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NLM-Chem, a new resource for 
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Automatically identifying chemical and drug names in scientific publications advances information 
access for this important class of entities in a variety of biomedical disciplines by enabling improved 
retrieval and linkage to related concepts. While current methods for tagging chemical entities were 
developed for the article title and abstract, their performance in the full article text is substantially 
lower. However, the full text frequently contains more detailed chemical information, such as the 
properties of chemical compounds, their biological effects and interactions with diseases, genes and 
other chemicals. We therefore present the NLM-Chem corpus, a full-text resource to support the 
development and evaluation of automated chemical entity taggers. The NLM-Chem corpus consists of 
150 full-text articles, doubly annotated by ten expert NLM indexers, with ~5000 unique chemical name 
annotations, mapped to ~2000 MeSH identifiers. We also describe a substantially improved chemical 
entity tagger, with automated annotations for all of PubMed and PMC freely accessible through the 
PubTator web-based interface and API. The NLM-Chem corpus is freely available.

Background & Summary
Chemical names are one of the most searched entity types in PubMed1, and chemical entities appear through-
out the biomedical research literature, encompassing studies from various disciplines beyond chemistry, such as 
medicine, biology, and pharmacology, etc. Correctly identifying chemical names has significant impact beyond 
literature search by helping scientists better understand their structure, usage and interactions with other molec-
ular entities, for example in drug development research2.

Following Krallinger et al.3, identifying chemical names is especially challenging because:

•	 The variety of language expressions that authors from different disciplines use to refer to chemicals are often 
at odds with the chemical naming rules defined by standardization bodies.

•	 Chemical name variants can include an innumerable mix of typographical variants, alternating uses of hyphens, 
brackets, spacing, and word order. (For example: 5,6-Epoxy-8,11,14-eicosatrienoic acid, 5,6-EET, 5(6)epoxyeico-
satrienoic acid, 5(6)-oxido-8,11,14-eicosatrienoic acid, 5(6)-oxidoeicosatrienoic acid, 5,6-epoxyeicosatrienoic acid)

•	 Chemical entities have many synonyms. For example, all the following names refer to the same entity: triphe-
nyl phosphate, TPP, TPHP, OP(OC6H5)3, phosphoric acid, triphenyl ester, CAS: 115-86-6, ((PhO)3PO)).

•	 Chemical mentions can refer to mixtures of chemicals. (N-phenyltrifluromethylcarbohydrazonoyl 
benzenesulfonate)

•	 Chemical names are often ambiguous, especially when abbreviated. For example, the abbreviation “MTT” can 
be mapped to more than 800 different strings in PubMed, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen-
yltetrazolium bromide, methyl thiazolyl tetrazolium, mean transit time, malignant triton tumour, and myoblast 
transfer therapy.

•	 Novel chemical names refer to chemical compounds that are newly discovered, or not catalogued before.
•	 Chemical entities’ complexity makes it difficult to identify exact boundaries for entity mentions and word tokens. 

For example: dipotassium 2-alkylbenzotriazolyl bis(trifluoroborate)s, 4,7-dibromo-2-octyl-2,1,3-benzotriazole, etc.
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These difficulties are often compounded in articles’ full text, compared with the title and abstract4, causing a 
substantial performance reduction in automated chemical named entity recognition (NER) systems trained using 
only titles and abstracts. However, the full text frequently contains more detailed chemical information, such as 
the properties of chemical compounds, their biological effects and interactions with diseases, genes and other 
chemicals. Developing a chemical entity recognition system that accurately addresses these challenges requires a 
manually-annotated corpus of chemical entities3,5, with sufficient examples in full-text articles for system train-
ing6–8 and an accurate evaluation of their performance.

The creation and maintenance of chemical terminologies2, and chemical corpora9, are a major concern in 
the biomedical community10. Recent efforts have developed several valuable chemical corpora for text mining, 
such as the CHEMDNER corpus3, the BC5CDR corpus11, and the CRAFT corpus6. The CHEMDNER corpus 
established a comparative evaluation for chemical named entity identification and a body of annotation guide-
lines defining what constituted a chemical compound mention in the biomedical text literature. The BC5CDR 
corpus assessed the identification of chemical-disease relations in biomedical text, but it contained annotations 
for both chemical mentions and normalized concept identifiers, using Medical Subject Headings (MeSH) as the 
controlled vocabulary. MeSH concepts are useful as chemical identifiers because they can be mapped to other 
vocabularies via UMLS and they are provided for each article in the MEDLINE metadata. The CRAFT corpus 
is a collection of full-text PMC articles with comprehensive annotations for many biomedical entities, including 
chemical annotations normalized to ChEBI identifiers. These corpora have served as valuable resources for the 
text mining community in the recent years5,12–16, however a corpus of annotated full-text articles with a focus on 
chemicals does not currently exist.

Our work makes these significant contributions:
First, we present a new high-quality, manually annotated corpus on chemicals for biomedical literature. The 

NLM-Chem corpus contains 150 full-text journal articles selected both to be rich in chemical mentions and for 
articles where human annotation was expected to be most valuable. These characteristics make this corpus inval-
uable for improving text mining tools for accurate chemical entity identification.

Second, we build a new end-to-end chemical NER system and demonstrate improved performance in full-text 
articles compared to TaggerOne17. This system uses bluebert18 for named entity recognition, a deep-learning based 
contextualized language model, trained on biomedical and clinical text. It also introduces the multi-terminology 
candidate resolution (MTCR) normalization architecture, which employs multiple string-matching methods, 
multiple chemical terminologies and ambiguity resolution to improve chemical entity identification.

Finally, our new resource is publicly available at Dryad19 and https://www.ncbi.nlm.nih.gov/research/bionlp/
Data and the chemical entity recognition results are available via API https://www.ncbi.nlm.nih.gov/research/
bionlp/APIs/ and/or Pubtator: https://www.ncbi.nlm.nih.gov/research/pubtator/.

Methods
The NLM chemical corpus.  The NLM Chemical (NLM-Chem) corpus was created iteratively, beginning 
with defining the annotation goal. We then reviewed the procedures used for previous annotation projects for 
both chemicals and other named entities.

Following our previous work on biomedical article annotation7,20,21, and especially3 on chemical entity annota-
tion, we carefully considered several critical aspects that could influence the corpus quality. These were:

•	 Selection and sampling of full-text articles to annotate
•	 Annotation guidelines
•	 Human annotator expertise and training
•	 Annotation tools and interface
•	 Annotation process and inter-annotator consistency
•	 Corpus format and availability

Document selection.  The NLM-Chem corpus document set had to be representative of biomedical liter-
ature publications that contain chemical mentions. In addition, we decided to have this document set be com-
plementary to other Chemical entity recognition corpora such as CHEMDNER or BC5CDR; therefore, it was 
decided that the selection would target articles for which human annotation was most valuable. Fundamentally, 
this set would be instrumental in training Chemical NER algorithms to produce high-quality results in full-text 
publications and article abstracts.

We identified a set of constraints in order to select candidate articles for human annotation:

	 1.	 The data should be rich in chemical entities that current NER tools have trouble identifying
	 2.	 The data should have no restrictions on sharing and distribution
	 3.	 The data could potentially be useful for other downstream tasks related to biomedical entity text mining

In order to optimize for the constraints listed above, we designed the following procedure:

•	 We began with all articles from the Open Access Dataset with no licensing restrictions (CC-BY or CC0 
license).

•	 We next ran several filtering steps:

•	 We filtered articles that did not have an abstract and at least one reference article.
•	 We filtered articles that were retracted, a correction, or an editorial.
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•	 We filtered abnormally long articles, as measured by the number of BioC passages (roughly equiva-
lent to text paragraphs). We set the limit at 152 passages, three standard deviations (3sigma) above 
the mean (71.0 passages).

•	 We filtered articles for which our tools did not predict any chemical entities.

•	 We created a sample of articles for detailed analysis by separating the articles remaining after filtering into two 
sets; one set was published in journals whose title contains either “chem” or “molec” (case insensitive), and the 
other set was published in any other journal. We then randomly selected 10 K from each set, for a total of 20 K 
articles, to ensure that the sample retained high diversity while also enriching the sample with articles likely 
to contain many chemical entity mentions.

•	 We ran our suite of biomedical named entity recognition tools (PubTator12) and gave a higher weight to arti-
cles containing at least one non-chemical biomedical entity in the abstract (either disease, gene, mutation or 
species).

•	 We ran four different chemical entity recognition models and gave a higher weight to articles with a high level 
of disagreement between the different chemical recognition tools. The chemical named entity recognition 
models were:

1.	 The chemical annotations provided by PubTator, created using tmChem22 model 2. This system com-
bines a machine-learning model for named entity recognition with a dictionary approach for identify-
ing the recognized concepts.

2.	 The predictions from tmChem model 1 trained using a combination of the CHEMDNER corpus and 
the chemicals from the BC5CDR corpus. This system also combines a machine-learning model for 
named entity recognition with a dictionary approach for identifying the recognized concepts.

3.	 The predictions from tmChem model 1 but trained instead using a combination of the CHEMDNER 
corpus and CEMP corpus5.

	4.	 TaggerOne 0.2.3, a system that uses machine learning to model both named entity recognition and 
normalization simultaneously. This model was trained on a combination of the chemicals present in 
the BC5CDR corpus and the CHEMDNER corpus. Since TaggerOne requires concept-level annota-
tions that the CHEMDNER corpus does not provide, TaggerOne was updated with a mixed training 
mode. This mode trains the model using the concept annotation if provided by the source corpus 
and the concept annotation provided by the normalization model if not (similar to expectation 
maximization).

•	 In rounds 2 and 3 we gave a higher weight to articles dissimilar from those already selected. This was calcu-
lated by first converting each of the articles to a TF-IDF vector, using token counts from all of PubMed and 
PMC, then determining the cosine similarity between the centroid of the articles selected in previous rounds 
and the articles being considered. Articles with lower similarities were weighted more heavily. The primary 
effect of this procedure was to select articles for manual annotation containing vocabulary not already present 
in the corpus, though it also tended to prefer articles containing uncommon words.

•	 All weights were combined into a scoring method, including a random weight to increase diversity. The PMC 
Open Access articles described above were ranked, and the top ones were selected for each batch and manu-
ally reviewed to ensure topic diversity. The full text of each article was downloaded in BioC format using the 
NCBI BioC API for PubMed Central Open Access23. References and tables were removed manually but table 
captions were retained. Pre-annotations were created using TaggerOne 0.2.3 with the model trained on both 
the BC5CDR and CHEMDNER corpora, and the annotations made in previous batches of the NLM-Chem 
corpus. These articles were uploaded into the annotation tool and manually annotated as described in the 
next section.

Table 1 illustrates the difference in the average number of predicted entities for the selected 20 K PMC 
chemical-rich set of articles, and the articles ultimately selected for human annotation for the NLM-Chemical 
corpus. As noted, the articles selected for manual annotation are enriched in chemical entities.

Annotation guidelines.  Our goal for the NLM Chemical corpus is to be completely transparent in the 
annotation guidelines developed for its creation so that it can be extended, used, and compared and/or combined 
in a meaningful way with other chemical annotation corpora for the development and improvement of chemical 

Annotations per abstract in 
20 K PubMed articles

Annotations per abstract 
in NLM-Chem corpus

Chemicals 3.98 14.58

Species 6.23 3.45

Gene 5.91 6.29

Disease 5.07 5.69

Mutation 0.06 0.37

Table 1.  Difference in the number of PubTator predictions in a general set of PubMed articles, selected to be 
moderately enriched in chemical mentions, and the articles selected for annotation in the NLM-Chem corpus.
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name entity recognition tools. The complete NLM Chemical corpus annotation guidelines are publicly available 
with the corpus. Here we give a quick summary and encourage readers to refer to the supplementary file for 
details and examples.

Our guidelines specify which text elements should or should not be annotated and how to assign the anno-
tated mentions to their corresponding MeSH identifiers. The primary considerations in the annotation guidelines 
are: (a) what should be labelled as a chemical, (b) how to place the mention boundaries for those labels, and (c) 
how to associate those mentions with an entity within one of the chemical trees of MeSH.

Creating high-quality guidelines that fit the annotation task required a multi-step iterative process, starting 
from an initial draft that was revised until clear and refined guidelines were obtained. We found that determin-
ing which text spans constitute chemical mentions required significant knowledge of chemistry, combined with 
careful consideration of the texts’ meaning and consulting additional knowledge sources as needed. Our chemical 
annotation guidelines were prepared by 10 professional MeSH indexers with degrees in Chemistry, Biochemistry, 
Biological Sciences, and Molecular Biology and an average of 20 years of experience in indexing PubMed litera-
ture with Medical Subject Heading indexing terms.

First, it was decided that very general chemical concepts (such as atom(s), moiety (moieties)) and terms 
that cannot be associated directly with a chemical structure such as molecule(s), drug(s), and polymer(s) were 
excluded from the annotation process. In addition, macromolecular biochemicals, namely, proteins (including 
enzymes), lipids, nucleic acids (DNA, RNA) were excluded from the annotation. Embedded chemical concepts 
in other biomedical entities such as “sodium channel gene,” where the chemical concept “sodium” is embedded 
in a phrase indicating a different type of biochemical entity “gene,” were tagged as OTHER. Each rule defined in 
the guidelines was represented by at least one illustrative example to simplify comprehension and application.

Pre-annotation guideline discussions.  At the start of the project, before the full-text articles of the NLM 
Chemical corpus were selected, the annotators had several meetings and jointly worked on the full annotation of 
one randomly selected full-text article. These meetings introduced the guidelines and posed questions to improve 
the guidelines. The first meeting also introduced the annotation tool, and each consecutive meeting also high-
lighted the necessity of introducing certain functions to ease the annotation process. After completing annotation 
of the NLM-Chem corpus, as a result of these efforts, we developed a new and improved collaborative annotation 
tool, TeamTat24.

Pilot annotation guidelines development.  For ten consecutive weeks, the annotators fully annotated 
one full-text article each week and discussed their work in the weekly meeting. These discussions further devel-
oped the annotation rules and provided examples to ease understanding and application. The annotation guide-
lines were reformulated when ambiguities or inconsistencies were detected. During this stage, all annotators 
worked on all full-text documents. All annotations were then compared in the weekly meeting, and the differ-
ences were discussed. This experiment allowed us to estimate the time required for annotation and to refine the 
guidelines according to annotator feedback to improve comprehension and repeatability. This also provided time 
for the annotators to learn how to use the annotation interface and for the developers to adjust the interface to 
better meet the needs of annotating mentions according to the guidelines.

Corpus annotation.  The NLM-Chem corpus annotation consisted of three rounds as shown in Fig. 1.
All articles are doubly annotated. The first round of annotations consisted of each annotator annotating their 

assigned articles independently, without knowing the identities of their partners. The technical team reviewed 
these annotations to identify differences and discrepancies. The two sets of annotations for each document were 
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Fig. 1  Annotation process.
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then merged, with agreements and disagreements were marked in different colors. The second round of annota-
tions consisted of each annotator independently working on a copy of the merged documents, without revealing 
their annotation partners’ identities. Each annotator reviewed their own decisions, considered their partners’ 
decisions, and edited the documents until they were satisfied. After the completion of this round, the set of anno-
tations was again reviewed by the technical team to identify differences and discrepancies. All annotations for 
each document were again merged, with agreements and disagreements marked in different colors, and the doc-
uments made available to the respective annotators’ accounts. In the third and final round of annotations, the 
annotation partners for each document were revealed. The partners collaboratively reviewed and discussed any 
remaining annotation differences until complete consensus was reached and finalized the shared document.

Several measures were taken in the design of the annotation process to ensure that annotators were distributed 
an equitable load, and to ensure a group consensus and general corpus quality without bias. The NLM-Chem 
corpus was annotated in three batches. Batches 1 and 2 contained 45 full-text articles, and the third batch con-
tained 60 full-text articles. In batches 1 and 2 every annotator annotated nine articles and each annotator was 
paired with every other annotator exactly once. Batch 3 followed the same procedure using sixty full-text arti-
cles, so that each annotator was paired with every other annotator once or twice. The article assignment was 
also arranged so that the total number of tokens, number of paragraphs (i.e. article length), and the number 
of assigned pre-annotations were approximately equal for each annotator. Lastly, following the last annotation 
round, each annotator was responsible for the final review of a given number of articles. Again, to balance the 
workload, the articles were assigned so that the total number of disagreements was distributed roughly equally.

Corpus annotation experts and annotation interface.  The NLM-Chem corpus was developed 
by highly qualified NLM indexers. They have extensive experience (ranging from 10 to 40 years) in indexing 
PubMed articles using MeSH terms. They are thus very familiar with the biomedical literature from a variety of 
fields including clinical medicine, chemistry, biochemistry, molecular biology, genetics, cell biology and other 
life sciences fields. Most have advanced degrees in one of the biological sciences or chemistry. This group was 
uniquely qualified to perform this task, because they have the most suitable academic backgrounds and experi-
ence with biomedical literature and annotation of this literature with Medical Subject Heading Terms. The only 
training the annotators needed was how to use the annotation interface to mark up the chemical mentions in the 
text at the character level and highlight all occurrences.

The TeamTat web-based annotation tool was selected for this project because it supports team annotation and 
is fully integrated with PubMed and PMC. TeamTat has an intuitive interface, it does not require local installation, 
it supports pre-annotation, and it accurately captures Unicode character offsets. The annotation tool allows quick 
and easy browsing of the full-text articles, for easy markup and editing functions. The tool is also capable of link-
ing to the MeSH browser to select correct identifiers. The tool is equipped with links to the PubMed and PubMed 
Central versions of the articles in consideration, as well as a tabular view of the annotated mentions.

All articles were pre-annotated using the NCBI text mining suite TaggerOne tool. Prior to each new annota-
tion batch, TaggerOne was retrained using all the chemicals in the BC5CDR, CHEMDNER, and all the available 
data in the NLM Chem corpus. This version of the tool was used to provide automated predictions for the new 
batch of documents, which then were uploaded to the TeamTat system, and distributed to the annotator accounts. 
Annotators were explicitly instructed to ignore the pre-annotations if inaccurate or if in doubt.

Annotators were encouraged to crosscheck information to ensure that the annotations reflected the meaning 
of the text and were consistent with the guidelines. Annotators were free to reference other sources as needed, 
including chemical databases (ChEBI, DrugBank, PubChem, etc.) or to search for information online.

TeamTat is an annotation interface developed and enriched with features and functionalities that allow for a 
better annotation experience such as: automatic search, automatic annotation of all occurrences of a given string 
throughout the text, easy access to MeSH browser for cross checking the normalization, an intelligent bookmark 
function that remembers the last paragraph the annotators were working on, and visual clues for annotators to 
mark individual annotations that have been checked, reviewed and accepted.

Annotation format.  While annotations can be represented in various formats, we used the BioC XML for-
mat due to several considerations. First, the format supports full-text articles and annotations representing both 
mention span (location) and entity identifier. Second, articles in the PMC text mining subset25 are already avail-
able in BioC XML format, and both the annotation interface, and the NER tool TaggerOne already support the 
format. Third, the format is simple and easy to modify, allowing additional analysis tools to be applied rapidly as 
needed.

Finally, TeamTat stores all annotations in BioC (XML and JSON), such that each annotation is specified by 
the character location on the document, the text mention, and its MeSH Identifier, and can be downloaded at any 
given time.

The chemical entity recognition tool.  As an initial demonstration of the value of NLM-Chem, we cre-
ated an improved benchmark tool for chemical entity recognition and normalization. Recent deep learning meth-
ods, especially contextualized language models such as BERT26, have resulted in significant improvements in 
many natural language processing tasks, including named entity recognition. We therefore base the new tool on 
the bluebert (https://github.com/ncbi-nlp/bluebert) variant of BERT18, which was trained on PubMed abstracts 
and clinical notes from MIMIC-III (model BlueBERT-Base, Uncased, PubMed + MIMIC-III). The bluebert 
model was then fine-tuned on either the BC5CDR chemical named entity recognition corpus or a combination of 
BC5CDR and the NLM-Chem training set to provide chemical mention annotations.

https://doi.org/10.1038/s41597-021-00875-1
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To assign MeSH identifiers to the chemical mentions found by the bluebert NER tool, we paired it with a new 
normalization system which we have termed MTCR: Multiple Terminology Candidate Resolution. MTCR combines 
several methods, most well-known, into a pipeline optimized for chemical mention normalization, as follows:

	 1.	 MTCR attempts to assign MeSH identifiers to all spans recognized as chemicals by bluebert that contain at 
least one alphabetic character.

	 2.	 All abbreviations that appear in the mention text are resolved using abbreviation definitions identified by 
Ab3P27 in the full article text. Full-text articles may define abbreviations more than once; any definitions in 
conflict are resolved by selecting the definition that appears more frequently in PubMed/PMC.

	 3.	 The mention text is mapped to a set of candidate MeSH concepts using multiple string-matching methods. 
These methods are applied in sequence, with the first method that returns a non-zero number of MeSH 
concepts used as the overall result. The sequence is designed so earlier methods provide higher precision 
while later methods provide higher recall.

	 a.	 Exact match to MeSH: an exact match between mention text and MeSH concept names
	 b.	 Relaxed match to MeSH: The relaxed match method maps upper case text to lower case, maps 

non-ASCII characters to approximate ASCII equivalents, converts non-alphanumeric characters to 
spaces, then removes all spaces except those between two digits.

	 c.	 Relaxed plural match to MeSH. This method uses the same mapping as the relaxed match, but also 
processes each token using a conservative plural stemmer28.

	 d.	 Relaxed match to multiple chemical terminologies. This method uses the same string mapping as the 
relaxed match to MeSH, but applies it to all concept names from the FDA UNII database (https://
fdasis.nlm.nih.gov/srs/), ChEBI29, the EPA DSSTox database30, and the UMLS31. Any matching con-
cepts are then mapped to MeSH using a cross-reference directly to a MeSH identifier or an indirect 
cross-reference through a CAS, INCHI, INCHIKEY, UNII, SMILES, or EINECS identifier.

	 e.	 Relaxed plural match to multiple chemical terminologies. This method uses the same string mapping 
as the relaxed plural match to MeSH, and the same concept mapping as the relaxed match to multiple 
chemical terminologies.

	 4.	 The candidate MeSH identifiers for each mention are then resolved as follows:

	 a.	 Mentions that could not be mapped to any MeSH identifier are marked unknown.
	 b.	 Mentions are disambiguated by intersecting the set of candidate MeSH identifiers for the mention 

with the set of MeSH identifiers that appear in the document unambiguously (only one candidate), if 
present.

MeSH identifiers that do not appear in one of the MeSH hierarchies for chemicals are removed.

Data Records
The NLM Chemical corpus is the largest corpus of full-text articles annotated with chemical entities at a high 
degree of granularity. The NLM Chemical corpus contains a total of 38,342 manual chemical mention anno-
tations; corresponding to 4,867 unique chemical name annotations, normalized to 2,064 MeSH identifiers, 
extracted from 150 exhaustively examined full-text articles. Out of all mentions, 50% occur only once, 83% occur 
only in one article, 3.3% were unable to be normalized to a MeSH ID, and 11.3% were assigned to a combination 
of MeSH identifiers. Of the 2,064 unique MeSH assignments, 70% occur only in one article, and 15% contained 
two or more MeSH identifiers.

Figure 2 depicts the distribution of unique MeSH identifiers and total chemical name annotations in each 
PMC article. Figure 3 shows the impact of annotations in the full text. As seen, the full text contains many more 
chemical annotations and a larger variety of both mentions as well as identifiers.

The NLM-Chem corpus is freely available from Dryad19 and at https://www.ncbi.nlm.nih.gov/research/
bionlp/Data/, along with its annotation guidelines document.

An important step in corpus development is identifying a good split between the set of articles to be desig-
nated as the train set, development set and test set. An optimal split is useful for the development of new algo-
rithms, meaning that the data needs to be similar and not have unexpected biases. For the NLM-Chem corpus, 
we prepared a split of 80/20/50 articles.

To ensure a similar distribution of articles in all the sets, we sampled proportionally from each annotation batch, 
selecting the articles so that the word distribution approximated the word distribution of the full corpus. This step 
ensured that we did not inadvertently split the dataset into defined clusters. Table 2 shows the distribution of anno-
tations in each partition. Notice the high p-value, reflecting that the partitions are not different from each other.

Technical Validation
Corpus annotation quality (Inter-annotator agreement).  In order to make sure we are producing a 
quality resource, the inter-annotator agreement was checked after each annotation round. These results are shown 
in Table 3, and Fig. 4. In Fig. 4, we have arranged the data to show the progression between annotation batches, 
as well as annotation rounds. Exact agreement indicates that the two annotator partners agreed both on mention 
and ID annotation. The Mismatch ID case counts only the cases where annotators agree on the chemical men-
tion, but they have selected different MeSH identifiers. The single-annotation case counts all mentions for which 
only one of the annotators supplied an annotation. If two annotations overlap but do not match exactly, they are 
counted as two single annotations. Please note that this is a very strict definition of annotation agreement.

https://doi.org/10.1038/s41597-021-00875-1
https://fdasis.nlm.nih.gov/srs/
https://fdasis.nlm.nih.gov/srs/
https://www.ncbi.nlm.nih.gov/research/bionlp/Data/
https://www.ncbi.nlm.nih.gov/research/bionlp/Data/


7Scientific Data |            (2021) 8:91  | https://doi.org/10.1038/s41597-021-00875-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

a.  Frequency plot for number of dis
nct MeSH concept per 
ar
cle. 

Mean = 34, median = 31, min = 1, max = 91

b.  Frequency plot for number of total chemical annota
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Fig. 2  Frequency distribution of distinct MeSH annotations (a), and annotated chemical mentions (b) per 
article in the NLM-Chem corpus.
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a.  MeSH ID comparison in abstract vs. full text
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b. Chemical String comparison in abstract vs. full text

1,064
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Fig. 3  The distribution of chemical identifiers (a) and chemical mention annotations (b) in the NLM-Chem 
corpus abstracts vs the full-text articles.

Set
Number of 
Articles

Number of 
Chemical 
Annotations

Mean Number of 
Chemical Annotations 
Per Article

Stdev Of Chemical 
Annotations Per 
Article

P-Value Of T-Test Hypothesis That 
Sample Mean Is Significantly Different 
from Mean of Full Corpus

Train 80 22512 281.40 165.06 0.60

Dev 20 5546 277.30 167.46 0.85

Test 50 12409 248.18 157.40 0.41

Table 2.  Distribution of chemical annotations for train/dev/test set.

Annotation Round 1 Annotation Round 2

Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3

Exact Agreement 42.20% 73.70% 72.90% 74.1% 81.8% 81.2%

Mismatch ID 8.60% 6.50% 9.80% 5.6% 1.0% 4.3%

Single - annotation 49.20% 19.80% 17.30% 20.3% 17.2% 14.5%

Table 3.  Inter-annotator agreement after annotation round 1, and round 2 for each annotation batch.
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Similar to previous studies, analyzing the annotator disagreements that occurred in round 1 demonstrated 
that the conflicts were primarily due to missed annotations – that is, the span was annotated by one annotator but 
not the other – rather than differences in the mention boundary or the associated entity identifier.

The lowest annotation agreement is seen for annotation batch 1, round 1. This was the time when the anno-
tators were getting used to the task and prepare the annotation guidelines. From round 1 to round 2 we see a 
significant increase in annotation agreement numbers. The inter-annotator agreement numbers in batches 2 and 
3 are very similar, signifying that the true inter-annotator agreement of the task in general. Annotation round 3 
involves pair-wise meetings between the annotators, during which they discuss and reconcile their differences to 
produce 100% agreement. Note that annotator partners are only revealed during round 3. Averaged load distri-
bution amongst annotator pairs and random anonymous pairings between annotators are used to control anno-
tation bias.

Another significant measure of corpus quality is the level of agreement of the final annotations of the corpus 
with the proposed tool annotations that the annotators are given in the beginning. Again, we show each anno-
tation batch separately because we used the finalized annotations after each batch to retrain and improve the 
model recognition power before we supplied pre-annotations for the next batch. Annotators were encouraged to 
review the tool results critically, and the numbers shown in Table 4, reflect the fact that the tool did not bias the 
annotators when making their decisions. It is important to see that the annotators trust the tool more on finding 
a chemical mention than on finding the correct MeSH identifier.

The NLM-Chem corpus characteristics.  The NLM-Chem corpus is a rich corpus created for chemi-
cal named entity recognition. We compared the NLM-Chem corpus with both the BC5CDR and ChemDNER 
corpora. Figure 5 shows a comparison with BC5CDR, because we can compare this both on the mention and 
ID level. The BC5CDR corpus contains PubMed abstracts annotated with chemical and disease mentions and 
chemical-disease relations. It was introduced as part of a shared task at BioCreative 5 and is annotated with men-
tion spans and MeSH ID concept identifiers. It can therefore be used to train both named entity recognition and 
normalization systems. In addition, we compared the Chemical mentions in NLM-Chem with ChemDNER. Our 
analysis shows that 70% of the (unique) Chemical names annotated in the NLM-Chem corpus are new mentions, 
not previously identified in the previous corpora.

As shown in Fig. 5, annotating full text significantly increases both diversity and synonymy in the NLM-Chem 
corpus. More than 70% of the unique MeSH assignments, and more than 78% of unique chemical names come 
from the full text. Such diversity is important for PubMed search. As expected, analyzing the chemical mention 
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70%

80%

90%

100%

Round 1 Round 2 Round 3

tne
meergA tcaxE

Inter-annotator agreement for the three batches of annota�ons

Chem-Batch1

Chem-Batch2

Chem-Batch3

Fig. 4  NLM-Chem corpus annotation quality. We have arranged the data to show the progression between 
annotation batches, as well as annotation rounds. The figure shows exact agreement measures and indicates that 
the two annotator partners agreed both on mention, and ID annotation. Annotation batch 1 is the time that the 
annotators were getting used to the task and writing the annotation guidelines. The numbers for batches 2 and 3 
almost overlap with each-other, indicating the level of human agreement.

Chemical mention recognition Chemical ID recognition

Batch 1 Batch 2 Batch 3 Batch 1 Batch 2 Batch 3

Precision 68.6% 83.0% 73.8% 49.7% 68.1% 74.0%

Recall 54.6% 68.0% 71.6% 57.6% 67.9% 75.8%

F-measure 60.8% 74.8% 72.7% 53.3% 68.0% 74.9%

Table 4.  Accuracy of pre-annotations.
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annotations assigned to the same MeSH ID showed the differences to be lexical variations, abbreviated forms, 
alternative spellings, meronyms and synonyms.

Table 5 shows the distribution of chemical annotations over the different sections of a full-text article. The data 
varied within the full text sections and we were not able to identify any certain category of chemicals prevalent to 
a specific section. While the general expectation of the MeSH indexers was that most of the chemicals mentioned 
in the Methods section would be reagents, a detailed inspection of the unique chemicals listed in the Methods 
section also revealed many occurrences of specific chemicals. After this analysis we can conclude that for many 
search and indexing tasks, processing the whole article is useful.

We also analyzed the journals which published the 150 articles. There were 61 different journals, the most 
common are listed in Table 6. Eight of the ten most common journals are related to chemistry, while the remain-
ing two (PLoS One and BioMed research international) are broad topic.

We noted that 37% of the articles in NLM Chem were published in just three journals. To determine whether 
our selection process skewed the journal distribution, we analyzed the nearly 300,000 full-text articles that pass 
our filtering steps, including the requirement for CC-BY or CC-0 licensing. We found that the journal distribu-
tion of the full filtered set is also highly skewed, with over 30% of the articles appearing in PLoS One (data not 
shown). Moreover, we found that a sample of 150 articles chosen randomly would likely contain at least 15 more 
articles from PLoS One, while the journals related to chemistry would each be expected to appear slightly less 
frequently (hypergeometric distribution, 95% confidence interval). We thus conclude that our selection process 
demonstrates a preference for articles enriched in chemical content while reflecting the diversity of the literature 
overall, as designed.

Usage Notes
Chemical named entity recognition evaluation.  As a preliminary demonstration of the value of a full-
text corpus for chemical named entity recognition and normalization, we prepared an experiment to show the 
improvement in performance on annotating chemicals in full-text articles when chemical annotations from full-
text articles are available for training. For named entity recognition, each mention span was considered separately. 
A prediction only counted as a true positive if both the start and end characters matched (strict boundaries). For 

4,482

BC5CDR
corpus

916 1,719

NLM-CHEM
corpus

365
2,151

a.  MeSH ID comparison in the two corpora b.  Chemical men�on comparison in the two corpora 

NLM-CHEM
corpus

BC5CDR
corpus

479

Fig. 5  A comparison of Chemical mention (a) and ID (b) composition of the BC5CDR and NLM-CHEM 
corpora. We show the chemical mentions and identifiers that they differ, and the ones that they have in 
common.

Chemical mentions Chemical MeSH IDs

Total Unique Unique to Section Unique Unique to Section

Title 169 164 40 149 1

Abstract 2,421 989 119 611 6

Intro 4,236 1,461 543 812 186

Methods 7,696 2,228 1,098 1,194 368

Results 11,910 1,957 644 1,124 191

Discussion 5,670 1,048 282 706 131

Table and figure captions 5,480 1,220 208 743 22

Table 5.  Distribution of Chemical annotations in full text sections.
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normalization, the evaluation compared the set of concepts annotated in the full-text document and the set of 
concepts predicted as present. In both cases, precision was defined as the number of true positives divided by the 
number of predictions, recall as the number of true positives divided by the number of annotations, and F-score 
as the harmonic mean of precision and recall.

This experiment consisted of four experimental conditions. These conditions compare the difference in the 
performance of two different models on the NLM-Chem test set when trained on the BC5CDR training data, 
which contains only titles and abstracts, and the same model when trained with the NLM-Chem training set. 
Each condition is evaluated on the NLM-Chem test dataset.

The first condition, shown in Table 7, first row, consisted of training the TaggerOne system for joint named 
entity recognition and normalization on the chemicals in the BC5CDR corpus (training and development sets), 
using the BC5CDR sample set as a development set. Training was stopped when performance on the development 
set did not improve after five iterations through the training data.

For the second condition, we trained the TaggerOne model using a combination of the BC5CDR corpus 
(training and development sets) and the NLM-Chem train dataset as the training data, with a combination of the 
BC5CDR sample set and NLM-Chem development set as the development set. Training was stopped when per-
formance on the development set did not improve after five iterations through the training data. This evaluation 
clearly shows a sharp jump in performance obtained when trained using a combination of PubMed abstracts and 
full-text documents.

For the third condition, we trained the bluebert deep learning model18 on the BC5CDR training and devel-
opment sets. We see a great improvement in the precision and recall of chemical names, due to the deep learning 
architecture’s ability to use the context and generalize from it. The normalization results use the bluebert output 
to locate the chemical mentions, then apply the MTCR method. Again, we see an improvement in the accuracy of 
correctly identifying the MeSH identifiers.

For the fourth experimental condition, we trained the bluebert deep learning model using a combination of 
the BC5CDR corpus (training and development sets) and the NLM-Chem training set (similar to the second 
condition above), again using the MTCR method for MeSH ID recognition. Compared with the bluebert results 
using BC5CDR for training, we see a great improvement in both precision and recall for both mentions and 
MeSH IDs, confirming the significant importance of annotated full-text corpora for training and evaluating the 
performance of models on full-text articles. Note that these results are not far below the human inter-annotator 
agreement values.

NLM-Chem is a high-quality corpus, doubly annotated by ten NLM indexers, in three rounds of annotation, 
and all annotator disagreements have been resolved. NLM-Chem corpus is currently the largest corpus of full-text 
articles annotated with chemical entities at a high degree of granularity. It contains a total of 38,342 manual chem-
ical mention annotations; corresponding to 4,867 unique chemical name annotations, normalized to 2,064 MeSH 
identifiers, extracted from 150 exhaustively examined full-text articles. The articles were carefully selected from 
the PMC Open Access dataset and cover 61 journals. The data is split in a train/development/test set arrangement 
that approximates a fair word distribution. The NLM-Chem corpus will be invaluable for advancing text-mining 
techniques for chemical extraction tasks in biomedical text.

NUMBER OF 
ARTICLES JOURNAL NAME

26 International journal of molecular sciences

20 PLoS One

10 The Journal of biological chemistry

6 Beilstein journal of organic chemistry

6 Molecular vision

5 Molecular pain

4 BioMed research international

4 Chemical science

4 Molecular cancer

3 Acta crystallographica. Section E, Structure reports online

Table 6.  Top ten journals in the NLM-Chem corpus.

System Training Corpus

Chemical Mention Recognition MeSH ID Recognition

Precision Recall F-measure Precision Recall F-measure

TaggerOne
BC5CDR 0.580 0.414 0.483 0.470 0.508 0.488

BC5CDR + NLM-CHEM 0.724 0.615 0.665 0.653 0.681 0.666

Bluebert + MTCR
BC5CDR 0.731 0.523 0.610 0.792 0.599 0.682

BC5CDR + NLM-CHEM 0.810 0.711 0.757 0.822 0.728 0.772

Table 7.  Initial text mining evaluation, showing performance results on the NLM-Chem test set, when the 
training is performed on the listed combinations of training sets, and controlled on the development set.
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We created a benchmark chemical entity recognition and normalization system to provide a robust method 
that could translate to real-life applications. Our system uses deep learning to recognize chemical mentions and a 
multi-terminology candidate resolution (MTCR) architecture to map each mention to a MeSH identifier. MTCR 
uses multiple string matching methods and chemical terminologies to generate candidate mappings, resolves 
ambiguous mappings, and eliminates mappings that are unlikely to be chemicals. Our system results in signifi-
cantly higher performance than available with our previous chemical recognition tool and can identify chemicals 
in the NLM-Chem test dataset with performance close to the human inter-annotator agreement.

Because our goal is to provide practical benefits with our NLP research, NLM-Chem is available from Dryad19 
and at https://www.ncbi.nlm.nih.gov/research/bionlp/Data/ and the chemical recognition results have been 
streamlined to process all PubMed articles in daily updates: https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/ 
and from https://www.ncbi.nlm.nih.gov/research/pubtator/.
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