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Complex rearrangements fuel ER+ and HER2+ 
breast tumours

Kathleen E. Houlahan1,6, Lise Mangiante1,6, Cristina Sotomayor-Vivas1,6, Alvina Adimoelja2,6, 
Seongyeol Park1, Aziz Khan1, Sophia J. Pribus1, Zhicheng Ma1, Jennifer L. Caswell-Jin3 & 
Christina Curtis1,2,3,4,5 ✉

Breast cancer is a highly heterogeneous disease whose prognosis and treatment as 
defined by the expression of three receptors—oestrogen receptor (ER), progesterone 
receptor and human epidermal growth factor receptor 2 (HER2; encoded by ERBB2)— 
is insufficient to capture the full spectrum of clinical outcomes and therapeutic 
vulnerabilities. Previously, we demonstrated that transcriptional and genomic 
profiles define eleven integrative subtypes with distinct clinical outcomes, including 
four ER+ subtypes with increased risk of relapse decades after diagnosis1,2. Here, to 
determine whether these subtypes reflect distinct evolutionary histories, interactions 
with the immune system and pathway dependencies, we established a meta-cohort of 
1,828 breast tumours spanning pre-invasive, primary invasive and metastatic disease 
with whole-genome and transcriptome sequencing. We demonstrate that breast 
tumours fall along a continuum constrained by three genomic archetypes. The ER+ 
high-risk integrative subgroup is characterized by complex focal amplifications, similar 
to HER2+ tumours, including cyclic extrachromosomal DNA amplifications induced 
by ER through R-loop formation and APOBEC3B-editing, which arise in pre-invasive 
lesions. By contrast, triple-negative tumours exhibit genome-wide instability and 
tandem duplications and are enriched for homologous repair deficiency-like signatures, 
whereas ER+ typical-risk tumours are largely genomically stable. These genomic 
archetypes, which replicate in an independent cohort of 2,659 primary tumours, are 
established early during tumorigenesis, sculpt the tumour microenvironment and are 
conserved in metastatic disease. These complex structural alterations contribute to 
replication stress and immune evasion, and persist throughout tumour evolution, 
unveiling potential vulnerabilities.

Breast cancer is the most common malignancy in women, account-
ing for more than 15% of new cancer cases in the USA annually1. Clini-
cally, breast tumours are stratified into three immunohistochemistry  
subtypes—ER+HER2−, HER2 and triple-negative breast cancer (TNBC)— 
on the basis of the expression of ER, progesterone receptor and HER2 
(ref. 2). Although heterogeneity in gene expression, especially meas-
ures of proliferation, within these subtypes correlates with prognosis 
and patterns of relapse, and is used to guide therapy3, ultimately the 
paradigm of three major subtypes dictates our understanding of and 
approach to the disease.

We previously defined eleven subtypes of breast cancer on the basis 
of integrative clustering (IC) of genomic and transcriptional profiles, 
and demonstrated their distinct prognosis and relapse trajectories4,5. 
Among patients with ER+ cancer (80% of cases), one-quarter had a 
45% chance of distant recurrence two decades post-diagnosis5. This 
ER+ ‘high-risk’ subgroup, corresponding to IC1, IC2, IC6 and IC9 sub-
types, is enriched for luminal B tumours harbouring focal oncogene 

amplification and overexpression, similar to ERBB2-amplified tumours 
(IC5, 10–15%). Moreover, genes within these amplicons mediate resist-
ance to hormonal therapy6,7. TNBC comprises genome-unstable 
basal-like IC10 and IC4ER− tumours, the latter with relapse risk that 
persists beyond 5 years.

Although the IC subgroups improve relapse prediction and define 
new drivers5, their origins, evolution and tumour immune microen-
vironments (TMEs) remain unknown. To investigate, we assessed the 
genomic architecture and microenvironmental composition of breast 
tumours from a meta-cohort of 1,828 tumours spanning pre-invasive 
ductal carcinoma in situ (DCIS), primary and metastatic lesions, 
profiled using whole-genome sequencing (WGS) and transcriptome 
sequencing8–10. We further implemented a machine learning framework 
to determine IC subtypes from DNA-based profiles alone. Our analyses 
reveal three primary genomic archetypes of breast cancer— (i) TNBC: 
ICs (IC10 and IC4ER−); (ii) typical-risk ER+HER2− (IC3, IC4ER+, IC7 and 
IC8); and (iii) high-risk ER+HER2− (IC1, IC2, IC6 and IC9) and HER2+ (IC5) 
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(referred to as ER+ high-risk + HER2+). The last group is characterized 
by early, recurrent amplifications, including extrachromosomal DNA 
(ecDNA) owing to APOBEC3B (A3B)-editing at ER-induced R-loops. 
These genomic patterns, accompanied by variable TMEs, implicate 
complex rearrangements as a major driver of immune escape and 
highlight new therapeutic vulnerabilities in aggressive subgroups.

Evolution of the IC subgroups
The mutational processes underlying breast cancer initiation and 
progression are incompletely understood11–14. Herein we uniformly 
processed 1,828 samples from DCIS (n = 406), primary (n = 702) and 
metastatic (n = 720) lesions using a harmonized, state-of-the-art bio-
informatics pipeline to identify single nucleotide variants (SNVs), copy 
number aberrations (CNAs), structural variants (SVs), ecDNA and muta-
tional signatures (Fig. 1a, Supplementary Fig. 1a–c and Supplemen-
tary Table 1). Owing to shallow coverage of the archival DCIS cohort, 
SNVs and SVs were not called10. Additionally, we used the Molecular 
Taxonomy of Breast Cancer International Consortium (METABRIC) 
cohort of primary invasive tumours4 (n = 1,894) with both RNA and DNA 
profiles and about 20 years of clinical follow-up. To our knowledge, 
this represents the largest collection of uniformly processed breast 
tumours spanning all disease stages.

Although the ICs predict distant relapse and delineate genomic 
drivers4,5, current methods fail to accurately capture them using DNA 
profiles alone12. Accordingly, we developed Ensemble Integrative Clus-
tering (ENiClust), which reliably infers IC subtypes from whole-exome 
sequencing or WGS, across all stages of disease (Fig. 1b and Supplemen-
tary Table 2). The final ensemble model yields a nine-class prediction 
(Fig. 1b and Supplementary Table 2), which is further split into ten on 
the basis of the ER status of IC4 (that is, IC4ER+ and IC4ER–). These ten 
classes comprise four clinically distinct IC subgroups—TNBC (IC10 and 
IC4ER−), HER2+ (IC5), ER+ typical-risk (IC3 + IC7, IC4ER+ and IC8) and ER+ 
high-risk (IC1, IC2, IC6 and IC9). Throughout we refer to HER2+ tumours 
as those classified as IC5, enriching for ERBB2 amplification. ENiClust 
outperformed iC10 DNA alone1,12 (Methods and Supplementary Fig. 1d) 
and improves patient stratification, with high-risk tumours exhibiting 
worse distant recurrence-free survival (METABRIC; Fig. 1c–e and Sup-
plementary Fig. 1d–f). Thus, ENiClust identifies clinically meaningful 
subgroups with distinct biology.

Using ENiClust, we interrogated the distribution of ICs across dis-
ease stages. DCIS was enriched for IC5 tumours (Fisher’s exact test 
P = 2.98 × 10−6; Fig. 1f), corroborating our previous findings10. ER+ 
high-risk ICs were enriched among metastatic tumours, consistent 
with their increased relapse risk (Fig. 1f and Extended Data Fig. 1a). IC10 
basal-like tumours were depleted in the metastatic cohort, potentially 
owing to differences in ancestry (Extended Data Fig. 1b–d). The ICs 
were largely stable from primary to metastasis (concordance = 71.8%; 
Extended Data Fig. 1e,f).

There was an increased proportion of luminal B versus luminal A from 
pre-invasive to primary (Δ(LumB/(LumA + LumB)) = +11%) and primary 
to metastatic (Δ(LumB/(LumA + LumB)) = +29%; Extended Data Fig. 1g) 
lesions. Among primary tumours, ER signalling in ER+ high-risk tumours 
was more akin to that of HER2+ER+ tumours15 and significantly lower 
than that of ER+ typical-risk tumours (Extended Data Fig. 1h), with no 
difference between primary and metastatic tumours (Extended Data 
Fig. 1i). Compared to ER+ typical-risk, ER+ high-risk was enriched among 
patients with tumours that were resistant to endocrine therapy (odds 
ratio (OR) ≥ 5.58, P ≤ 0.03; Supplementary Fig. 1g). In a clinical trial 
(NCT00651976) in early-stage ER+ breast cancer, high-risk tumours had 
a decreased proliferation score with letrozole treatment but it remained 
significantly higher than that for typical-risk tumours (P ≤ 0.02; Sup-
plementary Fig. 1h). Thus, ER+ high-risk tumours may experience 
persistent proliferation despite endocrine treatment. New therapies 
(selective oestrogen receptor degraders and proteolysis-targeting 

chimeras) that more fully suppress proliferation might particularly 
benefit this subgroup.

Early IC-specific SVs fuel progression
The IC subtypes have distinct CNA landscapes (Extended Data Fig. 1j), 
but their SV landscape and evolution have not been investigated. Lev-
eraging ENiClust, we found that the IC-subgroup-specific genomic 
landscape of breast cancer is consistent throughout disease pro-
gression despite an increased burden of alterations10,13,16,17 (Fig. 2a 
and Extended Data Fig. 2a,b). Both HER2+ and ER+ high-risk primary 
and metastatic tumours exhibit characteristic sharp increases in SV 
burden at their respective recurrently amplified loci (IC5: 17q12; IC6: 
8p11; IC2: 11q13; IC1: 17q23). The peak of SV burden at 17q12 (ERBB2) 
suggests that ERBB2 amplification is fuelled by complex alterations, 
such as ecDNA18. The mutational burden in primary ER+ typical-risk 
tumours was minimal (Supplementary Fig. 1i) but increased in met-
astatic disease (Fig. 2a), in part owing to treatment (Extended Data 
Fig. 2c). IC10 and IC4ER− tumours exhibit diffuse genome-wide insta-
bility with an increased SV burden, although the latter show an atten-
uated pattern and harbour fewer pathogenic SVs and alterations in 
DNA repair pathways, confirming previous reports19 (Extended Data 
Fig. 2d,e). Across metastatic sites, the cumulative burden of altera-
tions was higher in lung and subcutaneous metastases and lower in 
soft-tissue and in-breast recurrences (Extended Data Fig. 2f). These 
subgroup-specific alterations were seen in DCIS (Extended Data Fig. 2a), 
emphasizing early oncogene addiction and mechanisms of malignant  
transformation.

Next we characterized CNA and SV signatures in 702 primary breast 
tumours, replicating the 24 CNA20 and 6 rearrangement8,21 signatures 
(RSs) previously reported (Supplementary Fig. 2a–c). RS3, RS5 (asso-
ciated with homologous repair deficiency (HRD); Supplementary 
Fig. 2d) and CN17 were enriched in IC10 tumours, whereas RS4, RS6 
(associated with complex amplifications) and CN7 were enriched in 
ER+ high-risk and HER2+ tumours (Extended Data Fig. 2g,h and Sup-
plementary Fig. 2e–g). ER+ typical-risk tumours were enriched for CN1 
(associated with diploid genomes; Supplementary Fig. 2d,e).

Projected on a two-dimensional plane (Supplementary Fig. 3a,b), the 
architectural profiles follow a continuum and form a polyhedron remi-
niscent of Pareto optimum theory, which illustrates trade-offs between 
biological tasks22. Primary breast cancers map onto three dominant 
genomic archetypes (Supplementary Fig. 3c–f): TNBC-enriched, ER+ 
typical-risk-enriched and ER+ high-risk + HER2+-enriched. Tumours 
dominated by a single mutational process are proximal to a vertex, 
whereas those characterized by multiple processes cluster at the centre 
(Fig. 2b and Extended Data Fig. 2i). The TNBC-enriched archetype was 
positively correlated with genomic instability, HRD and APOBEC-editing 
SNVs (Fig. 2c and Supplementary Fig. 3g). Compared to ER+ high-risk 
tumours, HER2+ tumours were enriched for tyfonas (Extended Data 
Fig. 2j). The ER+ high-risk + HER2+-enriched archetype was positively 
correlated with complex amplifications, reactive oxygen species and 
APOBEC-associated SNVs harbouring co-amplification of multiple 
cytobands (Extended Data Fig. 3a). By contrast, the ER+ typical-enriched 
archetype negatively correlated with most genomic features.

Tumours predicted to be BRCA-like on the basis of germline or 
somatic genomic features23 map to the TNBC-enriched archetype 
(Extended Data Fig. 3b). Indeed, both BRCA1-like and BRCA2-like ER+ 
and ER− tumours demonstrated significantly higher TNBC-archetype 
scores than non-HRD tumours, and HRD-like ER+ high-risk tumours were 
closer to the TNBC-enriched archetype than their non-HRD-like coun-
terparts (OR = 5.09; P = 6.5 × 10−4). Additionally, the mutational patterns 
of BRCA1-like and BRCA2-like ER− and ER+ tumours were highly concord-
ant (Supplementary Fig. 3h,i). Notably, whereas 43.6% of TNBC tumours 
were HRD-like, 13.2% of ER+ high-risk tumours were also predicted to be 
HRD-like, with most being ER+ high-risk IC1 or IC9 (OR = 4.43; P = 0.03; 

https://clinicaltrials.gov/ct2/show/NCT00651976
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Extended Data Fig. 3c and Supplementary Fig. 3j). Indeed, although 
foldback inversions and pyrgos were enriched in TNBC (foldback 
inversion: 17.3%, P = 2.00 × 10−3; pyrgos: 18.8%, P = 9.33 × 10−4), these 
mutational events were also observed in ER+ tumours (5.1% and 4.1%, 
respectively; Extended Data Fig. 3d). These data reinforce multiple 
mechanisms of genome instability in TNBC24 that also affect a subset 
of ER+ tumours.

The three genomic archetypes replicated in an independent cohort 
of 2,229 primary tumours from Genomics England21 (Extended Data 
Fig. 3e). Overall, the genomic landscape of primary breast tumours 
falls along a continuum with mutational patterns captured by three 
main genomic archetypes, namely, genome-stable, diploid genomes 
(ER+ typical-risk-enriched), genome-wide instability (TNBC-enriched) 
and focal, complex amplifications (ER+ high-risk + HER2+-enriched).
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Fig. 1 | ENiClust identifies the IC subtypes. a, Schematic of the study design. 
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Metastatic lesions exhibit increased SNV and SV burdens compared to 
unpaired primary tumours, probably owing to therapy, as we and others 
have shown13,17. Using the above approach, we identified six de novo SV 
signatures in metastases that correlated with those in primary tumours 
(Supplementary Fig. 4a,b) and showed similar subgroup-specific 
enrichment patterns (Extended Data Fig. 3f). Two-dimensional projec-
tion again revealed three dominant archetypes (Supplementary Fig. 4c) 
that overlap with those in primary tumours (Fig. 2b,c, Extended Data 
Fig. 3g and Supplementary Fig. 4d). Our results were robust to choice 
of dimensionality reduction algorithm (Supplementary Fig. 4e–g). 
Thus, the three genomic archetypes of breast cancer are conserved 
in metastatic disease.

SV signatures were generally conserved, although increased, in 
metastatic tumours except for RS4 and RS6 in ER+ high-risk and HER2+ 
tumours, respectively, which were stable (Extended Data Fig. 3h). These 
data support the early occurrence of complex rearrangements and 
their persistence through metastasis. Although the distribution of 
CNA signatures mirrored primary tumours, the Pareto front revealed 
increased alteration burden and more intermixed profiles in metasta-
sis, consistent with increased whole-genome doubling and genomic 
instability17 (Extended Data Fig. 3i and Supplementary Fig. 4h,i). Thus, 
metastatic tumours retain the scars of subgroup-specific mutational 
processes operative in early-stage disease.

Although ER+ typical-risk tumours have a favourable prognosis, 29% 
of patients experience distant relapse4. We investigated whether the 
genomic archetypes improve risk stratification. Mapping METABRIC 

onto the Pareto front (Methods, Extended Data Fig. 3j and Supple-
mentary Fig. 4j–l), the position of ER+ typical-risk tumours was pre-
dictive of relapse, with recurrent tumours mapping closer to the ER+ 
high-risk + HER2+ archetype (Extended Data Fig. 3k,l) accompanied by 
a higher HRD loss-of-heterozygosity score, invasive lobular carcinoma 
(ILC) histology and increased proliferation.

In METABRIC, ILCs were enriched in ER+ typical-risk tumours 
(OR = 2.20, P = 2.27 × 10−3, Fisher’s exact test; Supplementary Fig. 4m). 
Within ER+ high-risk tumours, ILCs exhibited a higher 5-year recurrence 
risk (39% versus 30%) and cumulative recurrence risk (62% versus 54% 
at 20 years; Extended Data Fig. 3m). This difference was more marked 
among ER+ typical-risk tumours (55% versus 37% at 20 years). ILCs were 
closer to the ER+ typical-risk archetype than their invasive ductal car-
cinoma (IDC) counterparts (P = 2.10 × 10−5; Extended Data Fig. 3n,o) 
given their lower levels of whole-genome doubling, ploidy and fraction 
of genome altered. Thus, given comparable genomic architectures, 
lobular histology remains a high-risk feature.

ER-induced R-loops fuel ecDNA genesis
ER+ high-risk and HER2+ breast tumours were enriched for complex 
amplifications in two independent cohorts (OR > 10.1; P < 2.2 × 10−16; 
Fig. 3a and Extended Data Fig. 4a), motivating further exploration of 
their origin and nature (Supplementary Fig. 5a,b). There was no differ-
ence in cyclic amplifications in HER2+ER− primary tumours compared 
to HER2+ER+ primary tumours (Extended Data Fig. 4b). Leveraging 
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c, Lollipop plots illustrating the correlation between mutational features and the 
distance to each archetype. amp., amplification; BFB, breakage–fusion–bridge; 
TIC, templated insertion chain; LOH, loss of heterozygosity; WGD, whole-genome 
doubling; FGA, fraction of genome altered.
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two independent ecDNA inference methods, 43–67% of primary ER+ 
high-risk and HER2+ cases were predicted to harbour ecDNA (Extended 
Data Fig. 4c,d). A proportion of HER2+ primary tumours (25.7%) har-
boured amplifications in loci specific to the ER+ high-risk subgroup 
(Extended Data Fig. 4e and Supplementary Fig. 5c), with 8.57% pre-
dicted to be on ecDNA. Additionally, we observed a modest enrichment 
of inversions at the 11q13 locus in primary tumours. HRD and ecDNA 
were mutually exclusive in primary ER+ high-risk and IC10 tumours 
(OR = 0.21–0.29; false discovery rate (FDR) < 0.02; Supplementary 
Fig. 5d). We interrogated complex amplifications in 406 pre-invasive 
DCIS profiled with shallow WGS (5× median coverage)10. We predicted 
35 cyclic and 205 complex non-cyclic amplifications, enriched in ER+ 
high-risk + HER2+ tumours (OR = 4.21; P = 2.48 × 10−4; Extended Data 
Fig. 4f and Supplementary Fig. 5e). This pattern replicated in 12 DCIS 
samples from Genomics England (92.8×)25. Leveraging the clock-like 
accumulation of mutations, SNV density informs the timing of cyclic 
amplifications (Methods). Compared to cyclic amplifications in TNBC 
tumours, cyclic amplifications in ER+ high-risk and HER2+ tumours had 
a lower SNV density before amplification, suggesting an earlier origin 
(Fig. 3b and Supplementary Fig. 5f). Median time of cyclic amplifica-
tion in ER+ high-risk and HER2+ tumours occurs decades earlier than 
in IC10 tumours, respectively, implicating cyclic amplifications as 
early events.

Most cyclic amplifications in ER+ high-risk (88%) and HER2+ (96%) 
tumours overlapped at least one COSMIC-defined oncogene (Extended 
Data Fig. 4g). Of these, 79–92% involved oncogenes in IC-associated 
cytobands (Extended Data Fig. 1j) and 15% involved two or more cyto-
bands (Extended Data Fig. 4h and Supplementary Table 3). In cell line 
models of IC2 (UCD65) and IC6 (UCD12) before and after linear DNA 
digestion, significantly higher sequencing coverage occurred at regions 
predicted to encode ecDNA, corroborating our computational predic-
tions (Fig. 3c,d and Supplementary Fig. 5g,h). Oncogene incorporation 
varied across subtypes, with HER2+ tumours harbouring the largest 
number per megabase (Extended Data Fig. 4i,j). A total of 82% of IC2, 
59% of IC5 (HER2+), 48% of IC6 and 32.5% of IC1 tumours had predicted 
cyclic amplifications at subgroup-defining cytobands, whereas 3% of 
IC1 and IC9 tumours harboured cyclic amplifications at 20q13, span-
ning the NCOA3 oncogene (Fig. 3e). Overall 42% of IC9 tumours harbour 
ecDNA, but these ecDNAs are diffuse along the genome and do not 
include MYC. In support, focal SV peaks were not observed at 8q24 
spanning the MYC oncogene in IC9 primary or metastatic tumours. 
Instead, a broader region is subject to enhancer hijacking by the long 
noncoding RNA PVT1, as we previously reported26. PVT1 co-amplifies 
with MYC in about 90% of tumours (Supplementary Fig. 5i). Frequent 
enhancer hijacking at MYC may explain the weak correlation between 
MYC copy number and mRNA abundance (Supplementary Fig. 5j,k).

The subset of ER+ typical-risk tumours harbouring ecDNA fell along 
the ER+ typical-risk versus high-risk archetype continuum (Extended 
Data Fig. 4k–l). By contrast, ER− tumours with ecDNA had limited 
structural conservation (Extended Data Fig. 5a). Across all subgroups, 
similar patterns were observed in metastatic and pre-invasive tumours 
(Extended Data Fig. 5b–f).

Increased replication stress has been associated with response to 
checkpoint27 and DNA repair28 inhibitors, and hence is a therapeutic 
vulnerability in TNBC8. Assessing replication stress across the IC sub-
groups, we found increased levels of oncogene-induced replication 
stress in ER+ high-risk and HER2+ tumours compared to ER typical-risk, 
IC10 and IC4ER− tumours (FDR < 0.026; Extended Data Fig. 6a,b and 
Supplementary Table 2). The replication stress signature was positively 
correlated with TNBC-enriched and ER+ high-risk + HER2+-enriched 
genomic archetypes (effect size > 0.154, P < 4.98 × 10−15; Extended Data 
Fig. 6c–e). Within ER+ typical-risk tumours, ILC had a higher replication 
stress than IDC (FDR = 4.08 × 10−3). Meta-analysis suggests a positive 
association between ecDNA and replication stress in HER2+, IC1 and IC6 
tumours (Extended Data Fig. 6f) and higher levels of type-I interferon 

signature in ecDNA+ tumours (Supplementary Fig. 6a). Finally, ER+ 
high-risk and HER2+ tumours demonstrated increased cGAS–STING 
activity (Extended Data Fig. 6g,h), a possible therapeutic target linked 
to chromosomal instability and replication stress29.

Consistent with the findings of ref. 30, our data showed that cyclic 
amplifications were significantly enriched for translocations com-
pared to complex non-cyclic amplifications in ER+ primary tumours 
(Fig. 3f, Extended Data Fig. 7a,b and Supplementary Fig. 6b). These 
cyclic-amplified ER+ high-risk tumours had a higher ESR1 mRNA abun-
dance (β = 1.27; P = 6.90 × 10−3; Extended Data Fig. 7c) and enriched ER 
binding within the amplified region (Extended Data Fig. 7d and Supple-
mentary Fig. 6c). Nonetheless, ER signalling was lower in ER+ high-risk 
compared to typical-risk tumours (Extended Data Fig. 1h). Given the 
evidence for ecDNA in pre-malignant lesions, we reasoned that ER 
signalling is increased in DCIS lesions that classify as ER+ high-risk 
and subsequently decreases in invasive disease. Leveraging 18 paired 
ER+ DCIS and primary tumours with transcriptome sequencing10, we 
observed decreased ER signalling in ER+ high-risk tumours (effect 
size = 0.33; P = 0.03; Extended Data Fig. 7e). These data support the 
role of ER in ecDNA genesis through translocations and emphasize 
their early origin.

The mechanism by which ER activation induces translocations 
remains unknown. ER recruitment of A3B promotes double-stranded 
breaks (DSBs) at ER binding sites31 (Fig. 3f and Extended Data Fig. 7a). 
Increased ER-induced transcription leads to the formation of R-loops 
producing single-stranded DNA, a substrate for A3B-editing32. A3B 
deaminates cytosine to uracil, which can be repaired by base-excision 
repair (BER). Single-strand nicks induced by BER coupled with 
transcription-coupled nucleotide-excision repair processing of the 
R-loop can result in DSBs31. Together, these findings indicate that A3B 
can exacerbate chromosomal instability in the pre-invasive setting33. We 
reasoned that ER-induced R-loops initiate translocation-bridge amplifi-
cations through A3B-editing and confirmed that A3B binding in ER+ cell 
lines was enriched in cyclic versus non-cyclic amplifications (Extended 
Data Fig. 7d and Supplementary Fig. 6c). Treatment with oestradiol (E2) 
in MCF7 cell lines induced R-loops (nR-loops = 212) in the same regions 
where cyclic amplifications were observed in patient tumours (Fig. 3g 
and Extended Data Fig. 7f,g). This finding was specific to ER-induced 
R-loops (nR-loops = 13,965; Extended Data Fig. 7h). Unresolved R-loops 
due to A3B knockout in MCF10A cells were preferentially enriched in 
regions of cyclic amplifications in primary breast tumours (Extended 
Data Fig. 7i and Supplementary Fig. 6d). Tumours containing ecDNA 
were also enriched for transcription-replication collision-associated 
large tandem duplications (>100 kb), indicative of impaired R-loop 
resolution28 (Supplementary Fig. 6e). Translocations within cyclic 
amplifications were significantly closer to ER-induced R-loops than 
those outside cyclic amplifications (Extended Data Fig. 7j,k). These 
data support a role for A3B in R-loop resolution, contributing to ecDNA 
formation.

Accordingly, we reasoned that oestrogen-induced SV breakpoints 
would be enriched at ER-induced R-loops. Comparing SV patterns 
in E2-treated MCF7 cells through high-throughput genome-wide 
translocation sequencing of DSBs forming translocations induced by 
CRISPR–Cas9 (ref. 30), we confirmed the enrichment for E2-induced 
breakpoints at E2-induced R-loops (Fig. 3h) compared to all R-loops 
(Extended Data Fig. 7l). There was no difference in replication tim-
ing between cyclic and non-cyclic amplifications (Supplementary 
Fig. 6f). ER-induced R-loops were enriched closer to the IC-specific 
oncogenes PAK1 (IC2), ZNF703 (IC6) and MYC (IC9) than to all other 
COSMIC-defined oncogenes, including ERBB2 (Fig. 3i). There was no 
enrichment of ER-induced R-loops near IC1 oncogenes.

Germline CNA polymorphisms in A3B have been associated with 
APOBEC-dependent mutations34 and immune activation in breast can-
cer35. Despite limited power, our analyses found a modest but nonsig-
nificant decrease in ecDNA prevalence in ER+ high-risk and typical-risk 
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samples with the homozygous deletion allele (n = 5; Extended Data 
Fig. 7m). Together, these data indicate that ER activity promotes cyclic 
amplifications through R-loop formation and A3B-editing.

The ICs harbour distinct TMEs
Tumour clonal composition and genomic features are sculpted 
by immune pressures36, and oncogenic alterations promote both 
pro-tumour and anti-tumour immune responses37. Using transcrip-
tomic profiles, we characterized the TME in primary (nTCGA = 1,015; 
nMETABRIC = 1,894) and metastatic (n = 360) tumours focusing on four 
subtypes defined by immune infiltration and stromal composition: 
immune-enriched fibrotic, immune-enriched non-fibrotic, fibrotic and 
depleted38 (Fig. 4a, Extended Data Fig. 8a and Supplementary Table 2). 
The reproducibility of the TME subtypes is supported by single-cell 
spatial proteomic profiling (n = 384; Extended Data Fig. 8b) and cell 
type proportions estimated from bulk transcriptomics (Supplemen-
tary Fig. 7a).

We then quantified microenvironmental differences across the IC 
subgroups. Primary IC10 and IC4ER− were enriched for immune-rich 
(immune-enriched non-fibrotic and immune-enriched fibrotic) 
TMEs (OR = 3.004, P = 5.17 × 10−11, Fisher’s exact test; Fig. 4b and 

Supplementary Fig. 7b), as previously reported39. ER+ high-risk and 
HER2+ primary tumours harboured immune-depleted TMEs (OR = 3.09, 
P = 1.06 × 10−15, Fisher’s exact test), whereas genome-stable ER+ 
typical-risk and IC4ER− primary tumours were enriched for fibrotic 
signatures (fibrotic and immune-enriched fibrotic subtypes; OR = 5.619, 
P < 2.2 × 10−16, Fisher’s exact test). These observations replicated using 
a second transcriptional immune score (Supplementary Fig. 7c,d). 
Within ER+ high-risk tumours, immune enrichment did not differ 
across subgroups (Extended Data Fig. 8c). Among ER+ typical-risk 
tumours, ILCs were enriched for the immune-enriched fibrotic 
subtype compared with IDCs (OR = 2.18, P = 1.17 × 10−3; Extended  
Data Fig. 8d).

IC4ER− tumours have a more favourable prognosis but longer-term 
risk of recurrence than IC10 tumours5 despite similar genomic land-
scapes (Fig. 2a). To investigate differences in their TME, we leveraged 
single-cell spatial proteomic data and discovered an increased propor-
tion of fibroblasts and T cells in IC4ER− compared to IC10 tumours 
(Extended Data Fig. 8e and Supplementary Fig. 7e). In support, pre-
vious work has linked increased T cell infiltration with improved 
overall survival in TNBC39. Compared to primary tumours, ER− meta-
static tumours were depleted of immune-enriched non-fibrotic and 
immune-enriched fibrotic features (OR = 3.01; P = 2 × 10−4; Extended 
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Data Fig. 8f). By contrast, HER2+ and ER+ tumours exhibited stable 
TMEs through metastasis (Fig. 4b, Extended Data Fig. 8g and Supple-
mentary Fig. 7f), consistent with previous reports that ER promotes 
immunosuppression and immunoediting in pre-invasive lesions40,41.

We found that 43.86% of primary and 47.67% of metastatic tumours 
exhibited genetic immune escape (GIE), most of which occurred in a 
single pathway with varying prevalence across IC subgroups (Fig. 4c 
and Supplementary Tables 4 and 5). IC2 and IC6 tumours were more 
immune-depleted than IC1 and IC9 tumours (Extended Data Fig. 8c) 
but harboured fewer GIE (Extended Data Fig. 9a). Instead, 60% of pri-
mary IC6 tumours amplified IDO1, which encodes the heme-containing 
enzyme indoleamine 2,3-dioxygenase located within 8p11.21 that 
metabolizes tryptophan involved in immune tolerance42 (Extended 
Data Fig. 9b,c). ER+ typical-risk ILCs exhibit fewer GIE alterations than 
ER+ typical-risk IDC tumours (Extended Data Fig. 9d), and GIE was not 
associated with antigen burden (Supplementary Fig. 7g).

Complex alterations and SVs have been overlooked when evaluating 
GIE37. We found that about 20% of primary and metastatic tumours with 
GIE harboured SVs or complex amplifications (Fig. 4d and Extended 
Data Fig. 9e). HER2+ tumours demonstrated the largest increase in GIE 
between primary and metastatic disease, potentially owing to greater 
pressure to evade anti-HER2 therapies (OR = 2.23, FDR = 0.19, Fisher’s 
exact test; Extended Data Fig. 9f). These data illuminate the role of com-
plex alterations in immune escape and tumour-immune co-evolution 
during disease progression.

Discussion
Here we identify three dominant genomic archetypes of breast cancer 
driven by distinct mutational processes, describing a continuum of 
genomic profiles and providing a mechanistic basis for these patterns 
(Fig. 5a). These three archetypes overlap with the main clinical breast 
cancer subgroups with a notable difference. For a sizeable proportion 

of ER+ tumours (43.2%), the ER+ high-risk + HER2+ archetype dominates 
and the mutational processes are indistinguishable from those of HER2+ 
tumours. Rather than amplifying ERBB2, these ER+ high-risk tumours 
harbour focal amplifications of other oncogenes (Extended Data Fig. 1j) 
and have an increased risk of recurrence akin to HER2+ tumours before 
the introduction of anti-HER2 therapies5. These ER+ high-risk tumours 
may similarly benefit from agents directed at their amplified oncogenic 
drivers and/or shared vulnerabilities.

A defining feature of the ER+ high-risk + HER2+ archetype is the gen-
eration of focally amplified ecDNA through ER-induced R-loops and 
A3B-editing. ER-induced R-loops create single-stranded DNA, which 
serves as a substrate for A3B-editing. DSBs arising from BER and 
nucleotide-excision repair are resolved in the form of interchromo-
somal translocations. Dicentric chromosomes can form chromosome 
bridges during mitosis, and breakage of these bridges can generate 
ecDNA30. ecDNA formation preferentially occurs at loci that define 
the four ER+ high-risk subgroups and HER2+ disease. Although ecDNA 
genesis depends on ER, circular amplification may reduce reliance on 
ER by increasing a particular oncogene’s copy number and rewiring 
its regulatory network43. This is supported by reduced ER signalling 
in ER+ high-risk tumours from DCIS to invasive disease. As ER tran-
scriptional activity can contribute to DSBs44, ecDNA formation may 
balance increased oncogenic signalling with protection against fur-
ther ER-induced genomic instability (Fig. 5b), and hence reflects an 
evolutionary trade-off, consistent with mutual exclusivity between 
complex amplifications and diffuse genome instability.

Beyond tumour subtype, the mutational processes captured by our 
architectural map may be indicative of distinct therapeutic vulnerabili-
ties. For example, HRD-like tumours are sensitive to PARP inhibition 
and this has become a mainstay of therapy for TNBC. We find that 44% 
of TNBC tumours have HRD-like profiles on the basis of WGS, and 13% 
of ER+ high-risk tumours exhibit BRCA2-like patterns. Although HRD 
as measured from sequencing data is not confirmed to correlate with 
PARP inhibitor sensitivity, this result implies that additional patients 
may benefit from these agents. Further, we find that focally amplified 
ER+ high-risk tumours exhibit increased replication stress pathway 
activities, suggesting potential sensitivity to new agents targeting this 
pathway. Additionally, although APOBEC3 mutagenesis can occur early 
during tumorigenesis, given its effect on ER activity, A3B represents a 
potential target in the ER+ high-risk subgroup for which inhibitors are 
in development45.

The mutational processes that generate and propagate genomic 
instability both sculpt oncogenic signalling and mediate interactions 
between tumour cells and the TME. More specifically, SVs contribute 
to GIE in 9% of breast tumours, but have been overlooked, owing to 
the need for WGS. Basal-like IC10 tumours, which harbour both high 
genomic instability and immune infiltrates, probably adapt to this 
immune pressure through GIE. By contrast, ER+ tumours, both typical- 
and high-risk, are more immune-depleted at the onset with fewer GIE 
events, suggesting non-GIE mechanisms37. This is noteworthy given 
the evolving utility of immunotherapy in breast cancer46. Despite high 
immune infiltration, up to 62% of TNBC tumours are resistant to cur-
rent immunotherapies, potentially owing to GIE, whereas 38% of ER+ 
tumours have immune-enriched TMEs, making them candidates for 
such agents. Our findings highlight multiple potential strategies for 
personalizing breast cancer treatment, which will be the focus of ongo-
ing preclinical and translational studies.
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Methods

A detailed description of the methods and materials is available in the 
Supplementary Information.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All cohorts are publicly available. Data for TCGA BRCA samples can be 
found on the Genomic Data Commons Data Portal (https://portal.gdc.
cancer.gov/). DNA-sequencing data for the International Cancer Genome 
Consortium (ICGC) breast cancer samples can be found on the European 
Genome-Phenome Archive (accession numbers EGAD00001000141, 
EGAD00001001322, EGAD00001001334, EGAD00001001335, 
EGAD00001001336, EGAD00001001337 and EGAD00001001338). 
In cases in which it was possible, alignments for both TCGA and ICGC 
samples carried out by the Pancancer Analysis of Whole Genomes were 
used (https://docs.icgc-argo.org/docs/data-access/icgc-25k-data). 
RNA-sequencing data for the ICGC breast cancer samples can be found 
on the European Genome-phenome Archive under accession num-
bers EGAD00001001323, EGAD00001001339, EGAD00001001340 
and EGAD00001001341. Data for metastatic breast cancer samples 
(Hartwig) are available for academic use under a Data Use 25 Agree-
ment (DR-230) from the Hartwig Medical Foundation (https://www.
hartwigmedicalfoundation.nl/en/data/data-acces-request/). Data 
for HTAN DCIS tumours are available on the database of Genotypes 
and Phenotypes (accession number phs002371.v4.p1). Data for 
METABRIC breast cancer samples can be found on the European 
Genome-Phenome Archive (accession number EGAS00000000083). 
Data for paired primary and metastatic breast samples are available 
on the database of Genotypes and Phenotypes under accession num-
bers phs000730.v1.p1, phs000676.v1.p1 and phs001674.v1.p1, and on 
the Sequencing Read Archive under accession number SRP055001. 
Single-cell proteomic data for 384 METABRIC samples can be found at  

https://idr.openmicroscopy.org/webclient/?experimenter=-1 (idr0076). 
WGS data from GEL can be accessed through the Genomics England 
Research Network; the process for joining is described at https://www.
genomicsengland.co.uk/research/academic/join-gecip.

Code availability
Code for computational analysis is available via the Curtis Lab GitHub 
repository at https://github.com/cancersysbio/breast-architecture.
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Extended Data Fig. 1 | IC subgroup distribution varies across stages of 
progression, ancestry and histology. a) IC subgroup (left) and subtype (right) 
across stages of progression in ER+ samples. b) Inferred ancestry (primary 
samples, left or metastatic samples, right) across IC subgroups. c) IC subgroup 
(left) and subtype (right) across inferred ancestry in primary (top) and metastatic 
(bottom) stages. d) IC subgroup (left) and subtype (right) across inferred 
ancestry in primary (top) and metastatic (bottom) stages in ER+ samples.  
e) IC subtypes (left) and subgroups (right) across paired primary and metastatic 
samples with WES data. f) Graphical network representing primary/primary or 
primary/metastatic pairs; dots corresponding to a tumour biopsy colored by  

IC subgroup, the edge between two dots indicates whether the classification is 
stable (black) or changes (red) through metastasis. The surrounding color 
represents the PAM50 subtype (gray indicates missing data). g) IC subtype or 
subgroup consistency with PAM50 in pre-invasive DCIS (left), primary (middle), 
and metastatic (right) samples. h) ER early transcriptional signature according 
to subgroup. i) ER early signaling transcriptional signature in primary and 
metastatic tumours. j) Schematic overview of IC-specific amplification  
peaks and associated genes. ES, effect size. DCIS, ductal carcinoma in situ; 
LumA, luminal A; LumB, luminal B. The schematic in j was created with 
BioRender.com.
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Extended Data Fig. 2 | Genomic features of primary IC subgroups. a) IC group- 
level copy number profile with SV burden overlay in DCIS. b) Fraction of genome 
altered by subgroup across pre-invasive, primary invasive and metastatic 
tumours. Boxplot represents median, 0.25 and 0.75 quantiles with whiskers at 
1.5x interquartile range. c) Alteration burden in metastatic tumours split based 
on treatment prior to biopsy. The sample size is indicated at the top of each bar. 
d) Fraction genome altered, fraction LOH, and number of damaging SVs in IC10 
and IC4ER- subtypes. e) Proportion of IC10 and IC4ER- tumours with alterations 
in genes involved in three key pathways: cell cycle, DNA damage response (DDR), 
and ubiquitination. f) Alteration burden distribution in metastatic samples 
across metastatic sites. The sample size for each group is at the top of each bar. 

g-h) Activity of each of the six rearrangement signatures across the IC subgroups 
(g) or the ER+ High-risk subtypes (h) in primary tumours. i) Copy number and 
SV profiles of primary (left) and metastatic (right) samples, each representative 
of either a TNBC -enriched, ER+ Typical -enriched, ER+ High/HER2 + -enriched, 
or mixed profile in the center of the Pareto front. j) Proportion that each 
complex SV event contributes to the total complex SV burden stratified by 
subgroup. DEL, deletion; LOH, loss-of-heterozygosity; FDR, false discovery 
rate; BFB, bridge-fusion breakage; CPXDM, complex double minute; DM, 
double minute; INVDUP, inverted-duplication; TIC, templated insertion chain; 
TRA, translocation.
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Extended Data Fig. 3 | Genomic features are conserved though elevated 
through metastasis. a) Pareto front projection with tumours colored by 
presence of co-amplification of two or more amplifications in the following 
cytobands: 17q23 (IC1), 11q13 (IC2), 17q12 (IC5/HER2 + ), 8p12 (IC6) or 8q24 (IC9). 
b) Pareto front projection with tumours colored by HRD and ER status. c) Barplot 
shows the proportion and number of samples predicted to be BRCA1-like  
or BRCA2-like across the subgroups. d) Proportion of various SV events in 
BRCA1-like, BRCA2-like or non-HRD tumours across the subgroups. e) Replication 
of the Pareto front projection using the GEL (primary) cohort. Each dot represents 
the architecture profile of each tumour colored by IC subgroup. f) Activity of 
six SV signatures across the IC subgroups in metastatic tumours. g) Distribution 
of primary and metastatic tumours on Pareto front. h) Comparison of SV 
signatures in primary and metastatic tumours across the IC subgroups.  
Barplot shows the log fold change of each rearrangement signature between 
primary and metastatic tumors across the IC subgroups. i) Transition vector 
corresponding to the difference in position on the Pareto fronts from (g) 
between the centroid of primary samples and the centroid of metastatic 
samples in each IC group. j) Replication of the Pareto front projection using the 

METABRIC (primary) cohort. Each dot represents the architecture profile of 
each tumour colored by IC subgroup. k) Forest plot shows the association 
between the proportion of archetypes and distant relapse free (DRF) survival, 
correcting for ER and HER2. Dots correspond to estimated hazard ratios and 
segments to 95% confidence intervals. l) Association between recurrence in 
the ER+ Typical-risk samples and the distance to each archetype (spanning from 
0 to 1, linear regression, top), transcriptomic proliferative and HRD LOH scores 
(linear regression, bottom) and histological type (IDC or ILC, fisher’s exact test, 
bottom) in the METABRIC dataset. Significance: P ≤ 0.05 (*), P ≤ 0.01 (**), and 
P ≤ 0.001 (***). m) Differential pattern of relapse across ER + IC subgroups and by 
histology (IDC: invasive ductal carcinoma and ILC: invasive lobular carcinoma), 
illustrated by the cumulative (black) and annual (red) risk of relapse. n) ER+ 
Typical IDC and ILC distribution on the Primary-Discovery Pareto front. o) ER+ 
Typical IDC and ILC distribution on the METABRIC Pareto front. SV, structural 
variant; WGD, whole-genome doubling; HRD, homologous repair deficiency; 
LOH, loss-of-heterozygosity; IDC, invasive ductal carcinoma; ILC, invasive 
lobular carcinoma.



Extended Data Fig. 4 | Cyclic amplifications preferentially amplify IC-specific 
oncogenes. a) Proportion or number of samples with at least one cyclic or 
complex non-cyclic amplification in primary GEL tumours. b) Proportion or 
number of samples with at least one cyclic or complex non-cyclic amplification 
in HER2+ primary tumors stratified by ER positivity. c) Proportion or number  
of primary samples with at least one cyclic amplification according to  
JaBbA. d) Proportion of samples where AmpliconArchitect called a cyclic 
amplification but JaBbA called an alternative type of alteration. Colors indicate 
which alteration JaBbA called. e) Proportion of HER2+ primary tumours that 
harbor cyclic or linear amplification in ER+ High-risk-specific oncogenes (left), 
and the SV types (right). f) Proportion or number of samples with at least one 
cyclic or complex non-cyclic amplification in DCIS lesions. Left panel: DCIS 

cohort stratified by subgroup, right panel: DCIS cohort and additional samples 
from GEL stratified by sequencing method. g) Proportion of cyclic amplifications, 
stratified by subgroup, that amplify IC-specific or alternative oncogenes in 
primary tumours, both the discovery and replication (GEL) cohorts. The number 
of amplifications in each category are included on each bar. h) Number ecDNA 
involving more than one IC-specific oncogene. i) Number of oncogenes per 
megabase involved in ecDNA in each subgroup. Boxplot represents median, 
0.25 and 0.75 quantiles with whiskers at 1.5x interquartile range. j) Ratio of 
oncogenes amplified on ecDNA compared vs. oncogenes in the IC-specific 
cytoband per megabase. k) Proportion of ER+ Typical-risk ecDNA that 
incorporate each oncogene. l) Proportion of each archetype in ER+ High-risk, 
ER+ Typical and ER+ Typical containing ecDNA tumours.
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Extended Data Fig. 5 | Cyclic amplifications are maintained in metastatic 
tumours. a-b) Number of recurrent oncogenes per Mbp for each subgroup in 
primary (a) and metastatic (b) tumors. c-d) Proportion of cyclic amplifications, 
stratified by subgroup, that amplify IC-specific or alternative oncogenes  
in metastatic (c) and DCIS (d) lesions. The number of amplifications in  
each category is included on each bar. e) Proportion of metastatic tumours 

within each IC subtype that harbor cyclic, complex non-cyclic or linear 
amplification in the IC-specific oncogenes. The number of tumors within  
each subtype are indicated at the top of each subpanel. f) Two representative 
examples of ER+ High-risk DCIS lesions harboring ecDNA containing at 8p11 
(IC6). AMP, amplification.



Extended Data Fig. 6 | Elevated replication stress in TNBC, ER+ High-risk 
and HER2+ tumours. a-b) Replication stress signature stratified by IC 
subgroup (left) or by histology within ER+ Typical-risk subgroup IDC and ILC 
(right) in the TCGA (a) and METABRIC (b) datasets. FDR adjusted p-values are 
reported. c-d) Replication stress signature stratified by IC subtypes in TCGA 
(c) and METABRIC (d) datasets. e) Pareto projection of METABRIC tumors, 
colored by replication stress. f) Replication stress signature in HER2+ tumors; 
IC1, IC6, and IC9 subtypes of ER+ High-risk; and TNBC IC10 stratified by 

presence of ecDNA. ER+ High IC2 was excluded due to lack of sample size (n = 2 
for ecDNA+ IC2). g-h) cGAS/STING signature stratified by IC subgroup (left) or 
by histology within ER+ Typical-risk subgroup IDC and ILC (right) in the TCGA 
(g) and METABRIC (h) datasets. FDR adjusted p-values are reported. In a-d, 
effect sizes (ES) and FDR-adjusted p-values from Mann-Whitney Rank Sum test 
are shown. In f, ES and p-values from linear regression correcting for cohort 
are shown. Additionally, the amplicon copy number was corrected for 
amplicon-driven HER2+ and ER+ Typical tumors.
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Extended Data Fig. 7 | Model for ER-induced R-loops in ecDNA genesis.  
a) Simplified schematic illustrating model. Blue letters correspond to figure 
panels in Extended Data Fig. 7. Created with BioRender.com. b) Number  
of translocations in cyclic vs. non-cyclic amplifications across subgroups. 
Boxplot represents median, 0.25 and 0.75 quantiles with whiskers at 1.5x 
interquartile range. c) ESR1 mRNA abundance in cyclic amplification-positive 
vs. -negative (top) and non-cyclic amplification-positive vs. -negative (bottom) 
primary from Nik-Zainal et al., TCGA or metastatic tumors stratified by the IC 
subgroups, considering ER+ High-risk and HER2+ subgroups. Odds ratio from 
logistic regression correcting for tumor purity and error bars represent 95% 
confidence intervals. d) Density of APOBEC3B and ER ChIP-Seq peaks within 
cyclic and complex non-cyclic amplifications in primary tumours. e) ER early 
signaling transcriptional signature in DCIS and primary ER+ Typical vs. ER+ 
High-risk tumors. f-g) Density of ER-induced R-loops in cyclic and complex non- 
cyclic amplifications stratified by IC subgroups in primary (f) and metastatic (g)  

tumours. h) Density of all R-loops in cyclic vs. non-cyclic amplifications in 
primary and metastatic tumors. i) Difference in number of R-loops between 
A3B knockout (KO) wildtype (WT) MCF10A cell lines overlapping cyclic or 
non-cyclic amplifications at baseline or after A3B activation (PMA treatment). 
j-k) Median distance between a translocation and its closest ER-induced R-loop 
considering translocations within or outside cyclic amplifications in primary 
( j) and metastatic (k) tumors. l) Percent of breakpoints that overlap any R-loop 
with (+) or without (−) E2 treatment. Error bars represent the standard deviation 
across three replicates. m) Proportion of samples with or without ecDNA 
stratified by inferred APOBEC3B germline copy number. The total number of 
samples is included at the top of each bar. In b and j-l fold change (FC) and 
p-values or false discovery rates (FDR) are from Mann-Whitney Rank Sum test. 
In d-i, effect sizes (ES) are the difference in medians and p-values are from 
Mann-Whitney Rank Sum test. BER, base-excision repair; TC-NER, transcription- 
coupled nucleotide excision repair; E2, estrogen.



Extended Data Fig. 8 | IC subgroups harbor distinct TMEs. a) Schematic 
illustrating additional transcriptomic profiles and overlap with genomic profiles 
induced in Fig. 1a. Created with BioRender.com. b) Mean proportion of different 
cell types from IMC data by TME subtypes. The Wilcoxon test significance was 
reported above each comparison as follow: ns: not significant, P ≤ 0.05 (*), 
P ≤ 0.01 (**), P ≤ 0.001 (***), and P ≤ 0.0001 (****). c) Proportion of TME subtypes 
in primary and metastatic samples for the ER+ High-risk ICs and IC5 (HER2 + )  

by ER status. d) Proportion of TME subtypes for primary samples (METABRIC) 
in ER+ Typical invasive IDC and ER+ Typical ILC. e) Mean proportion of 
fibroblasts and T cells in TNBC samples with IMC proteomic data obtained 
from bootstrapping (n = 1000). f) Proportion of TME subtypes for primary and 
metastatic samples stratified by ER status. g) Proportion of TME subtypes for 
primary samples and liver metastases by groups. IMC, imaging mass cytometry; 
SMA, smooth muscle actin.
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Extended Data Fig. 9 | Genetic mechanisms of immune escape in IC 
subgroups. a) Proportion of primary and metastatic samples in each ER+ 
High-risk subtype with genetic immune escape (GIE) alterations, where 
values correspond to the number of pathways altered (left). Proportion of 
samples with alterations in each pathway stratified by IC subtype and  
disease stage (right). b) Proportion of primary ER+ High-risk samples with 
co-amplification of IDO1 with FGFR1 or ZNF703 by IC subgroup. c) Proportion 
of IC6 tumours with immune enriched (IE or IE/F) or immune depleted (D or F) 
TME subtypes stratified by the co-amplification of IDO1 with FGFR1 or ZNF703 
in METABRIC and TCGA. d) Proportion of ER+ Typical IDC and ILC with GIE (left). 

Odds ratio and p-value from Fisher’s exact test. Proportion of pathways 
altered in IDC and ILC with GIE (right). e) Number of alteration in immune 
escape pathways for primary and metastatic samples, normalized by number 
of samples with alterations. f) Odds ratio for the frequency of GIE pathway 
alterations, comparing metastatic to primary samples. Background shading 
indicates FDR adjusted p-values (Fisher’s exact test). The color of the dot 
represents the direction and magnitude of the odds ratio while the dot size 
indicates the number of samples with a GIE in each pathway (y-axis). LOH, 
loss-of-heterozygosity.
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