We compare SynthID-Text to, at the time of writing, the best-performing
non-distortionary and distortionary generative text watermarking
schemes and show empirically that SynthID-Text provides superior
detectability in both categories. In the non-distortionary category,
we compare against Gumbel sampling22,24, and in the distortionary
category, we compare against the Soft Red List sampling algorithm23;
see Supplementary Information section B.1 for a full description and

discussion of how we chose our baselines. To create a like-for-like
comparison, we focus on comparing our sampling algorithm, Tour-
nament sampling, against the Gumbel and Soft Red List sampling
algorithms while keeping the other parts of the watermarking
scheme the same (Fig. 1). Accordingly, for all baselines we use the
same sliding-window random seed generator, and the same repeated
context masking methodology as described in ‘Watermarking with
SynthID-Text’—this means that (like non-distortionary SynthID-Text)
the Gumbel baseline is single-sequence non-distortionary and
preserves text quality. Furthermore, we note that the hashing and
scoring schemes from refs. 24,25 can be directly adapted with
SynthID-Text, and a detailed comparison of the benefits and draw-
backs of various hashing and scoring procedures (for example,
the edit-distance based scoring as in ref. 24) is beyond the scope of
this work.

In the remainder of this section, we empirically demonstrate that
SynthID-Text, like some other generative watermarks, has several key
desirable properties (quality and scalability) that enable its deploy-
ment in large-scale production, while also offering additional desirable
properties such as improved detectability and diversity of the gener-
ated text. First, we show that (like other non-distortionary watermarks)
non-distortionary SynthID-Text preserves response quality; our evalu-
ations include the first large-scale human evaluation in a production-
ized system. Then, across multiple models, we show that SynthID-Text
provides improved detection performance while also preserving a
greater amount of the underlying diversity within the LLM responses.
We also show that SynthID-Text, similar to other generative watermark-
ing schemes, has negligible computational impact in the context of a
large-production LLM.

SynthID-Text preserves quality including in a large-scale-
production system
To evaluate the production readiness of non-distortionary SynthID-Text,
we ran a live experiment with the Gemini production system (previously
known as Bard). A random fraction of queries were routed to a water-
marked model and an equivalent number to the unwatermarked coun-
terpart. The Gemini user interface allows users to provide feedback on
model responses via a thumbs-up (good response) and a thumbs-down
(bad response). We analysed approximately 20 million watermarked
and unwatermarked responses and computed the thumbs-up and
thumbs-down rates (both as a fraction of the total number of thumbs-up
and thumbs-down feedback received). We found that the thumbs-up
rate for the two models differed by 0.01% (with the watermarked model
being higher); and the thumbs-down rate differed by 0.02% (with the
watermarked model being lower). We found both of these differences
to be statistically insignificant, and well within the 95% confidence
intervals.

From this experiment, we conclude that over a wide variety of real
chatbot interactions, the difference in response quality and utility,
as judged by humans, is negligible. Subsequently, non-distortionary
SynthID-Text has been productionized and is currently watermarking
responses in Gemini and Gemini Advanced. To the best of our knowl-
edge, this evaluation represents the first systematic watermarking
investigation of its kind within a large-scale production system.

To provide a reproducible human evaluation, we also run a smaller-
scale controlled human preference test, for which we also publish the
collected data. In this experiment, we ask raters to compare water-
marked versus unwatermarked Gemma 7B-IT responses to 3,000 ELI5
questions, assessing five aspects of response quality in a side-by-side
comparison. For all five aspects—grammaticality/coherence, relevance,
correctness, helpfulness and overall quality—we find no significant
difference in rater preference (Extended Data Table 1). This holds
both in a three-way analysis that includes tie ratings and conducts a
trinomial test, as well as when restricting the analysis to the non-tie
responses, using bootstrap resampling over the watermarked versus

822 | Nature | Vol 634 | 24 October 2024

Article

unwatermarked preference ratio (full details in Supplementary Infor-
mation section C.4).

To further validate the quality-neutral property of non-distortionary
SynthID-Text, we conduct additional automatic evaluations across
different models and metrics. We find no significant difference
between non-distortionary SynthID-Text and the equivalent unwater-
marked model in terms of perplexity or performance on automated
benchmarks. Full details are provided in Supplementary Information
section C.5.

To summarize: human quality feedback, both from a large-scale
live experiment and a small-scale controlled study, perplexity sta-
tistics and standard model capability benchmarks all indicate that
non-distortionary SynthID-Text causes no loss in text quality.

SynthID-Text provides better detectability than existing
watermarks
We evaluate watermark detectability empirically across several pub-
licly available models, including the instruction-tuned (IT) variants of
Gemma 2B and Gemma 7B28, and the Mistral 7B-IT29 model (see ‘LLMs
and LLM configurations’ in Methods for details). We prompt the models
with questions from the ELI5 dataset30 (see ‘Data’ in Methods).

In the non-distortionary category, Fig. 3a shows that non-distortionary
SynthID-Text provides better detectability than Gumbel sampling,
for the same length text. We find that the SynthID-Text’s improve-
ment over Gumbel sampling is greater in lower-entropy settings
(for example, lower temperatures); when the entropy is higher, the
detectability of the two methods is more comparable (Extended
Data Fig. 1). In Extended Data Fig. 4, we also show that although both
non-distortionary SynthID-Text and the Gumbel sampling baseline
reduce inter-response diversity, SynthID-Text provides a better diver-
sity/detectability trade-off than Gumbel sampling. In scenarios where
low error rates are desirable, we can use a selective prediction mecha-
nism (Supplementary Information section C.8) to abstain on samples
for which the scoring function is uncertain, thus achieving the desired
error rates on the remaining data (Fig. 3b).

In the distortionary category, we compare the trade-off of detect-
ability and text quality for distortionary SynthID-Text and Soft Red List.
Both methods have a strength parameter that controls this trade-off;
in Fig. 3c, we see that the trade-off is more favourable for distortionary
SynthID-Text.

SynthID-Text has minimal computational impact
As discussed in ‘Watermarking with SynthID-Text’ and Supplemen-
tary Information section F, Tournament sampling does in some cases
have greater computational complexity than Gumbel or Soft Red List
sampling, but these differences are minimal relative to the cost of
generating text from an LLM. For example, the Gemma 7B-IT model
served on 4 v5e tensor processing units31 generates text at a rate of
15.527 ms per token; this increases to 15.615 ms per token with 30-layer
Tournament sampling, a latency increase of only 0.57%. In comparison,
Gumbel sampling increases latency by 0.26% and Soft Red List by 0.28%.
Furthermore, the computational complexity of all three watermarks
remains constant even as the LLM grows. Thus, as large production
models can grow by orders of magnitude larger than Gemma 7B in terms
of computational complexity, so too does the relative complexity of
watermarking shrink by orders of magnitude.

As described in ‘Watermarking with SynthID-Text’, we propose an
algorithm—fast watermarked speculative sampling—to integrate gen-
erative watermarking with speculative sampling and thus enable fast
deployment of watermarked LLMs at scale. We evaluate our algorithm
with non-distortionary SynthID-Text, using Gemma 7B-IT as the target
model and Gemma 2B-IT as the smaller draft model that proposes three
‘lookahead’ tokens at a time. When paired with a non-distortionary
watermark (Supplementary Information section I.3), fast watermarked
speculative sampling is theoretically guaranteed to preserve the accept-
ance rate (that is, the average number of lookahead tokens accepted
by the target model). We confirm this experimentally, finding that
the acceptance rate (and thus overall latency) is very similar with and
without watermarking (Supplementary Information section I.5.3).
Although we ran our experiment with non-distortionary SynthID-Text,

100 200 300 400
Number of tokens

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
TP

R
@

 F
P

R
 =

 1
%

 →
SynthID-Text
Gumbel sampling

a

100 200 300 400
Number of tokens

0.1

0.2

0.3

0.4

0.5

0.6

0.7

←
 A

b
st

en
tio

n
ra

te

Watermarked text
Unwatermarked text

b

0.4 0.6 0.8
←log(Perplexity)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

@
 F

P
R

 =
 1

%
 →

SynthID-Text

Soft Red List (ref. 23)

log(Perplexity)
Unwatermarked LLM

c

Fig. 3 | Detection performance of SynthID-Text. a, For non-distortionary
watermarking, we compare watermark detectability as a function of text
length (number of tokens), for non-distortionary SynthID-Text and the Gumbel
sampling22,24 watermark. Watermark detectability is measured using the
true-positive rate (TPR) when the false-positive rate (FPR) is set to 1%. Responses
are generated from Gemma 7B-IT with temperature = 0.7 using prompts from
the ELI5 dataset; other models and temperatures are provided in Extended
Data Fig. 1. b, The fraction of watermarked and unwatermarked texts that the
selective prediction mechanism (Supplementary Information section C.8)
abstains on to achieve a true-positive rate of 95% and a false-positive rate of 1%.
The mechanism makes predictions only when the scoring function is confident,
and is thus able to maintain a low error rate when making predictions, at the
cost of abstaining on some of the data. The model set-up and the prompts are

same as that in a; other temperatures are in Extended Data Fig. 3. c, For
distortionary watermarking, we compare detectability of watermarks that
allow text quality to be traded off against detectability by adjusting a strength
hyperparameter. Texts are of length 200 tokens generated by Gemma 7B-IT
with temperature = 0.7; other text lengths and temperatures are provided
in Extended Data Fig. 2. Compared with the distortionary Soft Red List
watermark23, distortionary SynthID-Text offers a more favourable trade-off,
with substantially higher detection rates for the same effect on text quality
as measured by log(perplexity). The arrows indicates the direction for
performance improvement. The dashed lines correspond to a bootstrap
estimate (500 resamples) of the mean of the metric on the y axis and the shaded
regions correspond to the 90% confidence interval on the mean estimate.

Nature | Vol 634 | 24 October 2024 | 823

we expect the same result would hold for any non-distortionary gen-
erative watermark.

Discussion
We have introduced SynthID-Text, a method for watermarking LLM text.
SynthID-Text uses certain elements introduced in previous work22,23,27,
but differs in the use of the sampling algorithm, Tournament sam-
pling, which we find provides superior detectability compared with
existing methods. SynthID-Text comes with rigorous and customiz-
able non-distortion properties that can be configured to guarantee
text quality preservation; we confirm this empirically, including via
real user feedback measured over approximately 20 million Gemini
chatbot interactions. We have also proposed an algorithm to combine
generative watermarking with speculative sampling, thus enabling the
efficient deployment of generative watermarks in high-performance,
large-scale-production LLMs.

Limitations
Generative watermarks such as SynthID-Text provide several advan-
tages compared with other approaches. For example, in Supplementary
Information section C.7, we show that SynthID-Text performs consist-
ently across different languages. In comparison, a post hoc detector
performs poorly on languages that its underlying machine-learning
model was not trained on. However, generative watermarks such as
SynthID-Text do not offer a complete solution to artificial-intelligence
text detection; rather they are complementary to other approaches.
In particular, generative watermarks require coordination between
actors running the LLM text generation services to apply the water-
mark. To detect artificial-intelligence-generated text produced by
other actors who do not to implement watermarking, other approaches
are required, such as post hoc detection. Furthermore, the rise of
open-source models presents a challenge, as enforcing watermark-
ing on these models deployed in a decentralized manner is difficult.
Another limitation of generative watermarks is their vulnerability to
stealing, spoofing and scrubbing attacks, which is an area of ongo-
ing research32. In particular, generative watermarks are weakened by
edits to the text, such as through LLM paraphrasing33—although this
usually does change the text significantly. We provide evaluations of
SynthID-Text’s performance under edits and paraphrasing in Supple-
mentary Information section C.6.

Conclusion
Overall, our work provides proof of the real-world viability of gen-
erative text watermarks. SynthID-Text has been productionized in the
user-facing Gemini and Gemini Advanced chatbots, which is, to our
knowledge, the first deployment of a generative text watermark at scale,
serving millions of users. As such, our work sets a practical milestone
for accountable, transparent and responsible LLM deployment.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-08025-4.

1. Köbis, N. & Mossink, L. D. Artificial intelligence versus Maya Angelou: experimental
evidence that people cannot differentiate AI-generated from human-written poetry.
Comput. Hum. Behav. 114, 106553 (2021).

2. Clark, E. et al. All that’s ‘human’ is not gold: evaluating human evaluation of generated
text. In Proc. 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers) (eds. Zong, C. et al.) 7282–7296 (Association for Computational Linguistics, 2021).

3. Jakesch, M., Hancock, J. T. & Naaman, M. Human heuristics for AI-generated language are
flawed. Proc. Natl Acad. Sci. USA 120, 2208839120 (2023).

4. Wu, J. et al. A survey on LLM-generated text detection: necessity, methods, and future
directions. Preprint at https://arxiv.org/abs/2310.14724 (2024).

5. Chen, C. et al. Accelerating large language model decoding with speculative sampling.
Preprint at https://arxiv.org/abs/2302.01318 (2023).

6. Team, G. et al. Gemini: a family of highly capable multimodal models. Preprint at https://
arxiv.org/abs/2312.11805 (2023).

7. SynthID-Team Code and data. GitHub https://github.com/google-deepmind/synthid-text
(2024).

8. Shumailov, I. et al. AI models collapse when trained on recursively generated data.
Nature 631, 755–759 (2024).

9. Alemohammad, S. et al. Self-consuming generative models go MAD. In Proc. Twelfth
International Conference on Learning Representations (ICLR, 2024).

10. Taori, R. & Hashimoto, T. Data feedback loops: model-driven amplification of dataset
biases. In Proc. 40th International Conference on Machine Learning 33883–33920 (JMLR,
2023).

11. Wyllie, S., Shumailov, I. & Papernot, N. Fairness feedback loops: training on synthetic data
amplifies bias. In Proc. 2024 ACM Conference on Fairness, Accountability, and
Transparency 2113–2147 (Association for Computing Machinery, 2024).

12. Krishna, K., Song, Y., Karpinska, M., Wieting, J. F. & Iyyer, M. Paraphrasing evades
detectors of AI-generated text, but retrieval is an effective defense. In Proc. Thirty-seventh
Conference on Neural Information Processing Systems (NeurIPS, 2023).

13. Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D. & Finn, C. DetectGPT: zero-shot
machine-generated text detection using probability curvature. In Proc. 40th International
Conference on Machine Learning 24950–24962 (JMLR, 2023).

14. Verma, V., Fleisig, E., Tomlin, N. & Klein, D. Ghostbuster: detecting text ghostwritten by
large language models. In Proc. 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers) 1702–1717 (Association for Computational Linguistics, 2024).

15. Hans, A. et al. Spotting LLMs with binoculars: zero-shot detection of machine-generated
text. In Proc. 41st International Conference on Machine Learning 17519-17537 (PMLR, 2024).

16. Elkhatat, A. M., Elsaid, K. & Almeer, S. Evaluating the efficacy of AI content detection tools
in differentiating between human and AI-generated text. Int. J. Educ. Integrity 19, 17
(2023).

17. Liang, W., Yuksekgonul, M., Mao, Y., Wu, E. & Zou, J. GPT detectors are biased against
non-native English writers. Patterns 4, 100779 (2023).

18. Kamaruddin, N. S., Kamsin, A., Por, L. Y. & Rahman, H. A review of text watermarking:
theory, methods, and applications. IEEE Access 6, 8011–8028 (2018).

19. Gu, C., Huang, C., Zheng, X., Chang, K.-W. & Hsieh, C.-J. Watermarking pre-trained
language models with backdooring. Preprint at https://arxiv.org/abs/2210.07543 (2022).

20. SynthID-Team Watermarking AI-generated text and video with SynthID. Google DeepMind
Blog https://deepmind.google/discover/blog/watermarking-ai-generated-text-and-video-
with-synthid (2024).

21. Piet, J., Sitawarin, C., Fang, V., Mu, N. & Wagner, D. Mark my words: analyzing and evaluating
language model watermarks. Preprint at https://arxiv.org/abs/2312.00273 (2023).

22. Aaronson, S. & Kirchner, H. Watermarking of large language models. Scott Aaronson
https://www.scottaaronson.com/talks/watermark.ppt (2022).

23. Kirchenbauer, J. et al. A watermark for large language models. In Proc. 40th International
Conference on Machine Learning 17061–17084 (PMLR, 2023).

24. Kuditipudi, R., Thickstun, J., Hashimoto, T. & Liang, P. Robust distortion-free watermarks
for language models. Trans. Mach. Learn. Res. https://openreview.net/pdf?id=FpaCL1MO2C
(2024).

25. Christ, M., Gunn, S. & Zamir, O. Undetectable watermarks for language models. In Proc.
Thirty Seventh Conference on Learning Theory 1125–1139 (PMLR, 2024).

26. Casper, S. et al. Open problems and fundamental limitations of reinforcement
learning from human feedback. Trans. Mach. Learn. Res. https://openreview.net/
pdf?id=bx24KpJ4Eb (2023).

27. Hu, Z. et al. Unbiased watermark for large language models. In Proc. Twelfth International
Conference on Learning Representations (ICLR, 2024).

28. Team, G. et al. Gemma: open models based on Gemini research and technology. Preprint
at https://arxiv.org/abs/2403.08295 (2024).

29. Jiang, A. Q. et al. Mistral 7B. Preprint at https://arxiv.org/abs/2310.06825 (2023).
30. Fan, A. et al. ELI5: long form question answering. In Proc. 57th Annual Meeting of the

Association for Computational Linguistics (eds Korhonen, A. et al.) 3558–3567
(Association for Computational Linguistics, 2019).

31. Cloud, G. TPU v5e. Google Cloud https://cloud.google.com/tpu/docs/v5e-inference (2024).
32. Jovanović, N., Staab, R. & Vechev, M. Watermark stealing in large language models.

In Proc. 41st International Conference on Machine Learning 22570–22593 (PMLR, 2024).
33. Zhang, H. et al. Watermarks in the sand: impossibility of strong watermarking for language

models. In Proc. 41st International Conference on Machine Learning 58851–58880
(PMLR, 2024).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41586-024-08025-4
https://arxiv.org/abs/2310.14724
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://github.com/google-deepmind/synthid-text
https://arxiv.org/abs/2210.07543
https://deepmind.google/discover/blog/watermarking-ai-generated-text-and-video-with-synthid
https://deepmind.google/discover/blog/watermarking-ai-generated-text-and-video-with-synthid
https://arxiv.org/abs/2312.00273
https://www.scottaaronson.com/talks/watermark.ppt
https://openreview.net/pdf?id=FpaCL1MO2C
https://openreview.net/pdf?id=bx24KpJ4Eb
https://openreview.net/pdf?id=bx24KpJ4Eb
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2310.06825
https://cloud.google.com/tpu/docs/v5e-inference
http://creativecommons.org/licenses/by/4.0/

Article
Methods

Detailed SynthID-Text method
In this section, we provide a detailed description of SynthID-Text.

The LLM distribution. Most LLMs are autoregressive, providing the
probability pLM(xt∣x<t) of the next token xt given the text so far x<t. Text
is typically generated from the LLM using an autoregressive decod-
ing method, which optionally modifies the LLM distribution pLM(⋅∣x<t)
before sampling from it. Such modifications include top-k and top-p34
sampling, which truncate pLM(⋅∣x<t) to the k most likely tokens or the
tokens covering the top-p probability mass; this can be combined with
applying a temperature parameter τ (ref. 35). Although these modifica-
tions increase or decrease the amount of entropy in pLM(⋅∣x<t),
SynthID-Text is compatible with any autoregressive decoding method
that has non-zero entropy in the modified distribution. Thus,
SynthID-Text is compatible with top-k sampling for all k ≥ 2, top-p sam-
pling for all p ∈ (0, 1], and all temperatures τ > 0.

SynthID-Text is applied after any such modifications have been made,
so for the purposes of this paper we define the LLM distribution pLM(⋅∣x<t)
to be the distribution after any such modifications.
Definition 1 (LLM distribution). Given an autoregressive LLM, an
autoregressive decoding method, and x<t = x1, …, xt−1, a sequence of tokens
from the vocabulary V, the LLM distribution pLM(⋅∣x<t) is the probability dis-
tribution from which the decoding method samples the next token xt ∈ V.

Watermarking framework. We present SynthID-Text as comprising a
random seed generator, a sampling algorithm and a scoring function;
this is similar to the generative watermarking framework of ref. 21. Intui-
tively, the sampling algorithm samples text from the LLM in a way that
is biased by random seeds provided on each step by the random seed
generator; later we can identify the watermark by detecting this bias
through the scoring function. We describe the random seed generator
and sampling algorithm in this section and describe several scoring
functions in Supplementary Information section A. See Supplementary
Information section B for a detailed discussion of related generative
watermarking approaches.

Random seed generator. To generate a piece of watermarked text
x1, …, xT, we require a sequence of random seeds Rr r, …, ∈T1 (where
R is the space of all random seeds) to bias the sampling from the
LLM distribution on each step. The random seed generator is the pro-
cess by which we generate these random seeds. One approach is to
make the random seed generator a deterministic function fr that
takes as input the sequence of tokens so far x<t = x1, …, xt−1 and a water-
marking key k and outputs a random seed r f x k:= (,) ∈t r t< R . Rando-
mizing the key k should randomize the seed; that is, for all
x f x k, [(,)] = Unif ()t k~ r t< Unif() <P RR .

There are several possible choices for fr (ref. 21); for our experiments,
we use the sliding window fr(x<t, k) ≔ h(xt−H, …, xt−1, k), which is a hash
function h of the last H tokens (for some context length H ≥ 1) and
of the key k. This random seed generator is the same as that used by
refs. 22,23. In this work, we also assume the watermarking key k and
random seed rt exist in the same space of nsec-bit integers, where nsec is
the security parameter.
Definition 2 (random seed space, random seed distribution). Given
a security parameter nsec, the random seed space = {0, 1}nsecR is the
space of all nsec-bit integers. The random seed distribution is the uniform
distribution over all such integers Unif ()R .

We also assume that the family of functions Rh k{ (⋅, …, ⋅,)}k∈ is a pseu-
dorandom function family, meaning that (1) h(xt−H, …, xt−1, k) is effi-
ciently computable for any xt−H, …, xt−1 and k, and (2) the distribution
of Rh k{ (⋅, …, ⋅,)}k~Unif() is computationally indistinguishable from a
function sampled uniformly randomly from the set of all functions
from VH to {0, 1}nsec.

g-values. As illustrated in Fig. 2, Tournament sampling requires
g-values to decide which tokens win each match in the tournament.
Intuitively, we want a function that takes a token x ∈ V, a random seed

Rr ∈ and the layer number ℓ ∈ {1, …, m}, and outputs a g-value gℓ(x, r)
that is a pseudorandom sample from some probability distribution fg
(the g-value distribution).

For example, in Fig. 2, the g-value distribution is Bernoulli(0.5). Given
the random seed r, gℓ(x, r) produces pseudorandom g-values of 0 or 1
for each token x in the vocabulary, for each layer ℓ = 1, 2, 3. In this paper,
we primarily use the Bernoulli(0.5) g-value distribution, although we
also explore Uniform[0, 1]. In general, any g-value distribution can be
chosen, as a hyperparameter of the Tournament sampling method.
Definition 3 (g-value distribution). The g-value distribution is a prob-
ability distribution of any real-valued random variable. We write Fg to
denote the cumulative distribution function, and fg to denote the prob-
ability density function (if continuous) or probability mass function
(if discrete).

Next, we need a way to produce a hash Rh x r(, ,) ∈ℓ of a token x ∈ V,
an integer ℓ ∈ {1, …, m} and a random seed Rr ∈ . Let’s assume we have
a pseudorandom function family h r{ (⋅, ⋅,)}r∈R similar to the one
described in the ‘Random seed generator’ section, such that the dis-
tribution of h r{ (⋅, ⋅,)}r~Unif()R is computationally indistinguishable from
a function sampled uniformly randomly from the set of all functions
from V × [m] to {0, 1}nsec.
Definition 4 (g-value). Given a g-value distribution with cumulative
density function. Fg, a random seed Rr ∈ , and integer ℓ ∈ 1, …, m, the
layer-ℓ g-value of a token x ∈ V is given by:

ℓ
ℓg x r F

h x r
(,) :=

(, ,)
2

,g n
−1

sec

where Fg
−1 is the generalized inverse distribution function of Fg, and h is

a hash function as described above.
Intuitively, Definition 4 says that we take a hash h(x, ℓ, r) of x, ℓ and

r, which gives us a uniformly distributed n-bit integer, and divide it by
2n to get a number in [0, 1]. For large n, this converges to a uniformly
distributed number in [0, 1]. We then perform inverse transform sam-
pling to turn this number into a sample from the g-value distribution
given by Fg.
Tournament sampling algorithm. Definition 5 (watermarking
sampling algorithm). In a watermarking scheme, a sampling algorithm

V V: Δ × →S R is an algorithm that takes as input a probability distribu-
tion p ∈ ΔV and a random seed Rr ∈ and returns a token p r V(,) ∈S .
If S always returns the same token given the same p and r, it is deter-
ministic. Otherwise, S is probabilistic.

We propose a new probabilistic sampling algorithm called Tourna-
ment sampling. We present the simplest, single-layer version of Tour-
nament sampling in Algorithm 1. Instead of sampling directly from
pLM(⋅∣x<t), we sample N tokens from pLM(⋅∣x<t), compute their g-values as
described in the previous section and choose uniformly among those
that have the maximal g-value.

Algorithm 2 presents the full multilayer version of Tournament sam-
pling, which has an additional hyperparameter m, the number of layers.
The process can be thought of as a knockout tournament with m stages,
where each match is an instantiation of the single-layer algorithm;
this continues until there is one winner. Importantly, each layer ℓ of
the tournament uses different g-values gℓ(⋅, rt) to decide the winners.
Figure 2 gives a concrete example for m = 3 layers, N = 2 samples and a
Bernoulli(0.5) g-value distribution.
Algorithm 1. Sampling a token with single-layer Tournament sampling

Require: LLM distribution pLM(⋅∣x<t), random seed r ∈t R, number of
samples N ≥ 2, g function with g-value distribution fg (see Definition 4).

1: Draw Y = [y1, y2, …, yN] containing N independent samples from
pLM(⋅∣x<t) (may contain repeats).

2: Y y Y g y r g y r* := [∈ : (,) = max (′,)]t
y Y

t1 ′ ∈ 1
 (may contain repeats).

3: Sample xt ~ Unif(Y*)
4: return xt

Algorithm 2. Sampling a token with multilayer Tournament sampling.
Require: LLM distribution pLM(⋅∣x<t), random seed Rr ∈t , number of

samples N ≥ 2, g function with g-value distribution fg (see Definition 4),
number of layers m ≥ 1.

1: Draw Nm independent samples y y y p x, , …, ~ (⋅)N t0
0

1
0

−1
0

LM <m (may
contain repeats).

2: for 1 ≤ ℓ ≤ m do
3: for 0 ≤ j ≤ Nm−ℓ − 1 do
4: ℓ ℓ ℓY y y y:= [, , …,]Nj Nj Nj N

−1
+1
−1

+ −1
−1 (may contain repeats).

5:
ℓ ℓY y Y g y r g y r* := [∈ : (,) = max (′,)]t

y Y
t

′ ∈
 (may contain repeats).

6: Sample y Y~ Unif (*)j
ℓ .

7: end for
8: end for
9: return x y:=t

m
0

Repeated context masking. To generate a full response, we could sim-
ply apply Algorithm 2 on every decoding step, using the sliding-window
random seed generator (‘Random seed generator’ section) to generate
the random seed rt for each step. However, it is possible that the same
window of context, and thus the same random seed might occur more
than once (particularly if the sliding-window size H is small or the res-
ponse is long). It has been shown that in this scenario, the watermark
can introduce a repeated bias that affects the quality of the text, for
example, causing repeating loops24,25. One way to avoid this problem
is to apply repeated context masking27, which prevents the watermark
from being applied on step t if the context window (xt−H, …, xt−1) has been
used to watermark previously.

We present the method in Algorithm 3, which we call K-sequence
repeated context masking. The integer parameter K ≥ 1 controls for
how long context windows are held in the history. In the simplest case
of K = 1, we only hold the context history for the duration of generating
a single response. For larger integers K > 1, we check against a history
of contexts used in the last K responses. In the extreme case, we could
set K = ∞ and retain the context history indefinitely. In Supplementary
Information section G.2, we show that applying K-sequence repeated
context masking achieves K-sequence non-distortion, an important
property for quality preservation. In Supplementary Information sec-
tion G.3, we discuss the trade-offs of smaller and larger K. For most of
our experiments we use K = 1.
Algorithm 3. Generating watermarked responses with sliding-window
random seed generation and K-sequence repeated context masking.

Require: LLM pLM(⋅∣⋅), context window size H, pseudorandom hash
function h, watermarking key Rk ∈ , sampling algorithm V V: Δ × →S R ,
integer K ≥ 1, stream of prompts (x1, x2, …).

1: for i ≥ 1 do
2: C := ∅i
3: t ≔ n where n is the length of x x x= , …,i i

n
i

1
4: while ≠ EOSt

ix do
5: t ≔ t + 1
6: if ⋯∪ ∪ ∪C C C(, …,) ∈t H

i
t
i

i i i K− −1 −1 − +1x x then
7: Sample x xp~ (⋅)t

i
t

i
LM <

8: else
9: x xr h k:= (, …, ,)t t H

i
t
i

− −1
10: Sample x xp r:= ((⋅),)t

i
t

i
tLM <S

11: x x∪C C:= {(, …,)}i i t H
i

t
i

− −1
12: end if
13: end while
14: return Response y x:=i

n t
i

+1:
15: end for

Scoring functions. A scoring function takes a piece of text x1, …, xT
along with the random seeds r1, …, rT and computes a score, which can

then be compared with a threshold to classify the text as watermarked
or unwatermarked. Here the random seeds rt = fr(x<t, k) are from the
random seed generator (‘Random seed generator’ section). It is noted
that a scoring function only requires access to the tokenized text, the
watermarking key k and the random seed generator fr; no access to the
LLM is required.

For SynthID-Text, we propose several scoring functions, which are
in Supplementary Information section A. All the scores are computed
from the g-values of the text. The simplest of these is the mean score,
which is simply the mean of the g-values across all timesteps and layers.
We also propose a weighted mean score, which re-weights the evidence
of each tournament layer. We propose frequentist versions of these
scores, which perform a hypothesis test on these means to produce a
P value. Lastly, we propose a parameterized Bayesian scoring function,
which achieves better performance by learning from data (watermarked
and unwatermarked texts) to compute the posterior probability that
a text is watermarked.

Experimental details
LLMs and LLM configurations. In our experiments, we use the IT vari-
ants of the Gemma 2B and 7B models28. We also use the v0.2 Mistral
7B-IT model29. To generate text, we use top-k sampling36. Following
default settings, we use k = 100 for the IT models. We experiment with
temperatures of 0.5, 0.7 and 1.0, as varying the temperature changes
the entropy of the model, which affects watermark detectability.

Data. To prompt our models we use the ELI530 dataset, which consists
of English questions that require explanatory multi-sentence answers.
This simulates a more task-oriented setting. For experiments with
non-distortionary watermarking, our ELI5 test set and the development
set each contain sets of 10,000 disjoint prompts that are used to prompt
the model to obtain watermarked responses. For experiments with dis-
tortionary watermarking, we use 1,500 prompts from ELI5 for the test
set to prompt the watermarked model. For the unwatermarked samples
used as negatives, we use two disjoint sets of human-written responses
to 10,000 questions from the ELI5 for the development and test sets.

Text lengths. For some experiments, we evaluate texts of fixed length—
for example, 200 tokens. To obtain text of length exactly 200 tokens,
we select the subset of texts that are longer than 200 tokens and then
truncate them to have exactly 200 tokens.

Detectability metric. To report detectability, we use the true-positive
rate (TPR) for a fixed false-positive rate (FPR) of x%, measured empiri-
cally. We denote this metric as TPR @ FPR = x%. For example to compute
TPR @ FPR = 1%, we take the scores (under some scoring function) of
the unwatermarked texts and compute a threshold corresponding
to the top-1% highest scores. Then we compute the true-positive rate
by measuring the fraction of watermarked texts that score above this
threshold. Although some scoring functions allow a precise theoretical
guarantee on the false-positive rate—for example, the frequentist scor-
ing functions (Supplementary Information section A.3) which provide
a P value—in this work we take the empirical approach described above.

Random seed generator settings. For all watermarking experi-
ments (including Tournament, Gumbel and Soft Red List sampling
algorithms), we use the same sliding-window-based random seed gen-
erator described in the ‘Random seed generator’ section, with context
window size H = 4. We apply one-sequence repeated context masking
(‘Repeated context masking’ section).

SynthID-Text settings. Unless otherwise mentioned, for all SynthID-
Text experiments, we use m = 30 tournament layers, a Bernoulli(0.5)
g-value distribution fg (Algorithm 2) and the Bayesian scoring function
(Supplementary Information section A.4).

Article

Data availability
The data from the human evaluation study described in Supplementary
Information section C.4 (model responses and human annotations) is
available in ref. 7.

Code availability
The code to generate and detect text with SynthID-Text watermarking
is available in ref. 7.

34. Holtzman, A., Buys, J., Du, L., Forbes, M. & Choi, Y. The curious case of neural text

degeneration. In Proc. Eighth International Conference on Learning Representations
(ICLR, 2020).

35. Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. A learning algorithm for Boltzmann machines.
Cogn. Sci. 9, 147–169 (1985).

36. Fan, A., Lewis, M. & Dauphin, Y. Hierarchical neural story generation. In Proc. 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
(eds Gurevych, I. & Miyao, Y.) 889–898 (Association for Computational Linguistics,
2018).

Acknowledgements We thank N. Shabat, N. Dal Santo, V. Anklin and B. Hekman for their
collaboration on product integration; A. Senoner, E. Hirst, P. Kirk, M. Trebacz and many others
who contributed across Google DeepMind and Google, including our partners at Gemini and
CoreML, for their support in bringing this technology to production; D. Stutz for technical
inputs on the selective prediction mechanism; R. Mullins for helping with the open-sourcing
of the work; and M. Raykova for feedback on the paper.

Author contributions P.K. initiated and framed the project and brought together the team.
S.D. led the research, contributing critically to all parts of the project. P.-S.H. and J.W. led the

project from conceptualization to the first large-scale system implementation and evaluation.
S. Ghaisas was the engineering lead of the project. S.D. led the development of the algorithms,
with contributions from B.B., P.-S.H., R.M., A.S. and J.W. A.S. led the theoretical analysis, with
contributions from B.B., J.B.-C., S.D. and R.M. S. Ghaisas led the development of the codebase
with contributions from V.B., R.B., S.D., P.-S.H., R.M., A.S. and R.S. S.D. and S. Ghaisas led the
productionization of the algorithm with V.B., C.B., P.-S.H. and R.M. contributing critically to
code development and evaluations, along with contributions from M.A.M., A.S. and R.S.
S. Ghaisas and J.W. ran the smaller-scale human evaluations in the paper. C.B. ran the live
experiment with the Gemini web application. S. Ghaisas and P.-S.H. led the infrastructure for
the experiments in the paper, with contributions from S.D. S.D., S. Ghaisas and P.-S.H. led the
experiments measuring the detectability and automated metrics presented in the paper, with
contributions from V.B., R.M. and I.S. S. Ghaisas led the open-sourcing with contributions from
S.D., T.M., R.M., A.S. and R.S. P.-S.H., A.K. and T.M. contributed to extended analysis of the system.
S.D. and A.S. led the writing and revision of the paper, with contributions from B.B., P.-S.H., P.K.,
R.M., I.S. and J.W. T.C., S. Gowal, J.H. and P.K. provided feedback on the paper and technical
advice on the project. Z.A., S.D., P.K., K.S. and N.V. coordinated the product delivery of SynthID-
Text. D.H. provided strategic feedback and advice. The authorship order is randomized among
A.K., R.S., T.M., J.H., N.V., M.A.M., J.B.-C., R.B., B.B., T.C., Z.A., K.S., I.S., C.B., S. Gowal and D.H.
The authorship order is randomized among A.S., S. Ghaisas, P.-S.H. and R.M.

Competing interests Work funded and performed by Google DeepMind, with some
collaborators at Google. S.D., A.S., B.B., S. Ghasias, P.K., P.-S. H. and J. W. have filed patent
applications EP23162983.3, PCT/EP2024/057423 and US18611417, currently pending
publication, on behalf of DeepMind Technologies Limited, relating to the SynthID-Text
watermarking method.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-024-08025-4.
Correspondence and requests for materials should be addressed to Sumanth Dathathri or
Pushmeet Kohli.
Peer review information Nature thanks the anonymous reviewers for their contribution to the
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-024-08025-4
http://www.nature.com/reprints

Extended Data Fig. 1 | Detectability comparison of non-distortionary
SynthID-Text vs Gumbel sampling, for additional model and temperature
combinations. We show a range of temperatures from 0.5–1.0, which is the
range most often used in practice. SynthID-Text generally provides improved
detection over Gumbel sampling, with the improvements being greatest in

lower entropy settings (lower temperature and larger models). The dashed
lines correspond to a bootstrap estimate (500 resamples) of the mean true
positive rate (TPR) at a false positive rate of 1%, and the shaded regions
correspond to the 90% confidence interval on the mean estimate.

Article

Extended Data Fig. 2 | Detectability and text quality comparison of
distortionary SynthID-Text and Soft Red List, for additional temperatures
and text lengths. Detectability is measured by true positive rate at a fixed false
positive rate of 1% (TPR@FPR=1%), and text quality is measured by log perplexity.

Texts are generated by Gemma 7B-IT. See Supplementary Information section
D for details. Dashed lines correspond to a bootstrap estimate (500 resamples)
of the mean TPR@FPR=1%, and the shaded regions correspond to the 90%
confidence interval on the mean estimate.

Extended Data Fig. 3 | Abstention rates for non-distortionary SynthID-
Text, for additional temperatures. The fraction of watermarked and
unwatermarked texts abstained on by the selective prediction mechanism
described in Supplementary Information section C.8, for Gemma 7B-IT. The
mechanism abstains when the scoring function is uncertain, and is configured
here to obtain a true positive rate of 95% and a false positive rate of 1% on the

remaining texts. The abstention rate is lower for longer texts and higher
temperatures. Dashed lines correspond to a bootstrap estimate (500 resamples)
of the mean abstention rate on watermarked and unwatermarked texts, and the
shaded regions correspond to the 90% confidence interval on the mean
estimate.

Article

Extended Data Fig. 4 | Comparing the tradeoff between diversity and
detectability for non-distortionary SynthID-Text and Gumbel sampling.
Diversity is indicated by low Self-BLEU and detectability is measured by true
positive rate when false positive rate is fixed at 1% (TPR@FPR=1%). Texts are
length 400 tokens, generated from Gemma 7B-IT at three different model

temperatures. We observe that SynthID-Text provides a more favorable
trade-off across temperatures. Dashed lines correspond to a bootstrap
estimate (500 resamples) of the mean TPR@FPR=1%, and shaded regions
correspond to the 90% confidence interval on the mean estimate. See
Supplementary Information section C.3 for details.

Extended Data Table 1 | Human preference ratings for unwatermarked responses vs. responses watermarked with
non-distortionary SynthID-Text

Responses are generated by Gemma 7B-IT in response to 3,000 ELI5 questions. We find no statistically significant difference in the preference for watermarked vs. unwatermarked responses.
On the right, relative ratio of prefer watermarked vs. prefer unwatermarked outcomes with bootstrapped symmetric 95% confidence interval (A:B, excluding ties); and the p-value under a
trinomial test for a symmetric distribution between watermarked and unwatermarked responses, in which ties are included and grouped as the third possible outcome. See Supplementary
Information section C.4 for more details.

	Scalable watermarking for identifying large language model outputs
	Watermarking with SynthID-Text
	SynthID-Text’s Tournament sampling approach
	Watermark detection
	Preserving the quality of generative text
	Ensuring computational scalability

	Evaluation
	SynthID-Text preserves quality including in a large-scale-production system
	SynthID-Text provides better detectability than existing watermarks
	SynthID-Text has minimal computational impact

	Discussion
	Limitations
	Conclusion

	Online content
	Fig. 1 Overview of LLM text generation and generative watermarking.
	Fig. 2 SynthID-Text’s Tournament-based watermarking.
	Fig. 3 Detection performance of SynthID-Text.
	Extended Data Fig. 1 Detectability comparison of non-distortionary SynthID-Text vs Gumbel sampling, for additional model and temperature combinations.
	Extended Data Fig. 2 Detectability and text quality comparison of distortionary SynthID-Text and Soft Red List, for additional temperatures and text lengths.
	Extended Data Fig. 3 Abstention rates for non-distortionary SynthID-Text, for additional temperatures.
	Extended Data Fig. 4 Comparing the tradeoff between diversity and detectability for non-distortionary SynthID-Text and Gumbel sampling.
	Extended Data Table 1 Human preference ratings for unwatermarked responses vs.

