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Large language models (LLMs) have enabled the generation of high-quality synthetic 
text, often indistinguishable from human-written content, at a scale that can markedly 
affect the nature of the information ecosystem1–3. Watermarking can help identify 
synthetic text and limit accidental or deliberate misuse4, but has not been adopted in 
production systems owing to stringent quality, detectability and computational 
efficiency requirements. Here we describe SynthID-Text, a production-ready text 
watermarking scheme that preserves text quality and enables high detection 
accuracy, with minimal latency overhead. SynthID-Text does not affect LLM training 
and modifies only the sampling procedure; watermark detection is computationally 
efficient, without using the underlying LLM. To enable watermarking at scale, we 
develop an algorithm integrating watermarking with speculative sampling, an 
efficiency technique frequently used in production systems5. Evaluations across 
multiple LLMs empirically show that SynthID-Text provides improved detectability 
over comparable methods, and standard benchmarks and human side-by-side ratings 
indicate no change in LLM capabilities. To demonstrate the feasibility of watermarking 
in large-scale-production systems, we conducted a live experiment that assessed 
feedback from nearly 20 million Gemini6 responses, again confirming the preservation 
of text quality. We hope that the availability of SynthID-Text7 will facilitate further 
development of watermarking and responsible use of LLM systems.

Large language models (LLMs) are widely adopted tools for synthetic 
text generation, finding applications in language-based assistants, 
code generation, writing support and various other domains. As LLMs 
advance in quality, coherence, coverage and expertise, it can become 
difficult to distinguish synthetically generated text from human-written 
text1–3. Given the widespread use of LLMs in education, software develop-
ment and web content generation, identification and attribution of LLM 
text is critical to ensure safe and responsible use of the technology8–11.

Multiple strategies have emerged to address this problem. One is a 
retrieval-based approach, which involves keeping a growing record of 
all generated texts and checking against it for matches12. This requires 
scale and coordination, and raises privacy concerns as it requires 
accessing and storing all LLM interactions. Another approach is post 
hoc detection, often using the statistical features of text or training a 
machine-learning-based classifier to distinguish human-written from 
artificial-intelligence-generated text13–15. This approach can potentially 
provide broader detection without the need for record-keeping or any 
intervention at the text generation stage. However, post hoc detection 
systems can themselves be computationally expensive to run, and 
their practical usage is limited by their inconsistent performance16. In 
particular, they are known to perform poorly on out-of-domain data 

and may have higher false-positive rates for certain groups, such as 
non-native speakers17. Furthermore, such classifiers fundamentally rely 
on underlying differences between machine and human text, which may 
diminish as LLMs improve. This necessitates continuous maintenance 
of the classifier, including re-training and re-calibrating.

A third approach is text watermarking—a way of marking the generated 
text so that it can subsequently be identified. Text watermarking can be 
done during the generative process (generative watermarking), by edit-
ing already generated text (edit-based watermarking) or by altering the 
LLM’s training data (data-driven watermarking)4. Edit-based watermark-
ing frequently relies on applying rule-based transformations such as 
synonym substitution or inserting special Unicode characters18, whereas 
data-driven watermarking involves training the LLM on specific trigger 
phrases19. With data-driven watermarking, the model outputs are water-
marked only when the model is prompted with specific trigger phrases; 
the primary objective is to identify unauthorized misuse of LLMs rather 
than attributing pieces of text to an LLM more broadly. Furthermore, 
both of these approaches can leave noticeable artefacts in the text4.

When watermarking an LLM deployed within a large-scale-production 
setting, it is important to carefully control any impact from water-
marking on text quality and, by extension, user experience. It is also 
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important that we are able to watermark with minimal computational 
costs. To meet both of these criteria, this work focuses on generative 
watermarking, which allows us to embed watermarks while carefully 
controlling the impact on quality and maintaining low computational 
cost. However, we note that no text detection method is foolproof, and 
many of the approaches discussed in this section are complementary 
and can be used in conjunction4.

Generating text with an LLM is often autoregressive: the LLM assigns 
probabilities to the elements (tokens) of the vocabulary and then selects 
the next token by sampling according to these probabilities conditional 
on text generated so far (Fig. 1, top). Generative watermarking (Fig. 1, 
bottom) works by carefully modifying the next-token sampling proce-
dure to inject subtle, context-specific modifications into the generated 
text distribution. Such modifications introduce a statistical signature 
into the generated text; during the watermark detection phase, the 
signature can be measured to determine whether the text was indeed 
generated by the watermarked LLM. A key benefit of the approach is 
that the detection process does not require performing computation-
ally expensive operations or even access to the underlying LLM (which 
is often proprietary).

In this work, we propose a generative watermarking scheme, 
SynthID-Text, which builds on previous generative watermarking 
components, but uses a novel sampling algorithm, Tournament 
sampling. SynthID-Text can be configured to be non-distortionary 
(preserving text quality) or distortionary (improving watermark 
detectability at the cost of text quality). We show that in both settings, 
SynthID-Text provides improved detection rates, compared with the 
best existing approaches in each category. We show empirically that 
non-distortionary SynthID-Text preserves text quality, including 
through a large-scale user feedback assessment over nearly 20 million 
responses from live Gemini interactions. Consequently, SynthID-Text 
has been used to watermark Gemini and Gemini Advanced20. This serves 
as practical proof that generative text watermarking can be successfully 
implemented and scaled to real-world production systems, serving 
millions of users and playing an integral role in the identification and 
management of artificial-intelligence-generated content.

Furthermore, we provide an algorithm to combine generative water-
marking with speculative sampling5—a frequently used technique to 
increase LLM text generation speed—allowing for the integration of 

SynthID-Text into large-scale production systems with negligible addi-
tional computational overhead.

Watermarking with SynthID-Text
LLMs generate text based on preceding context (for example, a 
response to a provided prompt). More precisely, given a sequence of 
input text x<t = x1, …, xt−1 consisting of t − 1 tokens from a vocabulary 
V, the LLM computes the probability distribution pLM(⋅∣x<t) of the next 
token xt given the preceding text x<t. To generate the full response, xt 
is sampled from pLM(⋅∣x<t), and the process repeats until either a maxi-
mum length is reached or an end-token is generated. The process is 
illustrated in Fig. 1 (top).

A generative watermarking scheme typically comprises three com-
ponents: a random seed generator, a sampling algorithm and a scoring 
function21. As shown in Fig. 1 (bottom), the random seed generator pro-
vides a random seed rt on each generation step t (potentially based on 
the preceding text along with the watermarking key), and the sampling 
algorithm uses rt to sample the next token xt from pLM(⋅∣x<t). Importantly, 
the sampling algorithm introduces correlations between rt and xt; during 
watermark detection, these correlations are measured by the scoring 
function. Given a piece of text and the watermarking key, the scoring 
function provides a score that quantifies the strength of the correlation 
(that is, the watermarking evidence); this can be compared with a thresh-
old to determine whether the text originates from the watermarked LLM.

In this work, we present the sampling algorithm Tournament sam-
pling, which is described in the following section. For the random seed 
generator, in our experiments we use the existing sliding-window 
method22,23, where the random seed is a hash of the most recent H tokens 
(xt−H, …, xt−1; we use H = 4) along with the watermarking key (Fig. 2, top); 
but we note that Tournament sampling can be paired with any random 
seed generator. We experiment with several scoring functions, some of 
which are from existing work and others are from this work; we discuss 
them in the following sections. Together, our generative watermarking 
scheme is called SynthID-Text.

SynthID-Text’s Tournament sampling approach
The key idea of Tournament sampling is to use a tournament-like 
process to choose an output token that scores highly with respect to 
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Fig. 1 | Overview of LLM text generation and generative watermarking.  
Top: LLM text generation typically involves generating text from left to right  
by repeatedly sampling from the LLM distribution. Bottom: a generative 
watermarking scheme typically consists of the three components, in the blue 

boxes: random seed generator, sampling algorithm and scoring function. 
These can be used to provide a text generation method and a watermark 
detection method. In the SynthID-Text generative watermarking scheme,  
we use the Tournament sampling algorithm.
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some random watermarking functions. An illustration is given in Fig. 2 
(top). First, we take the random seed rt provided by the random seed 
generator. This seed is passed to m (in this case, m = 3) watermark-
ing functions g1, g2, g3, …, gm—these are independent pseudorandom 
number functions that assign a score gℓ(xt, rt) (in this case, a 0 or 1) to 
any candidate token xt ∈ V.

In the second stage (Fig. 2, bottom), we start by sampling M = 2m 
candidate tokens from the LLM distribution pLM(⋅∣x<t) (some tokens may 
appear multiple times): these are the initial participants of the m-layer 
tournament. We randomly divide these candidates into M/2 pairs, and, 
in the first tournament layer, in each pair the token with the higher 
score under g1(⋅, rt) is selected, and the other discarded (any ties are 
broken randomly). The remaining M/2 tokens are regrouped randomly 
into M/4 pairs, and the function g2(⋅, rt) determines the winners for this 
second tournament layer. This iterative process continues until one 
token emerges as the final winner, which becomes the output token 
xt. A formal description of Tournament sampling is given in Algorithm 
2 in Methods.

Watermark detection
By design, Tournament sampling selects a token from the LLM distribu-
tion that is likely to score higher under the random watermarking func-
tions g1(⋅, rt), …, gm(⋅, rt). To detect whether a piece of text x = x1, …, xT 
is watermarked, we measure how highly x scores with respect to these 
functions. Specifically, we compute the mean g-values of the text:
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1
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t
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Given the selection of tokens xt based on higher g-values, we expect 
watermarked text generally to score higher under this score than unwa-
termarked text.

There are two primary factors that affect the detection performance 
of the scoring function. The first is the length of the text x: longer texts 
contain more watermarking evidence, and so we have more statistical 
certainty when making a decision. The second is the amount of entropy 
in the LLM distribution when it generates the watermarked text x. For 
example, if the LLM distribution is very low entropy, meaning it almost 
always returns the exact same response to the given prompt, then 
Tournament sampling cannot choose tokens that score more highly 
under the g functions. In short, like other generative watermarks21, 
Tournament sampling performs better when there is more entropy in 
the LLM distribution, and is less effective when there is less entropy. 
In Supplementary Information section H, we provide a theoretical 
analysis describing the watermarking strength of a layer of Tournament 
sampling as a function of a certain kind of entropy; similar analyses 
have been done for other generative watermarks23–25. The entropy of 
the LLM distribution itself depends on several factors, including the 
model—for example, larger or more advanced models tend to be more 
certain and thus lower entropy21, and reinforcement learning from 
human feedback can reduce entropy (also known as ‘mode collapse’)26. 
Other factors that affect LLM distribution entropy include the prompts, 
the temperature and other decoding settings such as top-k and top-p 
sampling settings (see ‘The LLM distribution’ in Methods).

Increasing the number of tournament layers m provides additional 
watermarking evidence per token, and decreases the variance of 
the score in equation (1). This allows SynthID-Text to provide better 
detectability than other methods (see ‘Evaluation’). However, detect-
ability does not increase indefinitely with the number of layers. Each 
layer of the tournament uses some of the available entropy to embed 
a watermark, and the strength of the watermark corresponding to a 
layer diminishes deeper into the tournament. For our experiments, we 
generally use m = 30 layers unless otherwise stated; see Supplementary 
Information section C.1 for full details.

Finally, we note that there are other scoring functions beyond equa-
tion (1); in Supplementary Information section A, we describe several 
others, and find that some can improve detection performance.

Preserving the quality of generative text
As previously mentioned, a watermarking scheme can be non- 
distortionary, a property relating to quality preservation; however,  
the phrase and its variants have been used in the literature to mean 
several distinct definitions24,25,27, causing some confusion. In this 
work, we resolve the confusion by providing clear definitions of 
non-distortion, from weakest to strongest. The weakest version is 
single-token non-distortion, which says that, on average over the 
random seed rt, the distribution of the output token xt generated by 
the watermarking sampling algorithm is equal to the original LLM 
distribution pLM(⋅∣x<t) (Fig. 1). Stronger versions of non-distortion 
expand this definition to one or more sequences of text, ensuring that 
on average the probability of the watermarking scheme generating 
a particular text or sequence of texts is the same as for the original 
LLM. Full definitions are provided in Supplementary Information  
section G.

In Supplementary Information section G.1, we show that when 
Tournament sampling is configured with exactly two ‘competitors’ 
for each match in the tournament (as in the example in Fig. 2), then 
Tournament sampling is single-token non-distortionary. Furthermore, 
in Supplementary Information section G.2, we show that by applying 
repeated context masking27, we can make the scheme non-distortionary 
for one or more sequences. Choosing the level of non-distortion 
involves a trade-off; weaker levels of non-distortion can reduce text 
quality and diversity, whereas stronger levels of non-distortion can 
reduce detectability and increase computational complexity (Sup-
plementary Information section G.3). For our experiments, we con-
figure SynthID-Text to be single-sequence non-distortionary; this 
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Fig. 2 | SynthID-Text’s Tournament-based watermarking. Top: to generate a 
new token xt, we first score each token in the vocabulary using multiple (in this 
case, m = 3) random watermarking functions g1, …, gm. These assign random 
values using a random seed, which is generated based on both the recent 
context and a watermarking key. Bottom: then, we choose the next token using 
a tournament process. First, we sample 2m = 8 (possibly non-unique) tokens 
from pLM(⋅∣x<t). These are split into pairs of competing tokens; in each pair, the 
highest scoring one (based on g1) is chosen, breaking ties randomly. The 
resulting tokens compete in the next layer, where winners are chosen based on 
g2, until in the last tournament layer the final winner is selected based on gm: 
this becomes the next generated token xt.
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preserves text quality and provides good detectability, while having 
some reduction to inter-response diversity. We call this configuration 
‘non-distortionary SynthID-Text’ (and where not otherwise specified, 
‘SynthID-Text’ also refers to this).

Alternatively, for instances where strong watermark detectability 
is critical, SynthID-Text can take a distortionary configuration that 
provides higher detectability, at the cost of some quality loss. In this 
configuration of Tournament sampling, there are more than two com-
petitors in each match of the tournament (a formal definition is given in 
Algorithm 2 in Methods). We show that in this case, Tournament sam-
pling is distortionary at the token level (Supplementary Information 
section G.1); however, it applies a stronger watermark (Supplementary 
Information section H.3). We call this configuration ‘distortionary 
SynthID-Text’.

In ‘Evaluation’, we compare non-distortionary and distortionary 
SynthID-Text to the best existing methods in each category and show 
that SynthID-Text provides better detectability in both categories.

Ensuring computational scalability
Generative watermarking schemes (Fig. 1, bottom) are typically com-
putationally inexpensive as the text generation process involves a 
modification to only the sampling layer, which is often negligible in 
the context of the LLM’s forward pass. For Tournament sampling, in 
some cases, it is more efficient to use a vectorized implementation, 
which we describe in Supplementary Information section E. We pro-
vide a theoretical complexity analysis of both implementations, and 
existing baselines in Supplementary Information section F. Overall, we 
show empirically in ‘Evaluation’ that, in practice, SynthID-Text induces 
negligible additional latency.

In large-scale productionized systems, the text generation process 
is often more complex than the simple loop depicted in Fig. 1 (top). For 
example, productionized systems often use speculative sampling5, a 
method to accelerate text generation from large models. Speculative 
sampling works by having a smaller draft model propose the next few 
tokens; these are then checked against the large target model, which 
either accepts or rejects the proposed tokens. Combining generative 
watermarking with speculative sampling is an important step to make 
watermarking practically useful to production systems; however, to 
our knowledge, it has not yet been investigated.

To make progress in this area, we propose two generative water-
marking with speculative sampling algorithms, which can combine 
a generative watermarking scheme with speculative sampling (Sup-
plementary Information section I). First, we propose high-detectability 
watermarked speculative sampling, which preserves the detectability 
of the watermark, but may decrease the efficiency (and thus increase 
the overall latency) of speculative sampling (Supplementary Infor-
mation section I.4). Alternatively, we propose fast watermarked 
speculative sampling, which (provided the watermark is single-token 
non-distortionary) preserves the efficiency of speculative sampling, 
but may decrease the detectability of the watermark (Supplemen-
tary Information section I.5). For this approach, we also propose a 
learned Bayesian scoring function that improves the detectability of 
this method (Supplementary Information section I.5.2). Fast water-
marked speculative sampling is most helpful when speed is important 
in production environments.

Evaluation
We compare SynthID-Text to, at the time of writing, the best-performing 
non-distortionary and distortionary generative text watermarking 
schemes and show empirically that SynthID-Text provides superior 
detectability in both categories. In the non-distortionary category, 
we compare against Gumbel sampling22,24, and in the distortionary 
category, we compare against the Soft Red List sampling algorithm23; 
see Supplementary Information section B.1 for a full description and 

discussion of how we chose our baselines. To create a like-for-like 
comparison, we focus on comparing our sampling algorithm, Tour-
nament sampling, against the Gumbel and Soft Red List sampling 
algorithms while keeping the other parts of the watermarking 
scheme the same (Fig. 1). Accordingly, for all baselines we use the 
same sliding-window random seed generator, and the same repeated 
context masking methodology as described in ‘Watermarking with 
SynthID-Text’—this means that (like non-distortionary SynthID-Text) 
the Gumbel baseline is single-sequence non-distortionary and 
preserves text quality. Furthermore, we note that the hashing and 
scoring schemes from refs. 24,25 can be directly adapted with 
SynthID-Text, and a detailed comparison of the benefits and draw-
backs of various hashing and scoring procedures (for example, 
the edit-distance based scoring as in ref. 24) is beyond the scope of  
this work.

In the remainder of this section, we empirically demonstrate that 
SynthID-Text, like some other generative watermarks, has several key 
desirable properties (quality and scalability) that enable its deploy-
ment in large-scale production, while also offering additional desirable 
properties such as improved detectability and diversity of the gener-
ated text. First, we show that (like other non-distortionary watermarks) 
non-distortionary SynthID-Text preserves response quality; our evalu-
ations include the first large-scale human evaluation in a production-
ized system. Then, across multiple models, we show that SynthID-Text 
provides improved detection performance while also preserving a 
greater amount of the underlying diversity within the LLM responses. 
We also show that SynthID-Text, similar to other generative watermark-
ing schemes, has negligible computational impact in the context of a 
large-production LLM.

SynthID-Text preserves quality including in a large-scale- 
production system
To evaluate the production readiness of non-distortionary SynthID-Text, 
we ran a live experiment with the Gemini production system (previously 
known as Bard). A random fraction of queries were routed to a water-
marked model and an equivalent number to the unwatermarked coun-
terpart. The Gemini user interface allows users to provide feedback on 
model responses via a thumbs-up (good response) and a thumbs-down 
(bad response). We analysed approximately 20 million watermarked 
and unwatermarked responses and computed the thumbs-up and 
thumbs-down rates (both as a fraction of the total number of thumbs-up 
and thumbs-down feedback received). We found that the thumbs-up 
rate for the two models differed by 0.01% (with the watermarked model 
being higher); and the thumbs-down rate differed by 0.02% (with the 
watermarked model being lower). We found both of these differences 
to be statistically insignificant, and well within the 95% confidence 
intervals.

From this experiment, we conclude that over a wide variety of real 
chatbot interactions, the difference in response quality and utility, 
as judged by humans, is negligible. Subsequently, non-distortionary 
SynthID-Text has been productionized and is currently watermarking 
responses in Gemini and Gemini Advanced. To the best of our knowl-
edge, this evaluation represents the first systematic watermarking 
investigation of its kind within a large-scale production system.

To provide a reproducible human evaluation, we also run a smaller- 
scale controlled human preference test, for which we also publish the 
collected data. In this experiment, we ask raters to compare water-
marked versus unwatermarked Gemma 7B-IT responses to 3,000 ELI5 
questions, assessing five aspects of response quality in a side-by-side 
comparison. For all five aspects—grammaticality/coherence, relevance, 
correctness, helpfulness and overall quality—we find no significant 
difference in rater preference (Extended Data Table 1). This holds 
both in a three-way analysis that includes tie ratings and conducts a 
trinomial test, as well as when restricting the analysis to the non-tie 
responses, using bootstrap resampling over the watermarked versus 
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unwatermarked preference ratio (full details in Supplementary Infor-
mation section C.4).

To further validate the quality-neutral property of non-distortionary 
SynthID-Text, we conduct additional automatic evaluations across  
different models and metrics. We find no significant difference 
between non-distortionary SynthID-Text and the equivalent unwater-
marked model in terms of perplexity or performance on automated 
benchmarks. Full details are provided in Supplementary Information  
section C.5.

To summarize: human quality feedback, both from a large-scale 
live experiment and a small-scale controlled study, perplexity sta-
tistics and standard model capability benchmarks all indicate that 
non-distortionary SynthID-Text causes no loss in text quality.

SynthID-Text provides better detectability than existing 
watermarks
We evaluate watermark detectability empirically across several pub-
licly available models, including the instruction-tuned (IT) variants of 
Gemma 2B and Gemma 7B28, and the Mistral 7B-IT29 model (see ‘LLMs 
and LLM configurations’ in Methods for details). We prompt the models 
with questions from the ELI5 dataset30 (see ‘Data’ in Methods).

In the non-distortionary category, Fig. 3a shows that non-distortionary  
SynthID-Text provides better detectability than Gumbel sampling, 
for the same length text. We find that the SynthID-Text’s improve-
ment over Gumbel sampling is greater in lower-entropy settings 
(for example, lower temperatures); when the entropy is higher, the 
detectability of the two methods is more comparable (Extended 
Data Fig. 1). In Extended Data Fig. 4, we also show that although both 
non-distortionary SynthID-Text and the Gumbel sampling baseline 
reduce inter-response diversity, SynthID-Text provides a better diver-
sity/detectability trade-off than Gumbel sampling. In scenarios where 
low error rates are desirable, we can use a selective prediction mecha-
nism (Supplementary Information section C.8) to abstain on samples 
for which the scoring function is uncertain, thus achieving the desired 
error rates on the remaining data (Fig. 3b).

In the distortionary category, we compare the trade-off of detect-
ability and text quality for distortionary SynthID-Text and Soft Red List. 
Both methods have a strength parameter that controls this trade-off; 
in Fig. 3c, we see that the trade-off is more favourable for distortionary 
SynthID-Text.

SynthID-Text has minimal computational impact
As discussed in ‘Watermarking with SynthID-Text’ and Supplemen-
tary Information section F, Tournament sampling does in some cases 
have greater computational complexity than Gumbel or Soft Red List 
sampling, but these differences are minimal relative to the cost of 
generating text from an LLM. For example, the Gemma 7B-IT model 
served on 4 v5e tensor processing units31 generates text at a rate of 
15.527 ms per token; this increases to 15.615 ms per token with 30-layer 
Tournament sampling, a latency increase of only 0.57%. In comparison, 
Gumbel sampling increases latency by 0.26% and Soft Red List by 0.28%. 
Furthermore, the computational complexity of all three watermarks 
remains constant even as the LLM grows. Thus, as large production 
models can grow by orders of magnitude larger than Gemma 7B in terms 
of computational complexity, so too does the relative complexity of 
watermarking shrink by orders of magnitude.

As described in ‘Watermarking with SynthID-Text’, we propose an 
algorithm—fast watermarked speculative sampling—to integrate gen-
erative watermarking with speculative sampling and thus enable fast 
deployment of watermarked LLMs at scale. We evaluate our algorithm 
with non-distortionary SynthID-Text, using Gemma 7B-IT as the target 
model and Gemma 2B-IT as the smaller draft model that proposes three 
‘lookahead’ tokens at a time. When paired with a non-distortionary 
watermark (Supplementary Information section I.3), fast watermarked 
speculative sampling is theoretically guaranteed to preserve the accept-
ance rate (that is, the average number of lookahead tokens accepted 
by the target model). We confirm this experimentally, finding that 
the acceptance rate (and thus overall latency) is very similar with and 
without watermarking (Supplementary Information section I.5.3). 
Although we ran our experiment with non-distortionary SynthID-Text, 
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Fig. 3 | Detection performance of SynthID-Text. a, For non-distortionary 
watermarking, we compare watermark detectability as a function of text 
length (number of tokens), for non-distortionary SynthID-Text and the Gumbel 
sampling22,24 watermark. Watermark detectability is measured using the 
true-positive rate (TPR) when the false-positive rate (FPR) is set to 1%. Responses 
are generated from Gemma 7B-IT with temperature = 0.7 using prompts from 
the ELI5 dataset; other models and temperatures are provided in Extended 
Data Fig. 1. b, The fraction of watermarked and unwatermarked texts that the 
selective prediction mechanism (Supplementary Information section C.8) 
abstains on to achieve a true-positive rate of 95% and a false-positive rate of 1%. 
The mechanism makes predictions only when the scoring function is confident, 
and is thus able to maintain a low error rate when making predictions, at the 
cost of abstaining on some of the data. The model set-up and the prompts are 

same as that in a; other temperatures are in Extended Data Fig. 3. c, For 
distortionary watermarking, we compare detectability of watermarks that 
allow text quality to be traded off against detectability by adjusting a strength 
hyperparameter. Texts are of length 200 tokens generated by Gemma 7B-IT 
with temperature = 0.7; other text lengths and temperatures are provided  
in Extended Data Fig. 2. Compared with the distortionary Soft Red List 
watermark23, distortionary SynthID-Text offers a more favourable trade-off, 
with substantially higher detection rates for the same effect on text quality  
as measured by log(perplexity). The arrows indicates the direction for 
performance improvement. The dashed lines correspond to a bootstrap 
estimate (500 resamples) of the mean of the metric on the y axis and the shaded 
regions correspond to the 90% confidence interval on the mean estimate.
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we expect the same result would hold for any non-distortionary gen-
erative watermark.

Discussion
We have introduced SynthID-Text, a method for watermarking LLM text. 
SynthID-Text uses certain elements introduced in previous work22,23,27, 
but differs in the use of the sampling algorithm, Tournament sam-
pling, which we find provides superior detectability compared with 
existing methods. SynthID-Text comes with rigorous and customiz-
able non-distortion properties that can be configured to guarantee 
text quality preservation; we confirm this empirically, including via 
real user feedback measured over approximately 20 million Gemini 
chatbot interactions. We have also proposed an algorithm to combine 
generative watermarking with speculative sampling, thus enabling the 
efficient deployment of generative watermarks in high-performance, 
large-scale-production LLMs.

Limitations
Generative watermarks such as SynthID-Text provide several advan-
tages compared with other approaches. For example, in Supplementary 
Information section C.7, we show that SynthID-Text performs consist-
ently across different languages. In comparison, a post hoc detector 
performs poorly on languages that its underlying machine-learning 
model was not trained on. However, generative watermarks such as 
SynthID-Text do not offer a complete solution to artificial-intelligence 
text detection; rather they are complementary to other approaches. 
In particular, generative watermarks require coordination between 
actors running the LLM text generation services to apply the water-
mark. To detect artificial-intelligence-generated text produced by 
other actors who do not to implement watermarking, other approaches 
are required, such as post hoc detection. Furthermore, the rise of 
open-source models presents a challenge, as enforcing watermark-
ing on these models deployed in a decentralized manner is difficult. 
Another limitation of generative watermarks is their vulnerability to 
stealing, spoofing and scrubbing attacks, which is an area of ongo-
ing research32. In particular, generative watermarks are weakened by 
edits to the text, such as through LLM paraphrasing33—although this 
usually does change the text significantly. We provide evaluations of 
SynthID-Text’s performance under edits and paraphrasing in Supple-
mentary Information section C.6.

Conclusion
Overall, our work provides proof of the real-world viability of gen-
erative text watermarks. SynthID-Text has been productionized in the 
user-facing Gemini and Gemini Advanced chatbots, which is, to our 
knowledge, the first deployment of a generative text watermark at scale, 
serving millions of users. As such, our work sets a practical milestone 
for accountable, transparent and responsible LLM deployment.
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Methods

Detailed SynthID-Text method
In this section, we provide a detailed description of SynthID-Text.

The LLM distribution. Most LLMs are autoregressive, providing the 
probability pLM(xt∣x<t) of the next token xt given the text so far x<t. Text 
is typically generated from the LLM using an autoregressive decod-
ing method, which optionally modifies the LLM distribution pLM(⋅∣x<t)  
before sampling from it. Such modifications include top-k and top-p34 
sampling, which truncate pLM(⋅∣x<t) to the k most likely tokens or the 
tokens covering the top-p probability mass; this can be combined with 
applying a temperature parameter τ (ref. 35). Although these modifica-
tions increase or decrease the amount of entropy in pLM(⋅∣x<t), 
SynthID-Text is compatible with any autoregressive decoding method 
that has non-zero entropy in the modified distribution. Thus, 
SynthID-Text is compatible with top-k sampling for all k ≥ 2, top-p sam-
pling for all p ∈ (0, 1], and all temperatures τ > 0.

SynthID-Text is applied after any such modifications have been made, 
so for the purposes of this paper we define the LLM distribution pLM(⋅∣x<t) 
to be the distribution after any such modifications.
Definition 1 (LLM distribution). Given an autoregressive LLM, an 
autoregressive decoding method, and x<t = x1, …, xt−1, a sequence of tokens 
from the vocabulary V, the LLM distribution pLM(⋅∣x<t) is the probability dis-
tribution from which the decoding method samples the next token xt ∈ V.

Watermarking framework. We present SynthID-Text as comprising a 
random seed generator, a sampling algorithm and a scoring function; 
this is similar to the generative watermarking framework of ref. 21. Intui-
tively, the sampling algorithm samples text from the LLM in a way that 
is biased by random seeds provided on each step by the random seed 
generator; later we can identify the watermark by detecting this bias 
through the scoring function. We describe the random seed generator 
and sampling algorithm in this section and describe several scoring 
functions in Supplementary Information section A. See Supplementary 
Information section B for a detailed discussion of related generative 
watermarking approaches.

Random seed generator. To generate a piece of watermarked text 
x1, …, xT, we require a sequence of random seeds Rr r, …, ∈T1  (where  
R is the space of all random seeds) to bias the sampling from the  
LLM distribution on each step. The random seed generator is the pro-
cess by which we generate these random seeds. One approach is to 
make the random seed generator a deterministic function fr that  
takes as input the sequence of tokens so far x<t = x1, …, xt−1 and a water-
marking key k and outputs a random seed r f x k:= ( , ) ∈t r t< R . Rando-
mizing the key k should randomize the seed; that is, for all 
x f x k, [ ( , )] = Unif ( )t k~ r t< Unif( ) <P RR .

There are several possible choices for fr (ref. 21); for our experiments, 
we use the sliding window fr(x<t, k) ≔ h(xt−H, …, xt−1, k), which is a hash 
function h of the last H tokens (for some context length H ≥ 1) and 
of the key k. This random seed generator is the same as that used by  
refs. 22,23. In this work, we also assume the watermarking key k and 
random seed rt exist in the same space of nsec-bit integers, where nsec is 
the security parameter.
Definition 2 (random seed space, random seed distribution). Given 
a security parameter nsec, the random seed space = {0, 1}nsecR  is the  
space of all nsec-bit integers. The random seed distribution is the uniform  
distribution over all such integers Unif ( )R .

We also assume that the family of functions Rh k{ (⋅, …, ⋅, )}k∈  is a pseu-
dorandom function family, meaning that (1) h(xt−H, …, xt−1, k) is effi-
ciently computable for any xt−H, …, xt−1 and k, and (2) the distribution 
of Rh k{ (⋅, …, ⋅, )}k~Unif( )  is computationally indistinguishable from a 
function sampled uniformly randomly from the set of all functions 
from VH to {0, 1}nsec.

g-values. As illustrated in Fig. 2, Tournament sampling requires 
g-values to decide which tokens win each match in the tournament. 
Intuitively, we want a function that takes a token x ∈ V, a random seed 

Rr ∈  and the layer number ℓ ∈ {1, …, m}, and outputs a g-value gℓ(x, r) 
that is a pseudorandom sample from some probability distribution fg 
(the g-value distribution).

For example, in Fig. 2, the g-value distribution is Bernoulli(0.5). Given 
the random seed r, gℓ(x, r) produces pseudorandom g-values of 0 or 1 
for each token x in the vocabulary, for each layer ℓ = 1, 2, 3. In this paper, 
we primarily use the Bernoulli(0.5) g-value distribution, although we 
also explore Uniform[0, 1]. In general, any g-value distribution can be 
chosen, as a hyperparameter of the Tournament sampling method.
Definition 3 (g-value distribution). The g-value distribution is a prob-
ability distribution of any real-valued random variable. We write Fg to 
denote the cumulative distribution function, and fg to denote the prob-
ability density function (if continuous) or probability mass function  
(if discrete).

Next, we need a way to produce a hash Rh x r( , , ) ∈ℓ  of a token x ∈ V, 
an integer ℓ ∈ {1, …, m} and a random seed Rr ∈ . Let’s assume we have 
a pseudorandom function family h r{ (⋅, ⋅, )}r∈R  similar to the one 
described in the ‘Random seed generator’ section, such that the dis-
tribution of h r{ (⋅, ⋅, )}r~Unif( )R  is computationally indistinguishable from 
a function sampled uniformly randomly from the set of all functions 
from V × [m] to {0, 1}nsec.
Definition 4 (g-value). Given a g-value distribution with cumulative 
density function. Fg, a random seed Rr ∈ , and integer ℓ ∈ 1, …, m, the 
layer-ℓ g-value of a token x ∈ V is given by:
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where Fg
−1 is the generalized inverse distribution function of Fg, and h is 

a hash function as described above.
Intuitively, Definition 4 says that we take a hash h(x, ℓ, r) of x, ℓ and 

r, which gives us a uniformly distributed n-bit integer, and divide it by 
2n to get a number in [0, 1]. For large n, this converges to a uniformly 
distributed number in [0, 1]. We then perform inverse transform sam-
pling to turn this number into a sample from the g-value distribution 
given by Fg.
Tournament sampling algorithm. Definition 5 (watermarking  
sampling algorithm). In a watermarking scheme, a sampling algorithm 

V V: Δ × →S R  is an algorithm that takes as input a probability distribu-
tion p ∈ ΔV and a random seed Rr ∈  and returns a token p r V( , ) ∈S .  
If S  always returns the same token given the same p and r, it is deter-
ministic. Otherwise, S  is probabilistic.

We propose a new probabilistic sampling algorithm called Tourna-
ment sampling. We present the simplest, single-layer version of Tour-
nament sampling in Algorithm 1. Instead of sampling directly from 
pLM(⋅∣x<t), we sample N tokens from pLM(⋅∣x<t), compute their g-values as 
described in the previous section and choose uniformly among those 
that have the maximal g-value.

Algorithm 2 presents the full multilayer version of Tournament sam-
pling, which has an additional hyperparameter m, the number of layers. 
The process can be thought of as a knockout tournament with m stages, 
where each match is an instantiation of the single-layer algorithm; 
this continues until there is one winner. Importantly, each layer ℓ of 
the tournament uses different g-values gℓ(⋅, rt) to decide the winners. 
Figure 2 gives a concrete example for m = 3 layers, N = 2 samples and a 
Bernoulli(0.5) g-value distribution.
Algorithm 1. Sampling a token with single-layer Tournament sampling

Require: LLM distribution pLM(⋅∣x<t), random seed r ∈t R, number of 
samples N ≥ 2, g function with g-value distribution fg (see Definition 4).

1:  Draw Y = [ y1, y2, …, yN] containing N independent samples from 
pLM(⋅∣x<t) (may contain repeats).

2: Y y Y g y r g y r* := [ ∈ : ( , ) = max ( ′, )]t
y Y

t1 ′ ∈ 1
 (may contain repeats).



3: Sample xt ~ Unif(Y*)
4: return xt

Algorithm 2. Sampling a token with multilayer Tournament sampling.
Require: LLM distribution pLM(⋅∣x<t), random seed Rr ∈t , number of 

samples N ≥ 2, g function with g-value distribution fg (see Definition 4), 
number of layers m ≥ 1.

1:  Draw Nm independent samples y y y p x, , …, ~ (⋅ )N t0
0

1
0

−1
0

LM <m  (may 
contain repeats).

2: for 1 ≤ ℓ ≤ m do
3:  for 0 ≤ j ≤ Nm−ℓ − 1 do
4:   ℓ ℓ ℓY y y y:= [ , , …, ]Nj Nj Nj N

−1
+1
−1

+ −1
−1  (may contain repeats).

5:   
ℓ ℓY y Y g y r g y r* := [ ∈ : ( , ) = max ( ′, )]t

y Y
t

′ ∈
 (may contain repeats).

6:   Sample y Y~ Unif ( *)j
ℓ .

7:  end for
8: end for
9: return x y:=t

m
0

Repeated context masking. To generate a full response, we could sim-
ply apply Algorithm 2 on every decoding step, using the sliding-window 
random seed generator (‘Random seed generator’ section) to generate 
the random seed rt for each step. However, it is possible that the same 
window of context, and thus the same random seed might occur more 
than once (particularly if the sliding-window size H is small or the res-
ponse is long). It has been shown that in this scenario, the watermark 
can introduce a repeated bias that affects the quality of the text, for 
example, causing repeating loops24,25. One way to avoid this problem 
is to apply repeated context masking27, which prevents the watermark 
from being applied on step t if the context window (xt−H, …, xt−1) has been 
used to watermark previously.

We present the method in Algorithm 3, which we call K-sequence 
repeated context masking. The integer parameter K ≥ 1 controls for 
how long context windows are held in the history. In the simplest case 
of K = 1, we only hold the context history for the duration of generating 
a single response. For larger integers K > 1, we check against a history 
of contexts used in the last K responses. In the extreme case, we could 
set K = ∞ and retain the context history indefinitely. In Supplementary 
Information section G.2, we show that applying K-sequence repeated 
context masking achieves K-sequence non-distortion, an important 
property for quality preservation. In Supplementary Information sec-
tion G.3, we discuss the trade-offs of smaller and larger K. For most of 
our experiments we use K = 1.
Algorithm 3. Generating watermarked responses with sliding-window 
random seed generation and K-sequence repeated context masking.

Require: LLM pLM(⋅∣⋅), context window size H, pseudorandom hash 
function h, watermarking key Rk ∈ , sampling algorithm V V: Δ × →S R , 
integer K ≥ 1, stream of prompts (x1, x2, …).

1: for i ≥ 1 do
2:  C := ∅i
3:  t ≔ n where n is the length of x x x= , …,i i

n
i

1
4:  while ≠ EOSt

ix  do
5:   t ≔ t + 1
6:   if ⋯∪ ∪ ∪C C C( , …, ) ∈t H

i
t
i

i i i K− −1 −1 − +1x x  then
7:    Sample x xp~ (⋅ )t

i
t

i
LM <

8:   else
9:    x xr h k:= ( , …, , )t t H

i
t
i

− −1
10:    Sample x xp r:= ( (⋅ ), )t

i
t

i
tLM <S

11:    x x∪C C:= {( , …, )}i i t H
i

t
i

− −1
12:   end if
13:  end while
14:  return Response y x:=i

n t
i

+1:
15: end for

Scoring functions. A scoring function takes a piece of text x1, …, xT 
along with the random seeds r1, …, rT and computes a score, which can 

then be compared with a threshold to classify the text as watermarked 
or unwatermarked. Here the random seeds rt = fr(x<t, k) are from the 
random seed generator (‘Random seed generator’ section). It is noted 
that a scoring function only requires access to the tokenized text, the 
watermarking key k and the random seed generator fr; no access to the 
LLM is required.

For SynthID-Text, we propose several scoring functions, which are 
in Supplementary Information section A. All the scores are computed 
from the g-values of the text. The simplest of these is the mean score, 
which is simply the mean of the g-values across all timesteps and layers. 
We also propose a weighted mean score, which re-weights the evidence 
of each tournament layer. We propose frequentist versions of these 
scores, which perform a hypothesis test on these means to produce a 
P value. Lastly, we propose a parameterized Bayesian scoring function, 
which achieves better performance by learning from data (watermarked 
and unwatermarked texts) to compute the posterior probability that 
a text is watermarked.

Experimental details
LLMs and LLM configurations. In our experiments, we use the IT vari-
ants of the Gemma 2B and 7B models28. We also use the v0.2 Mistral 
7B-IT model29. To generate text, we use top-k sampling36. Following 
default settings, we use k = 100 for the IT models. We experiment with 
temperatures of 0.5, 0.7 and 1.0, as varying the temperature changes 
the entropy of the model, which affects watermark detectability.

Data. To prompt our models we use the ELI530 dataset, which consists 
of English questions that require explanatory multi-sentence answers. 
This simulates a more task-oriented setting. For experiments with 
non-distortionary watermarking, our ELI5 test set and the development 
set each contain sets of 10,000 disjoint prompts that are used to prompt 
the model to obtain watermarked responses. For experiments with dis-
tortionary watermarking, we use 1,500 prompts from ELI5 for the test 
set to prompt the watermarked model. For the unwatermarked samples 
used as negatives, we use two disjoint sets of human-written responses 
to 10,000 questions from the ELI5 for the development and test sets.

Text lengths. For some experiments, we evaluate texts of fixed length—
for example, 200 tokens. To obtain text of length exactly 200 tokens, 
we select the subset of texts that are longer than 200 tokens and then 
truncate them to have exactly 200 tokens.

Detectability metric. To report detectability, we use the true-positive 
rate (TPR) for a fixed false-positive rate (FPR) of x%, measured empiri-
cally. We denote this metric as TPR @ FPR = x%. For example to compute 
TPR @ FPR = 1%, we take the scores (under some scoring function) of 
the unwatermarked texts and compute a threshold corresponding 
to the top-1% highest scores. Then we compute the true-positive rate 
by measuring the fraction of watermarked texts that score above this 
threshold. Although some scoring functions allow a precise theoretical 
guarantee on the false-positive rate—for example, the frequentist scor-
ing functions (Supplementary Information section A.3) which provide 
a P value—in this work we take the empirical approach described above.

Random seed generator settings. For all watermarking experi-
ments (including Tournament, Gumbel and Soft Red List sampling 
algorithms), we use the same sliding-window-based random seed gen-
erator described in the ‘Random seed generator’ section, with context 
window size H = 4. We apply one-sequence repeated context masking 
(‘Repeated context masking’ section).

SynthID-Text settings. Unless otherwise mentioned, for all SynthID- 
Text experiments, we use m = 30 tournament layers, a Bernoulli(0.5) 
g-value distribution fg (Algorithm 2) and the Bayesian scoring function 
(Supplementary Information section A.4).
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Data availability
The data from the human evaluation study described in Supplementary 
Information section C.4 (model responses and human annotations) is 
available in ref. 7.

Code availability
The code to generate and detect text with SynthID-Text watermarking 
is available in ref. 7.
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Extended Data Fig. 1 | Detectability comparison of non-distortionary 
SynthID-Text vs Gumbel sampling, for additional model and temperature 
combinations. We show a range of temperatures from 0.5–1.0, which is the 
range most often used in practice. SynthID-Text generally provides improved 
detection over Gumbel sampling, with the improvements being greatest in 

lower entropy settings (lower temperature and larger models). The dashed 
lines correspond to a bootstrap estimate (500 resamples) of the mean true 
positive rate (TPR) at a false positive rate of 1%, and the shaded regions 
correspond to the 90% confidence interval on the mean estimate.
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Extended Data Fig. 2 | Detectability and text quality comparison of 
distortionary SynthID-Text and Soft Red List, for additional temperatures 
and text lengths. Detectability is measured by true positive rate at a fixed false 
positive rate of 1% (TPR@FPR=1%), and text quality is measured by log perplexity. 

Texts are generated by Gemma 7B-IT. See Supplementary Information section  
D for details. Dashed lines correspond to a bootstrap estimate (500 resamples) 
of the mean TPR@FPR=1%, and the shaded regions correspond to the 90% 
confidence interval on the mean estimate.



Extended Data Fig. 3 | Abstention rates for non-distortionary SynthID- 
Text, for additional temperatures. The fraction of watermarked and 
unwatermarked texts abstained on by the selective prediction mechanism 
described in Supplementary Information section C.8, for Gemma 7B-IT. The 
mechanism abstains when the scoring function is uncertain, and is configured 
here to obtain a true positive rate of 95% and a false positive rate of 1% on the 

remaining texts. The abstention rate is lower for longer texts and higher 
temperatures. Dashed lines correspond to a bootstrap estimate (500 resamples) 
of the mean abstention rate on watermarked and unwatermarked texts, and the 
shaded regions correspond to the 90% confidence interval on the mean 
estimate.
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Extended Data Fig. 4 | Comparing the tradeoff between diversity and 
detectability for non-distortionary SynthID-Text and Gumbel sampling. 
Diversity is indicated by low Self-BLEU and detectability is measured by true 
positive rate when false positive rate is fixed at 1% (TPR@FPR=1%). Texts are 
length 400 tokens, generated from Gemma 7B-IT at three different model 

temperatures. We observe that SynthID-Text provides a more favorable 
trade-off across temperatures. Dashed lines correspond to a bootstrap 
estimate (500 resamples) of the mean TPR@FPR=1%, and shaded regions 
correspond to the 90% confidence interval on the mean estimate. See 
Supplementary Information section C.3 for details.



Extended Data Table 1 | Human preference ratings for unwatermarked responses vs. responses watermarked with 
non-distortionary SynthID-Text

Responses are generated by Gemma 7B-IT in response to 3,000 ELI5 questions. We find no statistically significant difference in the preference for watermarked vs. unwatermarked responses. 
On the right, relative ratio of prefer watermarked vs. prefer unwatermarked outcomes with bootstrapped symmetric 95% confidence interval (A:B, excluding ties); and the p-value under a 
trinomial test for a symmetric distribution between watermarked and unwatermarked responses, in which ties are included and grouped as the third possible outcome. See Supplementary 
Information section C.4 for more details.
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