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Unsupervised discovery of tissue 
architecture in multiplexed imaging

Junbum Kim    1, Samir Rustam2, Juan Miguel Mosquera    3, Scott H. Randell    4, 
Renat Shaykhiev2,7, André F. Rendeiro    1,5,6,7   & Olivier Elemento    1,5,7 

Multiplexed imaging and spatial transcriptomics enable highly resolved 
spatial characterization of cellular phenotypes, but still largely depend on 
laborious manual annotation to understand higher-order patterns of tissue 
organization. As a result, higher-order patterns of tissue organization are 
poorly understood and not systematically connected to disease pathology or 
clinical outcomes. To address this gap, we developed an approach called UTAG 
to identify and quantify microanatomical tissue structures in multiplexed 
images without human intervention. Our method combines information on 
cellular phenotypes with the physical proximity of cells to accurately identify 
organ-specific microanatomical domains in healthy and diseased tissue. We 
apply our method to various types of images across healthy and disease states 
to show that it can consistently detect higher-level architectures in human 
tissues, quantify structural differences between healthy and diseased tissue, 
and reveal tissue organization patterns at the organ scale.

The recent development of technologies such as multiplexed imaging1–5 
and spatial transcriptomics6–10 allows for both direct observation of 
cellular phenotypes and cellular interactions in intact tissues. Although 
these technologies provide a highly resolved view of cellular hetero-
geneity in tissues, they struggle to move beyond a cell-centric view of 
tissue, failing to uncover organizing principles of tissue architecture 
and tissue-specific physiology which are encoded at various scales of 
cellular and extracellular interactions. Understanding higher-level 
patterns of tissue and organ organization would be crucial to estab-
lishing a relationship between cellular phenotypes and organ-specific 
tissue physiology.

Visual inspection of histopathological images of biopsied or surgi-
cally removed tissue is a major component of disease diagnosis, but is 
a labor intensive job that requires manual annotations from special-
ized pathologists. Also, the process may require multiple specialists 
to reduce intra- and inter-observer variability. To assist and improve 
upon the inspection process, computational techniques have been 

developed for the automated detection and quantification of cells or 
tissue structures11–13, often in a supervised manner that requires manual 
annotations as training data. This approach is expensive and laborious, 
prone to learning biases from training data, and hard to employ with 
exceptionally abundant tissue features such as small capillaries or 
individual ducts in submucosal glands. Unsupervised methods try to 
accomplish similar tasks without the need for manual input. A popular 
method is the inference of cell neighborhoods based on multiplexed 
data by assembling a graph of cellular interactions based on physical 
proximity14,15. Clustering of cells based on these interactions yields 
cellular neighborhoods predictive of patient survival14–17. However, 
graph clustering per se does not make use of cell type identities or 
phenotypes and has only been applied to cancer tissue.

Recent studies applying unsupervised deep learning models to 
histopathological images such as hematoxylin eosin staining have 
shown that it is possible to extract morphological features that are, 
for example, predictive of gene expression18. Other studies have also 
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domains in the human lung with high accuracy in comparison with 
manual annotations and outperforms other methods. Furthermore, 
UTAG can be employed across various physiological states, such as 
infectious disease and cancer, and its results can reveal the high-level 
organization of tissues at the whole-organ scale.

Results
Unsupervised discovery of tissue architecture with graphs
To address the problem of discovery of microanatomical structure in 
tissue across data types and biological systems we developed a method 
called UTAG (Fig. 1a). Our method is generally applicable to images 
of cells in their native tissue context collected via highly multiplexed 
single-cell imaging data such as codetection by indexing (CODEX), 
cyclic immunofluorescence (CyCIF), imaging mass cytometry (IMC), 
multiplexed ion beam imaging (MIBI) and likewise multiplexed spa-
tial platforms. The central aspect of UTAG is the combination of two 

employed deep learning of graphs of cellular proximity with cellular 
phenotypes for cell type prediction19, inference of cellular communi-
cation20 and data exploration21. These models are computationally 
expensive to train and their results heavily depend on training data, 
which may preclude joint analysis of expression and morphological 
features across studies and data types. There is thus a need for unsuper-
vised, broadly applicable methods of tissue structure detection across 
organs and imaging modalities that incorporate cellular proximity, 
expression and morphological features. Here we present an accurate 
method to perform discovery and quantification of microanatomical 
tissue structures in multiplexed histopathological images without 
human intervention or prior knowledge. Our method, unsupervised 
discovery of tissue architecture with graphs (UTAG), combines informa-
tion on cellular morphology and expression with the physical proximity 
of cells to discover domains of tissue architecture. We demonstrate 
that our approach is able to discover organ-specific microanatomical 
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Fig. 1 | Unsupervised discovery of tissue architecture with graphs.  
a, Schematic description of the methodology for the discovery of domains of 
tissue microanatomy and architecture using graphs of cellular interactions. 
Intensity values and cellular segmentation masks are used to derive an expression 
matrix containing the intensity of each marker in each cell and a graph of physical 
cellular interaction based on proximity, which can be represented as a binary 
adjacency matrix. Message passing (described in b) combines the expression 
and adjacency matrices into a new matrix of spatially aggregated expression 
values which serves as the input for clustering methods. The resulting clusters 

represent domains of tissue microanatomy underlying the tissue architecture. 
The procedure can be performed jointly across several images, yielding 
consistent microanatomical domains across images. b, Graphical description of 
the message passing procedure, in which the adjacency and expression matrices 
are combined with the dot product. Note how in the message-passed graph, the 
node colors are linear combinations of the colors of the nodes with which they 
share edges. Each element in the feature matrix in this example depicts a vector 
of features.
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matrices that represent phenotypic and positional information about 
each cell present in an image (Fig. 1a, gray areas), to generate a new fea-
ture space that encodes spatially aggregated phenotypic information. 
This matrix of new features can then be clustered into domains of cells 
that are both phenotypically and spatially related (Fig. 1a, orange area). 
The matrix of phenotypic information (feature matrix) is a numeric 
matrix of gene or protein abundance, or morphology for each cell, 
while the positional information of each cell is used to generate a graph 
of physical proximity between cells through binarization and optional 
normalization (adjacency matrix).

UTAG then leverages the properties of matrix multiplication 
through linear algebra to combine the matrices in a procedure known 
as message passing (Fig. 1b). In this, nodes of cells in physical proximity 
will receive a portion of the neighboring cell’s phenotypic informa-
tion in a weighted manner, effectively diffusing the phenotypes into 
physically proximal cells determined by the adjacency matrix. The 
intermediate resulting spatially aggregated features therefore con-
tain information on both cellular phenotypes and physical proximity 
between cells. This spatially aggregated feature matrix allows capture 
of microanatomical domains consisting of multiple cell types that are 
spatially homogeneously distributed. For example, arteries consist of a 
layer of endothelial cells surrounded by smooth muscle cells. Through 
message passing, endothelial cells become more like adjacent muscle 
cells and vice versa, effectively grouping cells with different pheno-
typic features based on their spatial distribution. Finally, this matrix 
is clustered using standard modern algorithms such as Leiden22 or 
Phenotyping by Accelerated Refined Community-Partitioning (PARC)23 
clustering to derive domains of tissue structure in images (Fig. 1a, 
orange area). In this process, the number of captured domains is deter-
mined by a customizable resolution hyperparameter, which controls 
the coarseness in both Leiden and PARC clustering (Extended Data 
Fig. 1b). Biological interpretation of the discovered domains remains, 
however, dependent on the user by contextualization in terms of their 
cell type composition, frequency of cellular interactions or association 
with target variables such as clinically relevant outcomes. We provide 
a software package for the implementation of UTAG, including docu-
mentation and tutorials on its application to various datasets (https://
github.com/ElementoLab/utag).

UTAG uncovers microanatomical principles in healthy lung
We first tested UTAG on healthy lung tissue images. The human lung is 
a highly compartmentalized tissue, with the organ physiology dictat-
ing an intricate interplay between cells and matrix to create functional 
structures such as the airway lumen, alveolar airspace and blood ves-
sels. We applied UTAG to a dataset of 26 highly multiplexed IMC lung 
images from three donor lung specimens, consisting of 28 markers, with 
a particular focus on airways extending from proximal bronchi and suc-
ceeding divisions to terminal and respiratory bronchioles24 (Fig. 2a, first 
column). Importantly, in this dataset, each image has been manually 
annotated with organ-specific microanatomical domains such as air-
ways, connective tissue, submucosal glands, vessels and alveolar space 
(Fig. 2a, fourth column). The annotated structures effectively serve as 

a reference for microanatomical annotation of the lung. In addition, 
the cells in these data had been phenotyped into seven broad clusters 
of cell identity (Fig. 2a, second column), which can be helpful when 
interpreting the composition of the domains, albeit not used by UTAG.

We applied UTAG to the IMC data by providing the position of 
the cells in the image and the intensity of each marker in each cell to 
the algorithm. We then labeled the resulting clusters with identities, 
splitting them into five groups depending on the intensity of mark-
ers and cellular composition (Extended Data Fig. 1c). The resulting 
microanatomical domains detected by UTAG largely recapitulated the 
microanatomy of manually labeled domains (Fig. 2a, third column, and 
Extended Data Fig. 2). To assess the performance of our method, we 
compared the discovered microanatomical domains with the labels 
applied by experts using Rand and Homogeneity score based on cell 
domain properties (Fig. 2b). Rand score measures label agreement and 
is a commonly used metric to benchmark unsupervised clustering. 
Homogeneity score assesses how uniquely each cluster maps to ground 
truth and does not penalize for detection of more granular subdomains. 
As a baseline comparison, we calculated the same metrics based on 
randomly shuffled domain labels and cell type identities. In addition, 
we also compare UTAG to other methods for inference of higher-level 
tissue structure in terms of their features and performance, such as 
SpaGene25 and SpatialLDA26 (Fig. 2b and Extended Data Fig. 3). UTAG 
is the only method that can infer microanatomical domains without 
cell type annotations jointly across images; most other methods focus 
on generating per-image results and may only be applicable to certain 
data types due to specific assumptions on the data (Supplementary 
Table 1). Furthermore, UTAG significantly outperformed all other 
methods both in terms of label Rand and Homogeneity score (Fig. 2b 
and Extended Data Fig. 3). UTAG outperformed SpatialLDA, the next 
best performing algorithm, by 2.42 fold (Homogeneity score), which 
shows that UTAG can discover accurate microanatomical domains in 
multiplexed imaging data.

The domains discovered by UTAG were enriched in protein expres-
sion specific to each domain, as evidenced by KRT5, CC16, SCGB3A2, 
MUC5B and MUC5AC expression in airways, or CD31, alpha smooth 
muscle actin (aSMA) and type IV collagen in vessels (Fig. 2c). Further-
more, we found the cell type composition to reflect the captured 
domains. Airways and submucosal glands consisted predominantly 
of epithelial cell types while being spatially distinct. Connective tis-
sues were generally composed of sparse matrices of cells that had low 
expressions of all markers (Fig. 2c), but sometimes included support-
ive muscles and infiltrating immune cells (Fig. 2d). Other identified 
domains were well-balanced in terms of cell type composition. The 
alveolar space included a well-balanced proportion of epithelial and 
endothelial cells required for gas exchange (Fig. 2d). This reveals that 
UTAG, without specific training, is capable of effectively capturing both 
simple domains with a dominant cell type and more complex domains 
composed of multiple cell types. Beyond cell type composition, we 
identified distinct differences in the frequency of physical interactions 
between cells of different cell types across microanatomical domains 
(Fig. 2e). In airways, we observed a tight connection between epithelial 

Fig. 2 | Discovery of microanatomical domains and principles of tissue 
architecture in human lung. a, Microanatomical domains detected in IMC 
images of healthy human lung tissue. The first column illustrates the intensity 
of three selected channels in four representative images; the second column, 
the cell identity of the cells in those images; the third column displays the 
microanatomical domains discovered with UTAG; and the fourth column 
displays the microanatomical domains manually annotated by experts. Scale 
bars, 200 µm. b, Benchmarking of UTAG and competing methods against 
expert annotation. n = 26 highly multiplexed IMC lung images from three donor 
specimens. For a baseline comparison, we include randomized domain labels per 
cell and cell type identities. Each point represents one image and for both metrics 
values closer to 1 are optimal.** P < 0.0001, two-sided Mann-Whitney U-test 

after Benjamini-Hochberg P-value correction. Data in boxplots are presented 
by minimum, 25th percentile, median, 75th percentile and maximum. Values 
outside of 1.5 times interquartile range are classified as outliers and are denoted 
as fliers. c, Mean channel intensity for all channels aggregated by the discovered 
microanatomical domains. d, Cellular composition of microanatomical 
domains. e, Composition of microanatomical domains in terms of intercellular 
interactions derived from physical proximity. f, Model of physical proximity 
between microanatomical domains in the lung. The nodes of the graph represent 
the microanatomical domains, and the color of the edges between them show 
the strength and direction of their physical interactions. The node position is 
determined based on the edge weight using the Spring force-directed algorithm.
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cells and reciprocal proximity between epithelial and connective tissue. 
The connective tissue, as a transition tissue between airways and other 
functional domains in the lung, showed high diversity and balance in 

cellular interactions. The alveolar space domain has strong reciprocal 
interactions between epithelial and endothelial cells, which is a hall-
mark of alveolar type 1 cells closely connected to capillary endothelium. 
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Taken together, the observed cell type abundance (Fig. 2d) and interac-
tion relationships (Fig. 2e) within the microanatomical domains of the 
lung provide a signature of the architecture of the healthy human lung.

While the composition of an organ in microanatomical domains is 
an important part of its architecture, it is also important to understand 
the wider-scale architecture of an organ in relation to its physiology. 
To demonstrate how UTAG can be useful in uncovering organ-specific 
high-level architecture, we quantified physical interactions between 
microanatomical domains in IMC images and related domains based 
on the frequency of interactions (Fig. 2f). The resulting network, made 
by associating the strength of microanatomical domain interaction 
with attraction between nodes, summarizes the architecture of the 
lung—with a main anatomical axis of high-order tissue assembly from 
airway, connective tissue to alveolar space (Fig. 2f). Furthermore, we 
also found that both vessels and submucosal glands, while interacting 
with similar domains, are diametrically opposed to the main axis (Fig. 
2f), which may suggest that segregation of vascular and secretory 
domains of the lung is a hallmark of healthy lung architecture. Overall, 
the microanatomical domains detected by UTAG in the lung, along with 
the inferred high-level structure of the organ, illustrate the accuracy 
and utility of UTAG in understanding tissue architecture at various 
scales with a completely unsupervised approach.

UTAG captures structural changes in diseased lung tissue
Having established the performance and usefulness of UTAG in mul-
tiplexed imaging of healthy tissue, we sought to determine whether 
UTAG is able to discover microanatomical domains in disease as well. 
To that end, we ran UTAG on a dataset of 239 IMC images with 37 mark-
ers from 27 deceased patients due to lung infection27 (Fig. 3a). Despite 
using a different set of markers from the healthy lung dataset (Fig. 2a), 
we were able to discover six largely similar microanatomical domains 
that were present in images of various disease groups: one domain rep-
resentative of epithelial cells (predominantly airways), one domain of 
fibroblast-rich connective tissue, one domain for alveolar regions, one 
for vessels, one with clusters of various immune cells and a rare one of 
clustered neutrophils exclusively. Their relative abundance, however, 
reflects the changes in the morphology and cellular composition of the 
tissue after infection27, with, for example, an increased proportion of 
the epithelial domain following influenza and in late COVID-19, and 
an increase in the fraction of connective tissue in late COVID-19 that is 
indicative of fibrosis (Fig. 3b). Since topological domains aggregate 
spatially proximal cells of various cell types that contribute to tissue 
function, we hypothesized that the abundance of topological domains 
across images more easily explains the variance in the dataset than the 
abundance of cell types on their own. Indeed, in a principal component 
analysis (PCA) reduction of the data, we found that not only was the 
fraction of variance in the first component higher with topological 
domains, but they also more easily reconstructed the linear progression 
of healthy tissue in comparison with cell type identities alone (Fig. 3c).

Since differences in cell type composition during lung infection 
have been reported27, we sought to investigate whether there are 

differences in the high-level composition of tissue, as quantified by the 
spatial proximity in topological domains across images (Extended Data 
Fig. 4). The most prominent differences in topological domain colocali-
zation between disease states was observed between the alveolar space 
and vessel domains (Fig. 3d). In influenza, acute respiratory distress 
syndrome and late COVID-19, vessel domains interact with alveolar 
domains more tightly than in healthy lung or early COVID-19. In healthy 
lung sections, vessels often have high intradomain connectivity and are 
isolated from other domains, whereas in late COVID-19 lung sections we 
observed high connectivity of vessels with other domains, particularly 
the alveolar space (Fig. 3e). This likely reflects the previously described 
increase in vasculature due to pathology-induced angiogenesis28,29. The 
characterization of microanatomy across various disease states in the 
lung, along with the discovery of changes in the connectivity of tissue 
domains, demonstrate the versatility of unsupervised approaches 
such as UTAG to detect and quantify microanatomical structure in 
human tissue.

UTAG is applicable across imaging techniques and tissues
We have so far employed UTAG in the lung because we have annotated 
images allowing us to assess whether the discovered microanatomy 
aligns with current knowledge in the field. Given that UTAG is an 
unsupervised method, it is not guaranteed that its use across data 
types, organs and disease states will always discover microanatomical 
domains with physiological relevance or of pathologic interest.

To address whether UTAG generalizes to various types of multi-
plexed imaging data, we first applied it to a dataset of 19 CyCIF images 
with 26 markers from three lung cancer patients30 (Extended Data Fig. 5a).  
We observed that the obtained domains largely reflected tumor or 
stromal microenvironments reflecting a complete departure from the  
tissue architecture seen in normal lung. This is likely due to proliferation 
of neoplastic cells, which is independent of the normal physiological  
function of the lung. In this setting, UTAG may be of use in cancer by 
detecting the interface between tumor and stromal, facilitating the 
investigation of cellular composition and interactions at this interface, 
without the need for manual annotation of images by an expert.

Second, to assess whether UTAG is capable of broadly discovering 
microanatomy across organs, we apply it to a set of 15 IMC images of 
COVID-19-infected intestine31 (Extended Data Fig. 5b). UTAG was able to 
clearly demarcate the intestinal epithelium from the remaining paren-
chyma and, within the epithelium, further differentiate between the 
E-cadherin-expressing enterocytes at the top of the villi and the proliferat-
ing (Ki67 + ) cells of the crypts and intestinal glands. We also applied UTAG 
to a dataset of 100 IMC images of pancreas32, where the predominant 
microanatomical division is between the endocrine Islets of Langerhans 
and the acinar cell-dominated exocrine regions. UTAG, in accordance, 
accurately identified the two major microanatomical subdivisions in a 
manner very comparable with supervised approaches (Extended Data  
Fig. 5c). Both the intestinal villi and the pancreatic islets constitute exam-
ples of specialized microanatomical structures with highly eccentric 
shapes and are therefore difficult to segment manually at scale.

Fig. 3 | Microanatomical domains discovered by UTAG across data types and 
disease states. a, Discovery of microanatomical domains in IMC images of lung 
from patients of various pathologies. The top row illustrates the intensity of 
three selected channels and the bottom row displays the UTAG domains. Scale 
bars, 200 μm. b, Univariate analysis of microanatomical domain composition 
across lung infection disease. Microanatomical domain composition was 
percent normalized per slide. c, PCA for joint analysis of domain (left) or cell 
type (right) composition per image. The top two plots visualize the position 
of images in the first two principal components. The bottom two plots show 
the distribution of the first principal component aggregated by disease group. 
d, Log odds of domain colocalization frequencies across diseases in alveolar 
domains. Log odds indicates observed frequency over expected, as estimated 
empirically by random permutation. Positive values indicate high intradomain 

(alveolar–alveolar) colocalization compared to random mixtures and negative 
indicates low interdomain colocalization. **P < 0.01, *P < 0.05, two-sided Mann-
Whitney U-test after Benjamini-Hochberg adjustment. e, IMC images of healthy 
and COVID-19 infected lung tissue. The image of healthy lung tissue shows highly 
compartmentalized domains, particularly in the vasculature, while the image of 
the diseased lung shows loss of compartmentalization. Scale bars, 200 μm. For 
b and c, n = 239 highly multiplexed IMC lung images from 27 deceased patients 
due to lung infection. *P < 0.05, two-sided Mann-Whitney U-test after Benjamini-
Hochberg adjustment. Data in boxplots are presented by minimum, 25th 
percentile, median, 75th percentile and maximum. Values outside of 1.5 times 
interquartile range are classified as outliers and are denoted as fliers. ARDS, 
acute respiratory distress syndrome.
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Third, to benchmark UTAG on a different task, we employed a data-
set of 58 IMC images with 28 markers from seven patients of upper tract 
urothelial carcinoma (UTUC)33 (Fig. 4a). In line with our observations in 

lung cancer (Fig. 3c), the five discovered domains largely reflected the 
division between tumor and stroma microenvironments. However, we 
did notice a gradient between the two, with domains with considerable 
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immune infiltration for both tumor and stroma, and a domain present 
mostly at the interface between tumor and stroma (Fig. 4a). Of note, in 
this dataset, 16 images had been manually annotated with boundaries 
of tumor and stroma, which allowed us to assess the performance of 
UTAG in the delineation of these boundaries (Fig. 4b). We found that 
UTAG domains largely recapitulate these annotations and significantly 
outperformed both randomly shuffled labels and cell types as baseline, 
as well as other methods in overall agreement with cell type labels and 
purity of the domains, when compared with manual labels (Fig. 4b).

In summary, our analysis of tumor microenvironment domains 
in large cohorts of cancer patients revealed the accuracy of UTAG in 
detecting microenvironments reflecting tumor–stromal boundaries 
in agreement with manual annotations.

Discussion
UTAG performs discovery and quantification of microanatomical tissue 
structures in biological images with no prior knowledge. Our method 
leverages the combination of phenotypic and proximity information 
of cells to discover topology of tissues in various organs and various 
types of multiplexed imaging data. Given the lack of formal defini-
tion of microanatomical domains and healthy tissue datasets with 
such annotation that can be used as ground truth, benchmarking of 
our method relied on two datasets of lung microanatomy and tumor–
stroma divisions in cancer.

UTAG performed significantly better than the baselines of random 
domain permutations and cell type identities, as well as SpaGene25 
and SpatialLDA26 (Figs. 2 and 4b). We attribute this to the fact that 
1) UTAG uses cell phenotypes as vectors of continuous variables of 
markers and 2) UTAG infers microanatomical domains for all images in 
a dataset jointly rather than on a per-image basis. The first is unique to 
UTAG and may explain the advantage against the SpatialLDA method, 
which uses counts of cell types neighboring each cell. The reliance 
on user-supplied cell type annotations can be a point of introduction 
of errors and does not fully leverage the quantitative information in 
multiplexing imaging data. The second is only common to UTAG and 
SpatialLDA and may explain why both perform better than SpaGene, 

which can only output microanatomical domain annotations on a single 
image basis—this means the burden of interpreting domains for each 
image separately is on the user, or that domains of various images have 
to be clustered a posteriori, which introduces one more step and does 
not guarantee discovery of domains present across images. Thus, UTAG 
being the only method capable of jointly inferring microanatomical 
domains across images without cell type information tailored for 
multiplexed imaging at single-cell resolution (Supplementary Table 
1) not only likely contributes to its high performance but also requires 
less information and effort from the user before running (no cell type 
information is needed) and after (there is only one step of interpreta-
tion across all images).

Despite the good performance of UTAG in the discovery of tissue 
microanatomy, the ground truth set of manual annotations is inher-
ently subjective to the observer and often incomplete by focusing on 
a subset of specific predefined structures. In fact, it is conceivable that 
a fully unsupervised method such as UTAG is able to capture gradients 
of mixtures between known domains or even new or poorly defined 
structure in tissue that is underappreciated.

On top of its ability to detect tissue architecture, UTAG can serve 
as a method to quantify biologically relevant processes such as angio-
genesis in native tissue conformation. In this article, we presented 
ways to numerically quantify the loss of compartmentalization of 
vessels in alveolar space of COVID-19 infected lung (Fig. 3d). In a similar 
fashion, UTAG can be used to quantify the extent of various biological 
processes such as angiogenesis in individual samples—just as existing 
computational methods based on genomics and transcriptomics can, 
but with the advantage that the manifestation of biological processes 
are directly observable in the original physical context of the tissue.

While we believe our method provides a significant step toward 
the systematic discovery of tissue structure, one crucial aspect for its 
successful application is the interpretation of the discovered topo-
logical domains in terms of their identity and biological relevance. We 
demonstrated how on cases such as healthy tissue with well-defined 
structure related with organ-specific physiology, interpretation of 
domain identity based on cell type composition and interactions can be 
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achieved (Fig. 2), while in tissues without strong structural patterning, 
or with undefined function such as cancer, interpretation of discovered 
domains can rely on the association with clinically relevant outcomes 
(Fig. 4). UTAG provides flexibility to the user to discover structures 
present in biological images, but we believe that its potential is maxi-
mized by the involvement of experts in the field, such as pathologists, 
in the discovery process and interpretation of results.

Beyond the conceptual limitation in the biological interpretation 
of UTAG results, a few technical issues must also be taken into account. 
UTAG relies on user-supplied cell segmentation to determine positional 
information from the cells and consequently infer physical interac-
tions. Recent advances in cellular segmentation algorithms34–37 have 
greatly advanced the quality of segmentation masks for various types 
of images, but downstream results can only be as good as the segmen-
tation. Furthermore, we greatly simplify the geometric complexity of 
two-dimensional tissue slices by assuming centroids capture most of 
the positional information of cells, which for eccentric cell types such 
as neurons, endothelial cells and various types of eccentric immune 
cells may not be the case.

The inference of cellular contacts and the scale at which microen-
vironmental signals diffuse across the local cellular context are fields 
of current study38–41 and of importance for the detection of tissue 
microanatomy. UTAG requires a user-provided parameter to discre-
tize cellular contacts. In our experience, we found that changes in 
this parameter were most needed depending on the resolution of the 
images, since optical imaging typically has more resolution than, for 
example, laser-based tissue ablation in IMC. Nonetheless, this is some-
thing we purposefully designed to be tuned by the user so that UTAG is 
adaptable without making assumptions on the underlying structure of 
the tissue, such as has been done previously, for example, relying on 
the consistent shape of germinal centers42.

UTAG opens new possibilities in our ability to understand tis-
sue architecture by detecting microanatomical domains, but also by 
quantifying how they interact at a higher level, to a point that we could 
infer the broad rules of human lung architecture. We envision that, in 
the future, UTAG could be applied to traditional histopathological 
images if an appropriate feature matrix can be extracted. That would 
open the possibility for the detection of microanatomical structures 
in large biobanks and association of these with clinical features at 
scale. Likewise, systematic application of UTAG in image data from 
various organs will undoubtedly accelerate projects such as spatial 
cell atlases43–45, by providing microanatomical context to the cells 
and enabling ground-up discovery of tissue architecture beyond cell 
type composition of tissues. Another exciting future application is the 
discovery of microanatomy in volumetric images of tissue13,46–48, since 
there is no conceptual limitation to using UTAG in three dimensions. 
This would enable robust morphometry of tissue structures, since a 
current challenge in two-dimensional analysis of tissue is the detection 
of structure independent of the cutting angle. Robust assessment of 
tissue microanatomy could enable the definition of tissue integrity 
ranges in human tissue across ages, detection of early precancer lesions 
and cancer invasion, and the study of age-associated diseases charac-
terized by cellular degeneration, fibrosis and loss of tissue integrity.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
UTAG algorithm
The two inputs to the UTAG algorithm were the cell feature matrix 
and the location matrix. The cell feature matrix is designed to be as 
generalizable as possible to incorporate multiple imaging modalities 
and can contain any features ranging from generic cell properties such 
as cell area, perimeter and morphology to modality-specific attributes 
such as intensity of hematoxylin and eosin from H&E staining to marker 
expression quantification such as CD4, KRT8 or PD1 levels in IMC. From 
the location matrix, we build a graph using squidpy49 (v.1.1.0), where 
each node is a unique cell and each edge indicates whether two cells are 
within a threshold Euclidean distance. We then perform message pass-
ing, an inner product between the adjacency matrix of the graph and the 
feature matrix, so that each cell within the graph inherits features from 
its immediate neighbors. When aggregating spatial components with 
the feature matrix, we provide two possible ways to spatially aggregate 
the feature matrix. The default of the package is to aggregate by the 
mean, which sums all features from immediate neighbors and divides 
the resulting sum by the number of neighbors plus one to account for 
the cell itself. The second option is to aggregate by the sum, which 
skips normalizing by dividing the sum by the degree of the node’s con-
nectivity. Reduction by mean is commonly used for a numerically more 
smooth aggregation. Sum aggregation, however, can be advantageous 
as it directly encodes cell density information, which can vary across 
structures, though the resulting sum values may be overly separated 
in cell-sparse regions where cells have only a few neighbors. While the 
spatial smoothing operation performed by UTAG may seem as if some 
of the details are diluted, the spatially smoothed matrix is only used 
for domain segmentation. Nuanced details such as rare cell types infil-
trating specific domains can still be detected and used in downstream 
analysis, for example, on a per domain level. We denote the resulting 
matrix ‘spatially aggregated feature matrix’ that encodes information 
of both single cell features and cell locations. The cells in the spatially 
aggregated feature matrix are clustered into groups using the Leiden22 
(v.0.8.7) and PARC23 (v.0.31) algorithm at multiple resolutions. Each 
cluster can then be annotated into microanatomical domains based on 
enrichment profiles or by inspecting user-provided cell type identities.

User guide on UTAG
UTAG greatly reduces the amount of manual labor involved in seg-
mentation of microanatomical domains, but its successful application 
depends on three key user inputs. First is the max_dist parameter, which 
defines the threshold distance between cells for graph construction. 
Second is the clustering resolution to determine the coarsity of the 
clustering of cells. Last is user interpretation of the resulting clusters 
to label the microanatomical structures detected.

We intentionally leave the optimization of max_dist open to 
users to maximize the applicability of UTAG to unseen datasets. This 
is because this parameter is tightly related to the resolution or magnifi-
cation of the data being used. In our manuscript, we apply the method 
on IMC data and optical imaging-based CyCIF, which have different per 
unit area pixel densities. In the case of IMC, we suggest that a suitable 
max_dist is between 10 and 20, as 1 pixel exactly maps to 1 micrometer. 
With an imaging-based technique like CyCIF, the optimal distance can 
vary with magnification, focal lengths, distance to tissue and other fac-
tors, which make it hard to suggest a one-fits-all rule. Also there might 
be nuanced differences for the exact tissue of interest that may vary 
across specimens under examination.

We believe that the optimal clustering resolution is a hyperpa-
rameter that should be explored to suit their biological question of 
interest. We therefore provide a list of resolutions as default to be 
explored by the user. A general rule is that increasing the resolution 
parameter will return more refined substructures, while decreasing 
it will return coarser, more broad structures. We also recommend 
users to use a higher resolution parameter when screening for a rare 

microanatomical domain, as higher resolution will capture more struc-
tures, and vice versa. In our benchmarking, we saw that, with the excep-
tion of extreme hyperparameter values, UTAG’s performance was fairly 
robust across various clustering resolutions (Extended Data Fig. 3).

Running UTAG on IMC data
To quantify cellular phenotypes, we used the cell masks and aggre-
gated all pixels of a cell with the mean intensity for each IMC chan-
nel. We combined the per cells expression vector from all cells in all 
images into a single matrix. We then performed log transformation, 
z-score normalization truncated at positive and negative 3 standard 
deviations, followed by Combat50 (v.0.3.0) batch correction to phase 
out sample-specific biases. This was subsequently followed by a final 
z-score normalization truncated at 3 standard deviations.

For the healthy lung dataset, UTAG was run with a max_dist of 12, 
which, in physical dimensions, was 12 microns (Extended Data Fig. 
1b). For lung infection and UTUC data, we ran UTAG with max_dist of 
20; for COVID-19 intestine and diabetic pancreas data it was run with 
a max_dist of 15. Each dataset was clustered at resolutions of 0.05, 0.1, 
0.3 and 0.5. The principle of selecting the optimal resolution was based 
on how diverse each dataset was, or in other words, how many patients 
and diseases each dataset contained. Higher resolutions, resulting 
in more clusters, were preferred in diverse datasets, whereas more 
homogenous datasets required only a few clusters. For the normal lung 
dataset, we used Leiden clustering at 0.3 resolution and annotated the 
resulting 11 clusters into 5 microanatomical domains (Extended Data 
Figs. 1c and d). For the infected lung, UTUC, intestine and pancreas 
dataset we used PARC clustering with resolution 0.3, 1.0, 0.5 and 0.1 
respectively, which resulted in 20, 34, 12 and 5 clusters.

Running SpaGene and SpatialLDA
To benchmark UTAG against other methods for high-order tissue struc-
ture inference, we ran SpaGene25 and SpatialLDA26 on both datasets for 
which we have ground truth annotation of microanatomical domains. 
For this purpose, we also reran UTAG using a max_dist of 15 for both 
datasets, under Leiden clustering resolutions of 0.05, 0.07, 0.1, 0.3, 0.5, 
0.8, 1.0 and 2.0, which resulted in 3, 5, 10, 11, 14, 17, 19, 25, 31 and 55 clus-
ters for the healthy lung data, and 3, 4, 6, 22, 23, 27, 38 and 61 clusters for 
the UTUC data. We intentionally do not use the interpreted annotations 
in Fig. 2c and d and instead use the raw labels for consistent and fair 
comparison across methods. SpaGene was run using R v.4.1.3 on a per 
slide basis using the expression profile and cell location information, 
as designed by the authors. The number of nearest neighbors to build 
the graph was set to 24, and the number of latent topics was set to 10 to 
learn the various structures in the healthy lung dataset and 4 to learn 
the separation between tumor and stroma for the UTUC dataset. The 
number of resulting cell-to-topic and topic-to-marker matrices were 
imported back to Python. As there was no guarantee that topics learned 
for each slide was coherent across slides, we had to regroup the topics 
across slides. We used agglomerative clustering as implemented in 
the scikit-learn package to relabel the topics. The number of resulting 
clusters from agglomerative clustering was set to match the number of 
clusters from UTAG. Each cell was assigned the maximum probability 
relabeled topic to retrieve exactly one most likely topic per cell.

SpatialLDA was run using a working implementation from scimap51. 
For the cell type distribution in niche, the 7 cell type categories were 
used for the healthy lung data and 16 cell type categories were used for 
the UTUC data. Niche for each cell was defined by a radius of 15, match-
ing the max_dist of 15 used for UTAG. The number of motifs was set to 
match the number of clusters from UTAG. Each cell was then assigned 
with the maximum probability topic to discretize the probability matrix.

Benchmarking against manual expert annotation
To show that the gain of information using the UTAG algorithm is statis-
tically significant, we compare cell types, SpaGene results, SpatialLDA 
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results and UTAG results against manual expert annotations (Extended 
Data Fig. 3a and b) across various resolutions. To objectively assess the 
performance of UTAG, we used Rand score and homogeneity score as an 
evaluation metric for the unsupervised segmentation task. Rand score, 
also known as Rand index, is a similarity measurement that is calculated 
by the ratio of agreeing pairs over all pairs between the predicted and true 
labels. The homogeneity score52 assesses how uniquely predicted labels 
associate with true labels (a measure of cluster purity). Ranges of both 
metrics are from 0.0 to 1.0 inclusive, with higher scores indicating bet-
ter performance. To lay out a baseline for how the metrics work, we also 
show how random labels perform against the expert annotation. To test 
for differences in performance, we perform a two-tailed Mann-Whitney 
test between random labels scores, cell type scores and UTAG scores. The 
resulting performance was reported in Extended Data Fig. 3.

Quantification of cellular and microanatomical interactions
As UTAG achieves microanatomical domain annotation based on 
graphs leveraging spatial proximity, we can take advantage of the 
spatial neighborhood information for downstream analysis. Under 
the graph formalism, we can quantify cellular and domain interactions 
from edge counts connecting distinct nodes, identified by cell type 
and domain properties. Graphs were constructed with a threshold dis-
tance of 40 pixels for healthy lung IMC samples to allow a more lenient 
interaction threshold compared to the UTAG default. For cell-to-cell 
interactions, we quantify edges connecting a cell type to another and 
aggregate the connections into an adjacency matrix denoting the cell 
type colocalization. We present this cellular interaction matrix as a 
chord plot generated by holoviews python library. Microanatomical 
domains are similarly aggregated for each domain-to-domain inter-
action. These results are presented as a networkx53 (v.2.6.2) graph in 
a spring force layout, which visually demonstrates how each domain 
colocalizes with others. This was done on the logarithm of the counts of 
edge connections to ensure that the counts are on a comparable scale.

Lung infection univariate and principal component analysis
To quantify the difference in domain composition across disease types, 
each IMC slide was aggregated by the number of cells in each domain. 
Cell counts were subsequently percent normalized to take into account 
the difference in cell densities. We perform a univariate domain propor-
tion comparison for each disease group with respect to healthy samples 
using a two-sided Mann-Whitney U-test. For a multivariate analysis, 
we reduce the dimensionality of domain proportion using PCA. We 
then perform a two-sided Mann-Whitney U-test on the first principal 
component, similar to the univariate analysis, to show how all domain 
distributions jointly vary across disease. To show that the first principal 
component of domain proportions better captures the difference in 
diseases, we perform the same analysis with cell type proportions. All 
Mann-Whitney U-tests were performed using pingouin54 (v.0.3.12) and 
were Bonferroni-Hochberg corrected.

Quantification of domain colocalization frequency
Quantifying domain-to-domain colocalization by counting the num-
ber of edges may not provide the most representative measurement 
because this value would be largely explained by the original domain 
abundance. For example, if there is one domain that is more abundant 
than every other domain, then that domain generally has the high-
est colocalization count with all other domains. To compensate for 
the original domain distribution, we repeatedly performed domain 
permutation, random shuffling of domains for cells in the graph, to 
establish an expected colocalization frequency given the domain 
distribution. We add one to both the observed colocalization fre-
quency and expected frequency, computed by the mean of 100 random 
permutations, to avoid division by zero. Log-fold change for domain 
colocalization is then computed by taking the differences between two 
log-transformed values.

Running UTAG on CyCIF data
40X CyCIF lung cancer samples were downloaded from https://doi.
org/10.7303/syn17865732. We used the provided cell segmentation 
probability maps generated with standard watershed algorithms in 
ImageJ or MATLAB to create cell masks using DeepCell, similar to the 
IMC data preprocessing. Cell fluorescence was mean aggregated, just 
as in the IMC data. All cells across images were combined together and 
the resulting matrix was log transformed, z-scaled, batch corrected 
with Combat and then z-scaled again.

Before running the UTAG algorithm, 11 DNA channels and 7 back-
ground channels were removed from the feature matrix, leaving 26 
channels, to remove background noise and to ensure that the algorithm 
was not overly influenced by replicates of a single feature. The UTAG 
algorithm was run with a thresholding distance of 50 pixels because 
the per pixel distance was more than twice as high at this magnifica-
tion. We ran both Leiden and PARC clustering at multiple resolutions 
of 0.05, 0.1, 0.3, 0.5 and 1.0. We annotated stromal and tumor regions 
based on 0.1 resolution, as the seven created clusters were more than 
enough for a small dataset with three patients and 16 slides.

Software used: squidpy49 v.1.1.0, Leiden22 v.0.8.7, PARC23 v.0.31, 
ilastik55 v.1.3.3, DeepCell37 v.0.10.0, Combat50 v.0.3.0, StarDist34, life-
lines56 v.0.26.4, scikit-image57, scikit-learn58 v.0.24.2, scanpy59 v.1.8.0, 
pingouin54 v.0.3.12., scimap51 v.0.18.1 and R v.4.1.3.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Datasets used in this manuscript are publicly available at the repos-
itories from the original publications: healthy lung IMC24: https://
doi.org/10.5281/zenodo.6376766; COVID-19 lung IMC27: https://doi.
org/10.5281/zenodo.4110559; lung cancer t-CyCIF30: https://doi.
org/10.7303/syn17865732; upper tract urothelial carcinoma IMC33: 
https://doi.org/10.5281/zenodo.5719187. For convenience and repro-
ducibility we make available a repository containing all processed 
datasets in h5ad format here: https://doi.org/10.5281/zenodo.6376766.

Code availability
Source code is publicly available at the following URL: https://github.
com/ElementoLab/utag.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | UTAG analysis of IMC images of healthy lung. a) UMAP 
representation of all cells across all images based on cellular phenotypes only 
(left), or cellular phenotypes and positional information combined with UTAG 
(right). b) Labeling of domains from clustering indices. Leiden clustering 
at resolution 0.3 was mapped to domains based on expression profiles as it 
performed well on both Rand and Homogeneity score. Data in boxplots are 

presented by minimum, 25th percentile, median, 75th percentile, and maximum. 
**p < 0.01,,*p < 0.05, two-sided Mann-Whitney-U test Benjamini-Hochberg 
adjusted. c) Deciding optimal resolution for healthy lung IMC data. Leiden 
clustering for resolution of 0.1 was selected as the ideal resolution because it had 
the greatest median rand score across all slides.
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Extended Data Fig. 2 | Illustration of UTAG results on IMC images of healthy 
lung. a) Illustration of lung IMC images where the first column illustrates three 
channels (KRT5, aαSMA, DNA), the second column cell type identities, the third 
column cells colored by manual annotation of microanatomical domains, and 

the fourth column cells colored by UTAG domains. Each channel on the raw signal 
is keratin 5 for red, alpha smooth muscle for green, and DNA for blue. Scale bars 
represent 200 µm.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Benchmarking UTAG and competing methods against 
expert labels. a) Results of each method on healthy lung data to segment 
microanatomical domains. Number of latent topics for SpaGene was set to 10 to 
capture the diverse target phenotypes. Due to supporting only single images, 
SpaGene topics were relabeled using agglomerative clustering to consistently 
label topics across slides. b) Results of each method on tumor vs. stroma on 
upper tract urothelial carcinoma. Number of latent topics for SpaGene was 
set to four to differentiate tumor versus stroma. c) Example of running UTAG, 

SpatialLDA, and SpaGene to demonstrate the difference in performance. The 
color mapping in this panel is different for each method as all three methods are 
unsupervised. d) Same as c) but with domain colors remapped to correspond to 
the ones from expert labels for ease of visual comparison. For a) and b), Data in 
boxplots are presented by minimum, 25th percentile, median, 75th percentile, 
and maximum. Values outside of 1.5 times interquartile range are classified as 
outliers and are denoted as fliers.
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Extended Data Fig. 4 | Application of UTAG to quantify domain co-
localization frequency. a) Full comparison of domain colocalization frequency 
for all pairwise microanatomical domains in lung infection data grouped by 

disease type. Data in boxplots are presented by minimum, 25th percentile, 
median, 75th percentile, and maximum. Values outside of 1.5 times interquartile 
range are classified as outliers and are denoted as fliers.
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Extended Data Fig. 5 | See next page for caption.

http://www.nature.com/naturemethods


Nature Methods 

Article https://doi.org/10.1038/s41592-022-01657-2

Extended Data Fig. 5 | Application of UTAG to various data and tissue types. 
a) Discovery of tumor and stromal domains in CyCIF images of two types of lung 
cancer. The top row illustrates the intensity of three selected channels, while 
the bottom row displays the UTAG domains. Scale bars represent 200 µm. b) 
Discovery of structural domains in 15 intestine IMC images of COVID-19 infected 
patients30. The first row shows three channels of representative IMC images. The 
second row shows the corresponding segmented microanatomical domains. 
Scale bars represent 500 µm. c) Discovery of micro-anatomy in a dataset of 100 

IMC images from pancreatic tissue of diabetes patients31. Each row represents 
a different region of interest. The first column shows three channels of IMC 
images. The second column shows identified cell types in the dataset. The third 
column shows supervised islet segmentation results from a trained random 
forest using manual labels available in the original publication. The fourth 
column shows unsupervised islet segmentation results from UTAG. Scale bars 
represent 200 µm.
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