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Unsupervised representation learning on 
high-dimensional clinical data improves 
genomic discovery and prediction
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Although high-dimensional clinical data (HDCD) are increasingly available in 
biobank-scale datasets, their use for genetic discovery remains challenging. 
Here we introduce an unsupervised deep learning model, Representation 
Learning for Genetic Discovery on Low-Dimensional Embeddings (REGLE), 
for discovering associations between genetic variants and HDCD. REGLE 
leverages variational autoencoders to compute nonlinear disentangled 
embeddings of HDCD, which become the inputs to genome-wide association 
studies (GWAS). REGLE can uncover features not captured by existing 
expert-defined features and enables the creation of accurate disease-specific 
polygenic risk scores (PRSs) in datasets with very few labeled data. We apply 
REGLE to perform GWAS on respiratory and circulatory HDCD—spirograms 
measuring lung function and photoplethysmograms measuring blood 
volume changes. REGLE replicates known loci while identifying others not 
previously detected. REGLE are predictive of overall survival, and PRSs 
constructed from REGLE loci improve disease prediction across multiple 
biobanks. Overall, REGLE contain clinically relevant information beyond 
that captured by existing expert-defined features, leading to improved 
genetic discovery and disease prediction.

Modern healthcare systems generate a vast amount of high-dimensional 
clinical data (HDCD), such as spirograms, photoplethysmogram 
(PPG), electrocardiogram (ECG), computed tomography and mag-
netic resonance imaging, that cannot be summarized as a single 
binary or a continuous number (such as ‘has asthma’ or ‘height in 
centimeters’). HDCD provide a unique opportunity to reveal the 
genetic architecture of diseases and complex traits when coupled 
with biobank-scale genetic data1–6, but we lack statistical methods 
to fully use HDCD in genome-wide association studies (GWAS), as 
standard GWAS require the phenotype of interest to be encoded as a  
single scalar.

The most common method for GWAS on HDCD uses a small num-
ber of expert-defined features (EDFs) extracted from the HDCD as the 
target phenotypes. For example, spirograms are a graphical represen-
tation of spirometry test results, a widely used clinical test for lung 
function that measures airflow and volume over time7,8. Spirograms 
can be summarized into EDFs, including forced vital capacity (FVC), 
forced expiratory volume in the first second (FEV1), FEV1/FVC (nonlin-
ear function of FVC and FEV1), peak expiratory flow (PEF) and forced 
mid-expiratory flow (FEF25−75%)9. Spirogram EDFs are used in clinical 
settings to diagnose diseases such as chronic obstructive pulmonary 
disease (COPD)10,11. In another example, PPG measures volumetric 
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have previously been applied to metabolomics data30, the utility of VAE 
embeddings for GWAS, polygenic risk scores (PRSs) and downstream 
analyses has not been previously explored. We apply REGLE in two 
case studies to understand the genetic architecture of lung function 
from raw spirograms and circulatory function from PPG. Compared to 
GWAS on spirogram and PPG EDFs, our GWAS on the learned encodings  
recovers the most known genetic loci linked to lung and circulatory 
function while also detecting additional loci. PRS created from loci 
identified via GWAS of REGLE of spirograms improves COPD and asthma 
predictions. Similarly, PRSs derived from REGLE of PPG improve hyper-
tension (HTN) and systolic blood pressure (SBP) predictions. These 
results indicate that REGLE successfully extracts a meaningful repre-
sentation of lung function from spirograms and of circulatory function 
from PPG, which in turn improves genetic discovery and risk prediction.

Results
Overview of REGLE
REGLE consists of three main steps. First, we learn a nonlinear, 
low-dimensional, disentangled representation (that is, an encod-
ing) of the HDCD using a VAE29 trained to compress and reconstruct 
HDCD (Fig. 1; Methods). Autoencoders consist of an encoder and 
a decoder, connected by a low-dimensional ‘bottleneck’ layer. The 
encoder summarizes the input data into a small set of numbers at the 
bottleneck layer, and the decoder reconstructs the input data from  
the low-dimensional summary31. VAE29 is a special type of autoencoder 
that introduces stochasticity in the encoder. The VAE implicitly forces 
the learned encodings to be relatively disentangled32, that is, the  
encodings have relatively uncorrelated coordinates and separable 
biological factors can be better captured in each coordinate. Second, 
we perform GWAS independently on each encoding coordinate. Third, 
we use PRSs from the encoding coordinates as genetic scores of general 
biological functions and potentially combine them to create a PRS for 
a disease or trait of interest (Fig. 1).

REGLE enables relevant EDFs to be optionally included in the input 
to the decoder of the model so that the encoder is encouraged to learn 

changes in peripheral blood circulation using infrared light. Previously 
studied EDFs of PPG include the presence (or absence) of a notch, 
position of the notch, position of the peak, position of the shoulder 
and peak-to-peak time12–16. PPG EDFs have known associations with 
cardiovascular diseases, such as coronary heart disease12. Spirograms 
and PPG EDFs are heritable, and GWAS on EDFs have helped identify the 
genetic architecture of lung17–19 and circulatory function20–22. However, 
EDFs may not capture all heritable signals encoded in spirograms or 
PPGs, thus GWAS on these EDFs may not exploit the full potential of 
these HDCD.

A simple approach to HDCD GWAS performs GWAS on each data 
coordinate (for example, time point or pixel). For example, previ-
ous work performed GWAS on each recorded ECG time point23. This 
approach is computationally expensive and has low statistical power 
due to the high correlation of nearby coordinates and the massive 
multiple-testing burden24,25. A popular alternative performs principal 
component analysis (PCA)26 on the HDCD and then GWAS on a subset 
of the PCs27. However, PCA assumes a linear relationship between 
the raw HDCD and the underlying biological factors of interest and 
does not explicitly model spatial or temporal structure. Moreover, 
performing GWAS on a subset of PCs may miss heritable signals, which 
are often small.

Machine learning (ML)-based phenotyping uses HDCD as input 
to a supervised ML model to predict trait labels and then performs 
GWAS using the model predictions as the target phenotype3,6,28. While 
ML-based phenotyping can augment standard GWAS on manually 
defined trait labels, the supervised model only learns signals related 
to the specific target trait. Additionally, for the common case in which 
the supervised model uses deep learning, many labeled examples may 
be required to achieve good performance.

To overcome these limitations, we developed a principled method, 
Representation Learning for Genetic Discovery on Low-Dimensional 
Embeddings (REGLE), that is computationally efficient, requires no 
labels and can incorporate information from EDFs if available. REGLE 
is based on the variational autoencoder (VAE)29 model. Although VAEs 
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only the residual signals not represented by the EDFs (Fig. 1). This ability 
to incorporate prior knowledge of important data features (from users 
or clinicians) is a key advantage of REGLE.

Overview of REGLE on spirograms
We applied REGLE to obtain low-dimensional representations of 
spirogram curves, which we call spirogram encodings (SPINCs; Fig. 2). 
To construct SPINCs, we trained a convolutional VAE29 to reconstruct 
spirograms (Fig. 2a; Methods). In addition, we constructed another 
set of encodings we call residual spirogram encodings (RSPINCs) by 
injecting five EDFs (FEV1, FVC, FEV1/FVC, PEF and FEF25–75%) as inputs 
to the decoder when reconstructing flow–volume curves (Fig. 2a). 
We generated SPINCs and RSPINCs for all individuals (n = 351,120) in 
the UK Biobank (UKB)33,34 using their first-visit spirogram, excluding 
individuals whose spirogram failed our quality control (QC) measures 
(Methods). We used 80% of the individuals whose genetically inferred 
ancestry (GIA) is European (n = 259,692) to train the (R)SPINCs mod-
els and 20% (n = 65,266) to evaluate reconstruction performance and 
choose hyperparameters (Extended Data Fig. 1 and Supplementary 
Table 1; Methods). Using just five SPINCs (the number of common 
spirogram EDFs), we observed highly accurate reconstruction of the 
input spirograms (Fig. 2b). SPINCs consistently outperformed an equiv-
alent number of PCs in terms of reconstruction accuracy at small latent 
dimensions (Fig. 2c, Supplementary Table 2 and Supplementary Note). 
We observed similarly accurate reconstructions using EDFs + RSPINCs 
and confirmed that the addition of RSPINCs improves the reconstruc-
tion quality significantly, compared to using a decoder-only model 
to reconstruct curves from EDFs only (Extended Data Fig. 2). We used 
two RSPINCs to balance the number of additional coordinates and the 
reconstruction accuracy. Notably, the learned representations are 

highly consistent when trained with multiple different initializations 
(Extended Data Fig. 3 and Supplementary Note).

(R)SPINCs are partially interpretable
Leveraging the generative nature of REGLE models, we studied the 
influence of RSPINC coordinates on spirogram shape by fixing the 
values of EDFs (obtained from a randomly selected individual in the 
validation set) and varying one RSPINC coordinate while keeping 
the other one fixed at zero and generating the corresponding flow– 
volume spirograms using only the decoder portion of the RSPINCs 
model (Fig. 2d). A typical flow–volume spirogram consists of the follow-
ing two distinct parts: a relatively brief part to reach peak flow where the 
flow increases monotonically as the volume increases, and the main part 
of the spirogram where the flow decreases monotonically. In Fig. 2d, we 
clearly observed that varying the first coordinate of RSPINCs amounts 
to widening or narrowing of the second part (negative slope) while 
keeping the first part relatively fixed. Similarly, varying the second coor-
dinate of RSPINCs widens or narrows the first part (positive slope) while 
keeping the second part relatively fixed. Notably, when varying either 
coordinate, the maximum flow value (PEF) and the final volume value 
(FVC) stay roughly the same, as expected because all EDFs were fixed.

Overview of REGLE on PPGs
We applied REGLE to obtain low-dimensional representations of PPG 
curves computed from a median single heartbeat, which we call PPG 
encodings (PLENCs; Fig. 3). To construct PLENCs, we trained a convo-
lutional VAE29 to reconstruct PPGs (Fig. 3a; Methods). We generated 
PLENCs for all individuals (n = 170,714) in UKB33 using their first-visit 
PPG, excluding individuals whose PPG failed our QC measures  
(Methods). We used 80% of the European GIA individuals (n = 136,239) 
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to train the PLENCs models and 20% (n = 34,475) to evaluate the recon-
struction performance and choose hyperparameters (Extended Data 
Fig. 4 and Supplementary Table 1; Methods). With just five PLENCs 
(the number of PPG EDFs), we observed a highly accurate reconstruc-
tion of the input PPG (Fig. 3b and Supplementary Table 3). PLENCs 
consistently outperformed PCs in terms of reconstruction accuracy 
at small latent dimensions (Fig. 3c and Supplementary Note). We also 
constructed residual PPG encodings (RPLENCs) by injecting five PPG 
EDFs (absence of notch, position of notch, position of peak, position 
of shoulder and peak-to-peak time).

(R)SPINCs and (R)PLENCs encode information beyond EDFs
Some SPINCs and PLENCs are highly correlated with known EDFs (Pear-
son correlation r between SPINC3 and FVC is 0.96; r between PLENC3 
and position of the shoulder is 0.74; Extended Data Figs. 5 and 6), while 
both RSPINCs coordinates have low correlation (∣r∣ < 0.3) with EDFs as 
expected (Extended Data Fig. 5). (R)SPINCs and (R)PLENCs are also cor-
related with other predictors of lung function (covariates), such as age, 
sex, height, body mass index and smoking status (Extended Data Fig. 5).

We residualized both the EDFs and the covariates from (R)SPINCs 
and (R)PLENCs and computed correlation with tabular UKB features 
(UKB phenotypes whose types are a real number, integer, date, binary 
or categorical). Multiple groups of fields strongly and significantly cor-
related with the (R)SPINCS and (R)PLENCs even after residualizing (Sup-
plementary Tables 4–8 and Supplementary Note). Both (R)SPINCs and 
(R)PLENCs were associated with overall survival. For example, SPINC3 
had a hazard ratio of 0.68 (95% confidence interval (CI), 0.65–0.71; 
P = 1.6 × 10−83 under the Cox proportional hazards model), implying the 
hazard of death decreased by 32% per one s.d. increase in the coordinate 
(Supplementary Note, Extended Data Fig. 7, Supplementary Figs. 1–3 
and Supplementary Table 9; Methods).

REGLE detects new loci for lung and circulatory functions
We generated SPINCs (dim = 5), RSPINCs (dim = 2, in addition to 
five EDFs) for all individuals with valid first-visit spirograms in UKB 
(Extended Data Fig. 1 and Supplementary Figs. 4 and 5; Methods) and 
PLENCs (dim = 5), RPLENCs (dim =2, in addition to five EDFs) for all 
individuals with valid first-visit PPGs in UKB (Extended Data Fig. 4; 
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Table 1 | Comparison of GWAS significant loci

System Method (number of traits) Sample size Total Known (%) Unknown (%)

Lung

GWAS Catalog + Shrine et al.19 – 1,104 – –

Shrine et al.19 581 × 103 754 – –

Spirogram EDFs (5) 325 × 103 613 581 (95%) 32 (5%)

Spirogram PCA (5) 325 × 103 412 397 (96%) 15 (4%)

SPINCs (5) 325 × 103 575 510 (89%) 65 (11%)

EDFs + RSPINCs (7) 325 × 103 659 596 (90%) 63 (10%)

Cardiovascular

GWAS Catalog – 520 – –

PPG EDFs (5) 141 × 103 62 24 (39%) 38 (61%)

PPG PCA (5) 141 × 103 43 20 (47%) 23 (53%)

PLENCs (5) 141 × 103 90 40 (44%) 50 (56%)

EDFs + RPLENCs (7) 141 × 103 75 28 (37%) 47 (63%)

For lung function and spirograms, EDFs are FEV1, FVC, FEV1/FVC, PEF and FEF25−75%, and ‘known’ and ‘unknown’ are in reference to lung function loci in the GWAS Catalog and Shrine et al.19. For 
cardiovascular function and PPG, EDFs are absence of notch, position of notch, position of peak, position of shoulder and peak-to-peak time, and ‘known’ and ‘unknown’ are in reference to 
cardiovascular disease loci in GWAS Catalog.
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Methods). We then performed GWAS on all European GIA individuals 
across all encoding coordinates, five spirogram EDFs and five PPG EDFs 
using BOLT-LMM35,36, adjusting for covariates (Supplementary Note 
and Supplementary Figs. 6–19; Methods). (R)SPINCs and (R)PLENCs 
have significant SNP heritability (Supplementary Table 10 and Sup-
plementary Note; Methods), indicating the presence of genetic signals 
not captured by the EDFs (Supplementary Table 10). Furthermore, 
SPINCs and PLENCs GWAS have higher power (measured by expected 
chi-square statistics) compared to PCA GWAS35,36 (Supplementary 
Tables 11 and 12; Methods).

GWAS on five SPINCs detected 575 independent genome-wide 
significant (GWS) loci (r2 ≤ 0.1 and P ≤ 5 × 10−8) after merging hits within 
250 kb together (Table 1; Methods). Most GWS loci from SPINCs and 
EDFs + RSPINCs recover previously known loci19 (89% for SPINCs 
and 90% for EDFs + RSPINCs). SPINCs discovered more previously 
unknown GWS loci (65 of 575, 11%) than EDFs or PCA (Table 1 and Sup-
plementary Note). We observed similarly superior (R)SPINCs perfor-
mance when compared to a baseline model of nonlinear cubic spline 
coefficients instead of linear PCs (Supplementary Table 13) and when 
excluding UKB samples from ref. 19 (Supplementary Table 14). Func-
tional enrichment analysis with GARFIELD37 shows that these loci are 
enriched for lung tissue DNase I hypersensitive sites (Supplemen-
tary Figs. 20–26 and Supplementary Note) and the EDFs + RSPINCs 
loci show stronger ontology term enrichments than EDFs loci alone 
(Extended Data Fig. 8) using GREAT38. We performed multiple analy-
ses to ensure that these previously unknown loci were not detected 
by EDFs or previous work (Supplementary Note and Supplementary  
Tables 15 and 16).

GWAS on five PLENCs detected 90 independent GWS loci (Table 1; 
Methods). We compared our PLENCs GWS loci to all cardiovascular 

function-related loci from the GWAS Catalog39 (Methods; 520 known 
independent loci) and GWAS on PPG EDFs. Of the 90 GWS PLENCs 
loci, 50 (56%) were not previously known (Table 1 and Supplementary 
Table 17). Functional enrichment analysis showed that PLENCs GWS loci 
are enriched for fetal heart, heart and blood vessel tissue DNase I hyper-
sensitive sites (Supplementary Figs. 27–33 and Supplementary Note).

(R)SPINCs improve asthma and COPD PRS over EDFs in UKB
We computed PRSs using BOLT-LMM35,36 effect sizes for five SPINC and 
two RSPINC coordinates, in addition to five spirogram EDFs. We treated 
these sets of PRSs as intermediate genetic scores for lung function. 
Given a specific trait, a set of such intermediate PRSs and a (small) set of 
individuals for whom the trait status is available, one can combine the 
intermediate PRSs into a single trait-specific PRS via a weighted linear 
sum of the intermediate PRSs. We created disease-specific PRSs for 
asthma and COPD from the following three sets of intermediate PRSs: (1) 
five EDFs, (2) five SPINCs and (3) five EDFs plus two RSPINCs. We learned 
the disease-specific PRS weights within the modeling set (n = 324,958) 
of European GIA individuals in UKB using medical-record-based 
asthma and COPD statuses. To evaluate the performance of each 
disease-specific PRS, we computed the accuracy of the PRS in a com-
pletely separate set of individuals from the European GIA (n = 110,722) 
not previously used for model training or GWAS.

We observed that the SPINC asthma PRS stratifies the risk groups 
more effectively than the EDF PRS on both ends of the risk spectrum 
(Fig. 4 and Supplementary Table 18). In addition, we observed statis-
tically significant improvements in area under the receiver operat-
ing characteristic curve (AUC-ROC), area under the precision-recall 
curve (AUC-PR) and Pearson correlation using the SPINC PRS 
(Supplementary Table 18). We observed the same trend for COPD 
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(Fig. 4 and Supplementary Table 19). Furthermore, we observed that the 
EDF + RSPINC PRS significantly outperforms the EDF PRS on almost all 
metrics for both asthma and COPD (Fig. 4 and Supplementary Tables 18 
and 19). We observed that the SPINC COPD PRS outperforms the FEV1/
FVC PRS (Supplementary Table 19) for predicting medical-record-based 
COPD, despite FEV1/FVC having been shown to be one of the best phe-
notypes for generating a COPD PRS, even outperforming a PRS created 
from a GWAS of COPD directly6. Finally, we observed that for both dis-
eases, the SPINC and EDF + RSPINC PRSs outperform the PRS generated 
by baseline methods such as PCA (Supplementary Tables 18 and 19).  
These results provide further evidence that SPINCs capture more 
genetic determinants of lung function related to asthma and COPD 
than the same number of EDFs, and RSPINCs capture additional genetic 
factors not captured by the EDFs.

We then explored whether disease-specific weights could 
be learned from a subset of the training data. For both asthma and 
COPD, the (R)SPINC-based PRS fit with as few as 100 disease cases 
performed indistinguishably from those trained on the full training 
data (Fig. 1 (step 3) and Extended Data Fig. 9). Finally, we evaluated PRS 
generated by GWAS with a cohort-level phenotype adjustment using 
inverse-normal transformation40. While we observed fewer significant 
differences in this case, SPINCs and EDFs + RSPINCs maintained statis-
tically significant improvement for asthma (Supplementary Fig. 34).

(R)SPINC PRS transferred to multiple datasets and ancestry
To test the generalizability of our (R)SPINC PRSs to individuals outside 
the UKB and those of non-European GIA, we transferred our asthma 
and COPD PRSs to the Genetic Epidemiology of COPD (COPDGene)41, 
eMERGE III (dbGaP accession phs001584.v2.p2), European Prospective 

Investigation into Cancer in Norfolk (EPIC-Norfolk)42 and Indiana 
Biobank datasets43 (Supplementary Table 20).

For COPDGene, we observed that the SPINC PRS outperforms the 
EDF PRS on all four evaluation metrics for COPD. In the ‘non-Hispanic 
white’ subset (n = 6,576), differences in all four metrics were statisti-
cally significant (Fig. 5a and Supplementary Table 21). In the ‘African 
American’ subset (n = 3,140), differences were statistically significant 
for AUC-ROC and Pearson correlation (Supplementary Table 21). The 
EDF + RSPINC PRS significantly outperformed the EDF PRS in AUC-ROC 
and Pearson correlation in ‘non-Hispanic white’, but did not in the ‘African 
American’ subset (Supplementary Table 21 and Supplementary Note).

We also transferred the UKB PRSs to eMERGE III (‘white’ subset, 
n = 8,288), EPIC-Norfolk (self-reported ‘white’, n = 21,010) and the 
Indiana Biobank (mostly European GIA, n = 5,254; Methods) to evalu-
ate asthma, asthma and COPD and asthma and COPD, respectively. 
We observed consistent improvement from using SPINC PRSs over 
EDF PRSs for both COPD and asthma phenotypes for top-percentile 
prevalences, AUC-ROC and AUC-PR. The improvement was statistically 
significant for AUC-PR and the top 1% and 5% prevalence in eMERGE III 
and for AUC-ROC and AUC-PR in EPIC-Norfolk (Fig. 5b–d).

PLENCs improve hypertension and blood pressure PRS  
over EDFs
We computed PRSs for the five PLENCs and two RPLENCs plus five 
PPG EDFs and then used these sets of PRSs as intermediates for con-
structing cardiovascular function PRSs. We created trait-specific PRSs 
for HTN and SBP using the REGLE framework (Fig. 1 and Supplemen-
tary Table 22). We evaluated HTN and SBP PRSs generated by PLENCs 
and PPG EDFs in independent datasets (COPDGene, eMERGE III and 
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EPIC-Norfolk) in addition to the held-out UKB test set. We did not evalu-
ate cardiovascular PRSs in Indiana Biobank due to the unusually high 
prevalence of HTN (more than 80%) and blood pressure medication 
usage by a majority of its population.

We observed a consistent trend of improvement from using PLENC 
PRSs over EDF PRSs for both HTN and SBP, except for HTN AUC-ROC in 
EPIC-Norfolk (Fig. 6). Notably, the PLENC PRS for SBP outperformed 
the EDF PRS for all datasets for both correlation metrics, for example, 
2× higher Pearson correlation (6% versus 3%) in the UKB test set (Sup-
plementary Tables 23 and 24), and the differences were statistically 
significant in three of four datasets.

High association between REGLE encodings and UKB PRSs
We associated (R)SPINCs and (R)PLENCs with PRSs of 7,145 pheno-
types computed by the Pan-UKB consortium (Supplementary Note; 
Methods). The (R)SPINC PRSs showed a strong correlation with traits 
previously associated with alterations in lung function, for exam-
ple, systemic lupus erythematosus44,45, thyroid dysfunction46 and 
gluten-free diet47 (Supplementary Tables 25–28). (R)PLENCs exhib-
ited significant correlations with different traits, including blood 
traits, PPG traits, ECG traits, blood pressure and cardiovascular 
problems (Supplementary Tables 29–32 and Supplementary Note;  
Methods).
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Discussion
Large biobanks provide unique opportunities to identify the genetic 
factors underlying complex traits and diseases, but accurate phenotyp-
ing48 remains a core challenge. We proposed a general unsupervised 
deep learning method, REGLE, to improve genetic discovery for HDCD. 
We showcased the effectiveness of REGLE for generating encodings 
of spirograms and PPGs. These are HDCD which, in addition to being 
routinely measured in clinical settings, can also be measured passively 
and noninvasively via smartphones. In fact, PPGs are widely collected 
by popular wearable devices. We demonstrated that the REGLE are both 
partially interpretable and effective for identifying genetic variants 
associated with lung and circulatory functions.

Unsupervised learning of HDCD representations for genomic 
discovery is attractive owing to the difficulty of manually acquiring 
EDFs at scale. Previous work has explored applying transfer learning49 
and contrastive learning50 to retinal fundus images, or multimodal 
autoencoders to cardiac data modalities51. A key strength of REGLE is 
the use of a VAE to generate low-dimensional, nonlinear, disentangled 
representations. The ability to generate nonlinear representations is 
desirable for the data applications considered, as the spirogram (Fig. 2) 
and PPG (Fig. 3) curves seemingly lie close to a low-dimensional mani-
fold and yet are clearly nonlinear. Moreover, VAEs have the following 
two main advantages over traditional autoencoders: (1) the coordinates 
of the latent representation are minimally correlated (Extended Data 
Fig. 5), encouraging them to represent separable biology and increas-
ing power for genetic discovery and PRS (Supplementary Table 33), 
and (2) the learned representations are stable up to changes in signs 
or order, which do not affect genetic discovery (Supplementary Note 
and Extended Data Fig. 3).

To support the principled use of EDFs in modeling, REGLE sup-
ports a modification of the VAE in which EDFs are additionally supplied 
as input to the decoder, implicitly encouraging the encoder to learn 
features not captured by the EDFs (see Supplementary Note for con-
nection and difference with conditional VAE52). Although these models 
have slightly lower GWAS power and PRS performance compared to 
nonresidual REGLE (Table 1 and Supplementary Tables 14, 18, 19, 21, 
23 and 24), the residual models are intended for capturing variation 
in HDCD, which is not well-represented by existing EDFs. For example, 
one of our RSPINCs captures a property of spirometry curves that 
pulmonologists refer to as ‘coving’, an indicator of airway obstruc-
tion that is not well-represented by the standard EDFs. Moreover, we 
identified genetic loci associated with this RSPINC (Supplementary 
Table 16), which may shed light on the mechanisms behind the type 
of obstruction.

The improved performance of SPINC, EDF + RSPINC, PLENC and 
EDF + RPLENC PRSs over EDF PRSs provides evidence for the pres-
ence of disease-relevant genetic information in HDCD not captured 
by existing EDFs. Moreover, we developed a label-efficient approach 
for combining PRSs from GWAS on several learned coordinates. In 
particular, each coordinate PRS retains its original effect sizes, and a 
disease-specific PRS is constructed as a learned weighted sum of the 
handful (that is, five or seven) coordinate PRSs. Because only a minimal 
number of weights require learning during disease specialization, our 
premade lung and circulatory system function PRSs can be adapted for 
risk prediction in new settings with very few disease labels. We hypoth-
esize that unsupervised quantification of other organ systems may be 
similarly beneficial for improving polygenic prediction across a wealth 
of diseases. Finally, in cases where labeled data are plentiful, we note 
that PRS performance can be further improved by jointly estimating 
disease-specific variant effect sizes across the set of variants associated 
with our latent coordinates.

There are several limitations to this work. First, we did not directly 
optimize multiple GWASs for new genomic discovery but used a 
straightforward (conservative) method to define and merge inde-
pendent associated loci. A possible extension would be to combine 

the signals from multiple (R)SPINC and (R)PLENC coordinate GWAS27. 
Second, the VAE objective and, in particular, the reconstruction error 
are not necessarily optimal for genetic analyses, and explicitly incor-
porating an objective to maximize the heritability of the learned rep-
resentation may be a fruitful line of future research53. Third, we did not 
fully optimize model architecture and training strategies specifically 
for genomic discovery (Supplementary Note). Fourth, we generated 
individual-level spirogram representations from the first measure-
ment, despite some individuals having up to three acceptable blows. 
Integrating all acceptable blows from an individual could produce a 
more comprehensive representation of their lung function54. Fifth, 
REGLE was trained on spirograms and PPG obtained from the UKB only; 
thus, (R)SPINCs and (R)PLENCs representations may not generalize 
well to other datasets. One needs additional datasets with the same 
data modality to investigate the generalizability of the encodings. 
Finally, model training was performed exclusively on individuals of 
European GIA. While PRS evaluation was performed on multiple data-
sets and ancestries, the impact of ancestry-specific model training 
was not explored.

Despite these limitations, REGLE provides a mechanism for iden-
tifying genetic influences on organ function in the absence of labeled 
data and naturally admits to incorporating expert features into the 
model. It also provides a method to create disease/trait-specific PRS 
with very few labels (that is, in the order of hundreds). As biobanks with 
rich imaging, activity monitoring, medical records and paired genetic 
data continue to grow, we anticipate that this or similar methods will 
be increasingly used to further elucidate the genetic underpinnings of 
human traits and diseases.
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Methods
All relevant ethical guidelines have been followed for this research, 
and any necessary institutional review board (IRB) and/or ethics com-
mittee approvals have been obtained. Advarra IRB (Columbia, MD) 
waived ethical approval for this work involving de-identified medical 
imagery and metadata under 45 Code of Federal Regulations 46. Work 
related to genomics data was additionally reviewed by the respective 
data sources—UKB, COPDGene, eMERGE III, EPIC-Norfolk and Indiana 
Biobank. This research has been conducted using the UKB resource 
under application 65275.

UKB data preparation for spirograms
Spirograms from UKB were sourced from the data field 3066, which con-
tains the volume in milliliters of exhalation at 10-ms intervals (volume– 
time curve), and were preprocessed closely following the procedures in 
ref. 6. To generate flow–time curves, we approximated the first deriva-
tive of volume with respect to time by taking a finite difference in the 
volume–time curves. We normalized the volume–time and flow–time 
curves to 1,000 time points by either truncating longer curves or by 
right-padding shorter curves with zero (for flow–time curves) or the 
final value (for volume–time curves), and removed FEV1, FVC and PEF 
values in the extreme tail (top or bottom 0.5%) of the observed values 
and all blows that failed to meet the acceptability provided by UKB data 
field 3061. We used the first acceptable blow of an individual when there 
was more than one. In addition, we dropped all flow curves whose values 
don’t fall in (−10, 20), all volume curves whose values are not in (−5, 10) 
and all flow curves in which the proportion of nonzero values is less than 
20%. Finally, we generated flow–volume curves from volume–time and 
flow–time curves by interpolating 1,000 evenly spaced volume values 
between 0 and 6.58 l (the maximum observed volume in the dataset).

We then subdivide all European GIA individuals processed 
this way into an 80% training set and a 20% validation set similar to  
ref. 6. After additionally removing related individuals, there are 259,692 
individuals in the training set and 65,266 individuals in the validation 
set (Extended Data Fig. 1).

Asthma and COPD statuses were determined by medical records 
using self-report, International Classification of Diseases (ICD)-9 and 
ICD-10 codes as defined in ref. 6.

UKB data preparation for PPGs
PPGs from UKB were sourced from the data field 4205, which contains 
the arterial stiffness pressure curve. Each waveform is actually a single 
pulse with 100 points. Then we computed the minimum, maximum, 
mean and median distribution values of PPG. We keep the PPG when 
all four statistics fall in 0.1 and 99.9 percentiles of the related statistics 
values of all PPGs. We then subdivide all European GIA individuals 
processed this way into an 80% training set and a 20% validation set. 
After additionally removing related individuals, there are 112,730 
individuals in the training set and 28,545 individuals in the validation 
set (Extended Data Fig. 4).

HTN status was determined by medical records using self-report, 
ICD-9 codes (401.* and 405.*) and ICD-10 codes (I10 and I15.*). SBP was 
determined by automated reading, and data field 4080 was used in 
UKB.

Convolutional VAE model architecture and training
To generate SPINCs, we encode the flow–time and volume–time curves. 
In our VAE, we use one-dimensional (1D) convolutional layers to use the 
temporal context of this time series, encoding the two curves in two 
channels. In the encoder, we first apply three 1D convolutional layers, 
each followed by max pooling. We use three fully connected layers to 
generate the mean and variance of the bottleneck layer. We use five 
latent dimensions, identical to the number of EDFs, and each latent 
coordinate is sampled from the Gaussian distribution with the learned 
means and variances. The decoder architecture is a mirror image of the 

encoder. We start with three fully connected layers followed by trans-
pose convolution layers, each prepended by an upsampling layer (see 
Extended Data Fig. 10 and SPINCs model architecture in Supplementary 
Note for full details).

For RSPINCs, we encode the flow–volume curve alone, and we 
apply the same sequences of convolutional and fully connected layers 
as we did for SPINCs, while using only two latent dimensions in this 
case. We chose to use two latent dimensions for the encoder based on 
REGLE’s strong reconstruction performance (Extended Data Fig. 2) 
while maintaining a comparable number of total latent dimensions to 
SPINCs. Notably, we use a modified VAE architecture to concatenate 
the five EDFs directly to the sampled output of the bottleneck layer 
(the layer right before the decoder) to learn only the residual signals 
not represented by the EDFs (Fig. 2a). As a result, the encoder output 
dimension is 2, while the decoder input has dimension 5 + 2 = 7 (see 
Extended Data Fig. 10 and RSPINCs model architecture in Supplemen-
tary Note for full details).

For PLENCs, we encode the PPG curves. In our VAE, we use 1D con-
volutional layers to use the temporal context of this time series. In the 
encoder, similar to SPINCs, we first apply three 1D convolutional layers, 
each followed by max pooling, and use three fully connected layers to 
generate the mean and variance of the bottleneck layer. We use five 
latent dimensions, identical to the number of EDFs, and each latent 
coordinate is sampled from the Gaussian distribution with the learned 
means and variances. The decoder architecture is a mirror image of 
the encoder. We start with three fully connected layers followed by 
transpose convolution layers, each prepended by an upsampling layer. 
RPLENCs are generated similarly to RSPINCs where we inject five EDFs 
directly into the sampled output of the bottleneck layer (see Extended 
Data Fig. 10 and PLENCs model architecture and RPLENCs model archi-
tecture in Supplementary Note for full details).

All models are trained using the standard VAE loss function consist-
ing of the reconstruction loss and the (rescaled) Kullback–Leibler (KL) 
divergence loss. For RSPINCs, the KL divergence loss is only applied to 
the learned encodings, not to the injected EDFs. For optimization, the 
Adam optimizer55 is used with varying learning rates and batch sizes. No 
learning rate scheduler was used. After training for 100 epochs, the final 
learning rate and batch size values (hyperparameters) for (R)SPINCs 
and PLENCs were chosen to minimize the VAE loss in the validation set 
(Supplementary Note and Supplementary Table 1).

After training SPINCs, RSPINCs and PLENCs models, we use the 
encoders of the trained models to generate the encodings for each 
individual, using the mean value of the learned Gaussian distribution 
of the encodings. It is worth mentioning that the learned variance for 
VAE is not used.

All models were implemented in TensorFlow V2 (ref. 56).

Principal components (PCs) and cubic spline coefficients
As baseline methods for dimensionality reduction, we performed 
PCA and cubic spline fitting on spirograms. For PCA we concatenated 
volume–time and flow–time curves and used both as inputs, while for 
cubic spline fitting, we used only volume–time curves as cubic splines 
perform better for ‘smoother’ curves. To match the number of EDFs and 
the dimension of SPINCs, we generated five PCs and five cubic spline 
coefficients. We used one knot and cubic curves for spline fitting to 
generate exactly five coefficients, where the knot position was chosen 
at the 20% position to better capture the complexity at the beginning 
of the volume–time curves. We used scikit-learn (v1.0.2) for PCA and 
SciPy (v1.9.3) for spline fitting.

Phenotypic correlation analysis
To residualize EDFs and/or covariates from (R)SPINCs and PLENCs, we 
used ordinary least squares linear regression. To compute the correla-
tion of the EDFs-and-covariates-residualized (R)SPINCs and PLENCs 
with the tabular fields in UKB, we first preprocessed the tabular fields 
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to remove special codes, normalize, impute and aggregate the values 
and then finally transformed the categorical fields into one-hot encod-
ings. For each correlation analysis between a feature and one of the 
(R)SPINCs and PLENCs, we computed the Pearson correlation and the  
P value with a two-sided alternative hypothesis.

Survival analysis
We performed an analysis of overall survival for European GIA indi-
viduals in the spirometry (n =6 5,266) and PPG (n = 28,545) validation 
sets using the time from first assessment (field 53) to death from any 
cause (field 40000). Participants who were not known to have died 
were right-censored at the date of UKB data ingestion (18 December 
2020). We quantified the association between overall survival and each 
SPINC, RSPINC, PLENC, RPLENC and EDF per s.d. using the hazard ratio, 
which was estimated from a Cox proportional hazards model adjusting 
for age and sex. The proportional hazards assumption, with respect to 
each SPINC, RSPINC, PLENC, RPLENC and EDF, was assessed using the 
Schoenfeld residual test. After stratifying patients into quartiles using 
each SPINC, RSPINC, PLENC, RPLENC or EDF coordinate, the overall 
survival curves were constructed using the standard Kaplan–Meier 
estimator with bootstrapped 95% CIs.

GWAS and PRSs
GWAS on all spirograms EDFs, SPINCs and RSPINCs were performed 
using BOLT-LMM (v2.3.6)35,36, adjusting for age, sex, age2, age × sex, 
height, height2, body mass index, smoking status, the number of packs 
of cigarettes smoked per year, the type of genotyping array and the 
top 15 genetic PCs as covariates. GWAS on all PPG EDFs, PLENCs and 
RPLENCs were performed using BOLT-LMM35,36, adjusting for the same 
covariates as SPINCs while excluding smoking status and the number 
of packs of cigarettes smoked per year.

All GWAS were restricted to European GIA individuals to minimize 
confounding. For QC we kept variants with minor allele frequency 
≥0.001, imputation INFO score ≥0.8, missing call fraction ≤0.05 and 
Hardy–Weinberg equilibrium P value ≥ 10−10, among all genotyped 
and imputed variants provided by UKB. After GWAS, we performed 
Stratified Linkage Disequilibrium Score Regression57 to estimate SNP 
heritability and detect potential confounding. GWS ‘hits’ were defined 
as the most significant variants with P ≤ 5 × 10−8 and independent at 
r2 < 0.1 using the PLINK --clump command. A reference panel for 
linkage disequilibrium (LD) calculation contained 10,000 unrelated 
European GIA samples from the UKB. Significant ‘loci’ were created 
based on the span of reference panel SNPs in LD (r2 ≥ 0.1) with the hits. 
Loci separated by fewer than 250 kb were subsequently merged.

While performing GWAS, PRSs for all traits were computed using 
the --predBetasFile option of BOLT-LMM. While GWAS was per-
formed on individuals with valid spirometry measurements, we evalu-
ated the performance of the PRS in a separate set of individuals not used 
for GWAS. More specifically, we use the following model to predict the 
ith individual phenotype. To estimate the PRS weight of the i-th indi-
vidual for the kth latent embedding (sik), we use the following model:

sik =
M
∑
j=1

gijβ̂jk,

where gij is the ith individual genotype at the jth variant and M is the 
total number of variants or SNPs. β̂jk is the effect size estimated by 
BOLT-LMM for jth variant and kth latent dimension. Next, we estimate 
the ith individual phenotype of interest as follows:

yi =
T
∑
j=1

sikwk,

where wk is the linear effect size estimated via an in-house linear model. 
In all cases that we have five latent embeddings, we set T to 5.

To determine the known lung function loci from previous liter-
ature, we extracted all significant loci from ref. 19 by downloading 
the full GWAS summary statistics and merging hits using the exact 
same criteria and P value threshold described above, and searched 
for lung function-related keywords in the NHGRI-EBI GWAS Catalog 
(v1.0.2-associations_e106_r2022-07-09)39. We used the follow-
ing keywords (case insensitive) for the catalog search: ‘asthma’, ‘chronic 
obstructive pulmonary disease’, ‘copd’, ‘expiratory flow’, ‘fev1’, ‘forced 
expiratory’, ‘forced vital capacity’ and ‘lung function’. To determine the 
known cardiovascular function loci from previous literature, we used 
the following keywords (case insensitive) for the NHGRI-EBI GWAS 
Catalog search: ‘arrhythmia’, ‘afib’, ‘atrial fibrillation’, ‘coronary artery 
disease’, ‘stroke’, ‘heart attack’, ‘myocardial infarction’, ‘heart failure’, 
‘mace’ and ‘rheumatic heart disease’.

Statistical power via expected chi-square statistics
We used expected chi-square statistics (E(χ2)) for all variants or known 
GWAS Catalog variants related to lung or cardiovascular traits as a 
measure of statistical power35,36. We computed the chi-square statistics 
for a given variant for a set of phenotypes with extremely low correla-
tion (for example, methods such as PCA and REGLE) by summing the χ2 
for all phenotypes while incorporating the degrees of freedom equal to 
the number of phenotypes (for example, degrees of freedom of five for 
SPINCs and PLENCs, five for PCA with five PCs and four when we have 
used four PCs). Then, we computed the expected chi-square statistics 
(E(χ2)) for all or a subset of variants (for example, variants associated 
with lung function in the GWAS Catalog).

Respiratory diseases and cardiovascular traits on multiple 
datasets
COPDGene dataset. COPDGene is a study of 10,300 current and former 
smokers with and without COPD, self-reported non-Hispanic white and 
African Americans, without known lung diseases other than COPD and 
asthma (dbGaP accession: phs000179.v6.p2). Additional study details, 
the study protocol and details of genotyping have been previously pub-
lished41,58, and additionally detailed at copdgene.org. We used the pro-
vided variant calls in VCF files and imputed the variants to the Haplotype 
Reference Consortium (HRC) reference panel using Michigan Imputation 
Server59, resulting in 39,127,678 total variants. COPD cases were deter-
mined using the Global Initiative for Chronic Obstructive Lung Disease 
(GOLD) criteria, where GOLD stage 2 or higher was considered as cases. 
Among 6,576 non-Hispanic white individuals, we had access to 1,131 (17%) 
asthma cases and 2,781 (42%) COPD cases, and the rest of the individu-
als were used as controls. Meanwhile, among 3,140 African American 
individuals, 760 (24%) were asthma cases and 802 (26%) were COPD 
cases. We used the blood pressure measurements and the ‘high blood 
pressure’ variable included in the dataset to define SBP and HTN traits.

EPIC-Norfolk dataset. The EPIC-Norfolk is a general population-based 
cohort study of men and women aged 40–79 years living in Norfolk, 
UK and recruited from general practices between 1993 and 1997. 
EPIC-Norfolk cohort participants were linked annually to nationally 
held hospital records and death certificates from 1999 to 2019 using 
UK National Health Service numbers. COPD was defined as any hospi-
tal admission or cause of death coded 490–492, 494–496 (ICD-9) or 
J40–J44, J47 (ICD-10). Asthma was similarly defined using codes 493 
(ICD-9) or J45, J46 (ICD-10). HTN was defined using hospital records 
and death certificates for ICD codes 401.*, 405.* (ICD-9) and I10, I15.* 
(ICD-10). The SBP was determined using the continuous SBP from the 
EPIC-Norfolk health examination at baseline, which is the time point 
with the highest number of individuals. In a small set of participants 
who do not have a baseline blood pressure measurement, we used 
blood pressure measured at the earliest subsequent health exami-
nation. Blood pressure was measured at two time points during the 
examination, with the mean used for analysis.
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eMERGE III dataset. We use the following five consent groups that do 
not require IRB approval: General Research Use (GRU), Health/Medical/
Biomedical-Genetic Studies (HBM-GSO), Health/Medical/Biomedical 
(HMB), Health/Medical/Biomedical (MDS) HMB-MDS and Health/
Medical/Biomedical (PUB, GSO) (HMB-PUB-GSO; dbGaP accession: 
phs001584.v2.p2). We have access to 1,038 asthma cases and 7,250 
controls for European GIA, while in the case of African GIA, we have 
access to 649 asthma cases and 1,367 controls. We used the 39,131,578 
variants that are imputed to the HRC reference provided by dbGaP60. 
Asthma and SBP traits were defined using the corresponding variables 
in the dataset. HTN was defined using two variables, ‘CASE_CONTROL_
CKD_T2D_HTN’ and ‘CASE_CONTROL_CKD_T2D’, where the individuals 
in the former group but not in the latter group were defined as the HTN 
cases. Note that this limited our analysis to hypertensive individuals 
without chronic kidney disease or type 2 diabetes.

Indiana Biobank dataset. The Indiana Biobank is a state-wide collabo-
ration that provides centralized processing and storage of specimens 
that are linked to participants’ electronic medical information via 
the Regenstrief Institute at Indiana University. COPD was diagnosed 
by using ICD-9 (491, 492 and 496) and ICD-10 ( J41, J42, J43 and J44). 
Asthma was diagnosed by using ICD-9 (493) and ICD-10 ( J45 and 
J46). Cases were defined as having at least one in-patient diagno-
sis or two out-patient diagnoses. Those participants who did not 
have any diagnoses were defined as controls. Thus, we have 1,445 
COPD cases and 3,808 controls, while we have 1,171 asthma cases 
and 4,083 controls. Among 5,253 individuals for COPD evaluation, 
3,797 were of European GIA, 1,371 were of African GIA and 85 were of 
Hispanic ancestry. Among 5,254 individuals for asthma evaluation, 
3,805 were of European GIA, 1,362 were of African GIA and 87 were 
of Hispanic ancestry. Indiana Biobank samples used in this study 
were genotyped using the Illumina Infinium Global Screening Array 
by Regeneron. SNPs with missing rate >5%, minor allele frequency 
≤1% and Hardy–Weinberg equilibrium P value <1 × 10−10 among cases 
and <1 × 10−6 in controls were excluded as reported previously43. 
Genotyping data were imputed to 1000 Genomes using the Michigan 
Imputation Server59. Imputed variants with r2 < 0.30 and minor allele 
frequency < 1% were excluded. PLINK61,62 was used to calculate PRS 
using imputation dosages.

Functional significance of discovered loci
We ran GREAT (v4.0.4)38 on the human GRCh37 assembly to perform 
functional enrichment analysis of SPINCs, RSPINCs, PLENCs, RPLENCs 
and EDF loci. We used the default ‘basal + extension’ region–gene 
association rule with 5 kb upstream, 1 kb downstream, 1,000 kb exten-
sion and curated regulatory domains included. Furthermore, we ran 
GARFIELD (v2)37 with default parameters to perform tissue-specific 
analysis where we used 424 DNase I hypersensitive site hotspot annota-
tions provided by the GARFIELD authors37.

Genetic phenome-wide association study
To compute PheWAS, we downloaded GWAS summary statistics for 
7,221 phenotypes from the Pan-UKB consortium (20200615 release; 
https://pan.ukbb.broadinstitute.org). After restricting to phenotypes 
that contained European GIA statistics and did not persistently fail in LD 
clumping, we were left with 7,145 pruning + thresholding (P + T) PRSs 
generated by PLINK (https://www.cog-genomics.org/plink1.9) using 
the --clump command with an index variant significance threshold 
of 5 × 10−8 and LD threshold of 0.1, with LD computed from a random 
subset of 10,000 European GIA individuals in UKB.

SPINCs, RSPINCs and PLENCs P + T PRSs were computed analo-
gously to the Pan-UKB PRSs. We computed the Pearson correlations 
between the PRSs derived from latent dimensions and the PRSs derived 
from Pan-UKB phenotypes and the P values with a two-sided alterna-
tive hypothesis.

Statistics and reproducibility
All codes necessary to reproduce the results in this work are available on 
our GitHub repository. No statistical method was used to predetermine 
the sample size. The experiments were not randomized. The investi-
gators were not blinded to allocation during experiments and out-
come assessment. We removed samples with no valid blows from our 
spirogram analyses. To QC the blows, we drop any blow if one of FEV1, FVC 
and PEF values is in the extreme tail (top or bottom 0.5%). We dropped 
all flow curves whose values don’t fall in (−10, 20), all volume curves 
whose values are not in (−5, 10) and all flow curves in which the propor-
tion of nonzero values is less than 20%, assuming these blows are likely  
noisy. We also removed blows that failed the acceptability (valid) 
provided by UKB. We treated a blow as valid if the value for the UKB 
field 3061 is 0 or 32. For PPG analysis, we removed outliers defined by 
any of the four statistics (for example, minimum, maximum, mean  
and median) falling in the extreme tails of the distribution (top or 
bottom 0.1%).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
(R)SPINCs and (R)PLENCs values of UKB individuals will be returned to 
UKB and will be made available by UKB. GWAS summary statistics for 
SPINCs, RSPINCs, PLENCs, RPLENCs and EDFs are freely available on 
Google Cloud Storage at https://console.cloud.google.com/storage/
browser/brain-genomics-public/research/regle and were also submit-
ted to the GWAS Catalog for wider availability (under GCP000877; 24 
consecutive study accessions from GCST90399850 to GCST90399873). 
All variant weights for PRSs used in this paper, including the intermedi-
ate EDFs and encodings PRSs and the disease-specific PRSs for asthma, 
COPD, HTN and SBP, are also available in the same Google Cloud  
Storage location under the prs_model directory.

Code availability
Open-source code and trained model weights are available at https://
github.com/Google-Health/genomics-research under the regle 
directory63.
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Extended Data Fig. 1 | An overview of UK Biobank spirograms used in this 
study. Our initial dataset consists of all European GIA (genetically inferred 
ancestry) in UK Biobank (n = 435,766). We considered all individuals with valid 
spirograms as modeling datasets (n = 325,027), and individuals with invalid 
spirograms are used as PRS holdout sets. The PRS holdout set is from the 

European GIA individuals who are not used in the ML modeling and in the GWASs 
(n = 110,739). We split the ML modeling set into training (80%) and validation 
(20%) sets. We used all individuals in modeling set for GWAS analysis and 
generated (R)SPINCs for individuals with valid spirometry in all ancestry.
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Extended Data Fig. 2 | Reconstruction error using RSPINCs with varying 
latent dimensions. Note that all RSPINC models include spirogram EDFs 
(dim = 5), so the total number of inputs used for reconstructing curves is 5 
plus the latent dimension. The latent dimension of zero in the plot implies 

bypassing the encoder and the sampling layer of the VAE and solely using EDFs 
to reconstruct spirograms. For comparison, using the training set average curve 
for all evaluation set individuals would yield the reconstruction error of 2.057727, 
20× higher than any data point in this figure.
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Extended Data Fig. 3 | SPINCs trained with different random seeds. Five 
SPINCs are trained from an identical model using different random seeds to 
initialize the training: models A, B, C, D and E. The Pearson correlations between 
the coordinates of model A and the coordinates of models B, C, D and E are 

displayed as a heatmap. Note the order and signs of the coordinates of models  
B, C, D and E are permuted and flipped as indicated in their x-axis labels to 
maximize correlation with coordinates of model.
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Extended Data Fig. 4 | An overview of UK Biobank PPGs used in this study. 
We considered all individuals with PPGs as modeling dataset (n = 170,714), and 
individuals with invalid spirograms are used as PRS holdout set. The PRS holdout 
set is from the European GIA individuals who are not used in the ML modeling.  

We split the ML modeling set into training (80%) and validation (20%) sets. 
We used all European GIA individuals in modeling set for GWAS analysis and 
generated PLENCs for individuals with valid PPGs in all ancestry.
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Extended Data Fig. 5 | Correlation between SPINCs and RSPINCs coordinates and manual metrics and covariates. Pearson correlation between the coordinates of 
SPINCs (dim = 5), RSPINCs (dim = 2) and the manual spirometry metrics (for example, FEV1) and other covariates (for example, age and sex).
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Extended Data Fig. 6 | Correlation between PLENCs coordinates and manual metrics, covariates and cardiovascular diseases. Pearson correlation between the 
coordinates of PLENCs (dim = 5) and the manual PPG metrics (for example, notch position) and other covariates (for example, age and sex).
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Extended Data Fig. 7 | SPINCs Kaplan–Meier curves. Kaplan–Meier curves 
estimating the overall survival (OS) function for European GIA individuals in 
the validation dataset (n = 65,266). Individuals were stratified into quartiles 
using each SPINC coordinate (for example, ‘p25’ denotes the bottom quartile), 

and OS curves were constructed using the standard Kaplan–Meier estimator 
with bootstrapping. The center lines are the means and the error bands are 
bootstrapped 95% confidence intervals. See Supplementary Table 9 for the 
corresponding hazard ratios per standard deviation.
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Extended Data Fig. 8 | GREAT region-based enrichments for traditional 
measurements and RSPINCs. The set of loci discovered through the union 
of traditional measurements and RSPINCs produces enrichments with lower 

P-values than the loci from traditional measurements alone. P-values were 
computed using the one-sided region-based binomial and Bonferroni-corrected 
for the number of tests performed.
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Extended Data Fig. 9 | PRS performance under labeled training data ablation. Datasets with balanced numbers of cases and controls were used to train PRS in 
European GIA individuals. In all figures, solid vertical intervals represent 95% confidence intervals generated by statistical bootstrapping (300 repetitions), and the 
center points are the bootstrapping means.
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Extended Data Fig. 10 | VAE model architecture details. All convolution layers 
use the kernel size = 10, stride = 1, padding = ‘same’ and have the bias term. All 
max pooling and upsampling layers have a size of 2. All layers use the nonlinear 
ReLU activation, except for the ‘mean’ and ‘variance’ dense layers in the encoder. 
N is the latent dimension (5 for SPINCs and PLENCs, 2 for RSPINCs and RPLENCs). 

K is the number of EDFs (5 for both RSPINCs and RPLENCs). C is the number of 
channels in the input, which is 2 when we encode both volume–time and flow–
time curves together and 1 when we encode a single curve. Conv = convolution;  
tr conv = transposed convolution.
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