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Investigation of Atrial Vortices 
Using a Novel Right Heart Model 
and Possible Implications for Atrial 
Thrombus Formation
Utku Gülan1, Ardan Saguner2, Deniz Akdis2, Alexander Gotschy2,4, Robert Manka2,  
Corinna Brunckhorst2, Markus Holzner1 & Firat Duru2,3

The main aim of this paper is to characterize vortical flow structures in the healthy human right atrium, 
their impact on wall shear stresses and possible implications for atrial thrombus formation. 3D Particle 
Tracking Velocimetry is applied to a novel anatomically accurate compliant silicone right heart model 
to study the phase averaged and fluctuating flow velocity within the right atrium, inferior vena cava 
and superior vena cava under physiological conditions. We identify the development of two vortex 
rings in the bulk of the right atrium during the atrial filling phase leading to a rinsing effect at the atrial 
wall which break down during ventricular filling. We show that the vortex ring formation affects the 
hemodynamics of the atrial flow by a strong correlation (ρ = 0.7) between the vortical structures and 
local wall shear stresses. Low wall shear stress regions are associated with absence of the coherent 
vortical structures which might be potential risk regions for atrial thrombus formation. We discuss 
possible implications for atrial thrombus formation in different regions of the right atrium.

Blood flow in the right heart is complex and the assessment of hemodynamics within the right-sided cardiac 
chambers is challenging. Despite the physiologic and pathophysiologic importance of the right heart and dis-
turbed blood flow within the right-sided cardiac chambers in many cardiovascular diseases such as arrhythmo-
genic right ventricular cardiomyopathy (ARVC), right ventricular ischemia, tricuspid valvular (TV) and 
pulmonary valvular (PV) heart diseases1, studies on the hemodynamics of the right heart have lagged behind 
those on the left heart2,3.

Vortex ring formation is a prominent characteristic of the cardiovascular system and may indicate overall 
cardiac health4,5. It has been shown that diastolic vortex ring features are consistently present in healthy human 
hearts, whereas a considerable disruption of vortex ring formation was reported to be associated with heart fail-
ure5. In healthy adults, the right atrium redirects the blood flow and produces coherent rotational patterns during 
ventricular systole and diastole allowing blood to slingshot into the right ventricle (RV)6,7. On the other hand, 
cardiac hemodynamics in newborn infants are different from those in adults involving a disruption of rotational 
flow patterns. Although this adaptation is physiological in newborn infants, disruption of rotational flow patterns 
may be an indicator of circulatory dysfunction in the adult heart7. In the athlete’s heart, helical flow patterns and 
recirculating blood flow are similar to the normal healthy adult’s heart, which implies that the heart is adapting 
to accommodate vortical flow structures even under strenuous dynamic exercise conditions8. Hence, the analysis 
of vortex formation appears to be a useful tool for assessing pathophysiological changes in the human heart. 
Right atrial thrombosis formation is rare as compared to thrombus formation in the left atrium, and mechanisms 
of thrombus formation within the right atrium are not well understood9,10. It has been shown that turbulence 
increases the probability of thrombus formation in the cardiovascular system11. Since the presence of turbulence 
is an indicator in assessing the abnormalities in the circulatory system12,13, studies on assessing blood flow need 
to consider the influence of vortex formation, disturbed flow and turbulence. To the best of our knowledge, such 
a study has not yet been conducted in the right atrium.Therefore, the aim of this study was to both qualitatively 
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and quantitatively characterize vortex formation, and to assess the temporal and spatial evolution of vortical 
structures and their association with wall shear stresses within the healthy human right atrium.

Results
Qualitative flow analysis.  The phase averaged velocity vector map, color coded with velocity magnitudes 
during right ventricular systole and diastole is depicted in Fig. 1 (top). High velocity regions develop in the IVC, 
SVC and RV outflow tract (RVOT) during the atrial filling phase (Fig. 1, top, left). Both inflow streams from the 
IVC and SVC lead to a rotational flow in the RA. In the later stages of ventricular systole, the caval venous flows 
meet each other, but do not exactly display a head-on collision in the RA (part of the IVC jet deviates towards 
the posterior atrial wall). In the diastolic phase after the closure of the PV, a high velocity region develops in the 
vicinity of the TV surrounded by rotational flow regions (Fig. 1, top, right). On the other hand, three- dimen-
sional streamlines, color coded for vorticity magnitudes, show relatively low vorticity magnitudes along the IVC 
and SVC (Fig. 1, bottom), even though the spiraling streamlines correspond to the previously identified rotational 
regions (Fig. 1, top). The difference might come from the fact that vorticity describes the flow’s local rotationality 
whereas streamlines make larger scale flow circulations apparent. In the systolic phase, higher vorticity magni-
tudes are displayed in the proximity of the RVOT and RA, whereas during the diastolic phase high magnitudes 
develop in the vicinity of the TV.

Vortex ring formation analysis.  We now focused on vortex detection using the Q criterion, and analyze 
the temporal evolution of vortical structures in the RA.

In Fig. 2, both phase averaged and fluctuating vortical structures are shown for eight subsequent time instance 
along the duration of the pulse (phase averaged vortex structures are color-coded with blue color in the top pan-
els, whereas the fluctuating structures are color-coded with green color in the bottom panel of Fig. 2). In the phase 
averaged field, two vortex rings are clearly visible in the vicinity of the transitional region from the IVC and SVC 
to the RA at the beginning of atrial filling. The vortex-rings grow during the atrial filling stage. Their size increases 
considerably prior to the collision of the two vortices and they are large enough to rinse the posterior atrial wall. 
In the ventricular filling stage, the vortex-rings break down. On the other hand, the fluctuating vortical structures 

Figure 1.  Planar slice of the phase averaged velocity vector map color coded with velocity magnitudes during 
right ventricular systole (a), diastole (b) and side view of three dimensional streamlines color coded with 
vorticity magnitude during right ventricular systole (c), diastole (d). The white color represents higher velocity 
magnitudes, whereas black color represents lower velocity magnitudes which are typically associated with lower 
velocity gradients.
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are present during the entire cardiac cycle. While the phase averaged vortical structures are large with a size com-
parable to the diameter of the atrium, the fluctuating ones are small-scale structures.

Relevant vortex ring parameters are depicted in Fig. 3. The vortex ring grows over time and hence the volume 
of the vortical structures increases in the atrial filling phase (87 ml at peak systole). Disconnected parts of the 
vortical structures still exist after the vortex break down but they decay and their volume decreases until the end 
of the cardiac cycle (Fig. 3, left). As visible in Fig. 2, the coherent vortex rings break down in the early ventricular 
filling phase and we plot the vortex ring to orifice ratio until that moment in Fig. 3 (right). The vortex size is ini-
tially very similar to the venae cavae sizes and grows to a maximum value of 1.4 which agrees with in vivo study 
of Arvidsson investigating the healthy heart5.

Wall shear stress (WSS) analysis.  The temporal evolution of spatially averaged WSS at different cross sec-
tions (a) is depicted in Fig. 4(b). The time variation of WSS is minor at both venae cavae. However, the temporal 
trend of WSS in the RA (Section II and III) is different from the IVC and SVC, i.e. it varies significantly time. As 
seen, the WSS increases in the beginning of the atrial filling phase which corresponds to the time instant when 
the vortex rings are formed. In the late systole, the magnitude of WSS decreases and remains smaller during the 
diastolic phase. In the absence of the coherent vortex rings, e.g. diastolic phase in the RA and entire cardiac cycle 
in the IVC and SVC, the magnitude of WSS is comparatively smaller. It does seem that the presence of the vortex 
rings increases the WSS.

Figure 2.  Time sequence of Q criterion-detected vortex structures in the phase averaged vorticity field 
(visualized as isosurfaces in blue color) and fluctuating vorticity field (visualized as isosurfaces in green color) 
over the entire cardiac cycle. Time instances are depicted as insets with a red circle (isovalue is 50 s-1).
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We substantiate this relationship by focusing on the spatial distribution of WSS at the cross sections shown in 
Fig. 5. As seen at Section II, higher WSS regions are found at the posterior right atrium (PRA) in the atrial filling 
phase. During the ventricle filling stage, higher WSS regions are located near the anterior right atrium (ARA), i.e. 
in the proximity of the tricuspid valve. The spatial distribution of WSS at Section III is similar to the one at Section 
II. Higher WSS regions develop at the posterior right atrium.

Statistical analysis.  In the previous sections, we qualitatively show that the vortex ring and WSS correlates 
well. We now focus on the statistical analysis between the vortex formation and WSS in Fig. 6. As seen (Fig. 6), 
time evolution of WSS and vortex kinetic energy shows same trends, i.e. an increase in the early atrial filling stage 
and a decrease in the late systolic phase. There is a correlation between WSS and the kinetic energy of vortex 
which is quantified based on a Pearson correlation coefficient of 0.7. This finding also shows that tracking the 
temporal behavior of the vortex structures may provide a complimentary information on the WSS as they have 
similar time trends.

Discussion
We present an investigation which, for the first time, analyzes right atrial flow patterns in an in vitro silicone rep-
lica of the healthy human right heart by 3D PTV under physiological pulsating flow conditions. Time evolutions 
of vortex structures and associated shear stresses have been studied to characterize blood flow in the RA. The 
main findings of the present study are as follows.

Figure 3.  Time variation of vortex and non-vortex volume (left) and temporal evolution of the ratio between 
the vortex ring diameter and the diameter of both venae cavae (right).

Figure 4.  Cross sections investigated along the SVC, IVC and RA (left), time variation of spatially averaged 
WSS at four cross sections (right).
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	 1.	 Two vortex rings develop from the both venae cavae in the early atrial filling phase. The vortex rings grow 
during the ventricular systole and break down at the early right ventricular diastole.

	 2.	 The volume of the vortex structures at peak systole covers 40% of the entire RA volume. Furthermore, the 
vortex ring to orifice ration reaches to 1.4 prior to the break down which means that vortex rings grow and 
fill completely the atrial cross section.

	 3.	 It is shown that there is a correlation (ρ = .0 7) between the vortex formation and the WSS. During the 
ventricular diastolic phase in the RA and entire cardiac cycle in the IVC and SVC, the magnitude of WSS is 
smaller when there is no coherent vortical structure formed. On the other hand, WSS becomes about 3 
times higher due to the presence of the vortex rings during the ventricular systolic phase.

	 4.	 The qualitative analysis of the flow field revealed that the vortex rings provide rinsing effect along the pos-
terior atrial wall which may avoid the risk for thrombus formation as the blood cells are washed away.

From a fluid mechanics point of view, recirculating flows and vortices are characteristic flow features in 
between the cardiac chambers, which play a crucial role in the momentum transfer and irreversible energy 
loss14,15. In healthy human hearts, the intraventricular flow pattern has a natural structure that is optimal for min-
imizing the energy dissipation16. An increase in energy dissipation due to the break of the natural structure may 
lead to an increase in the energy that is needed by the myocardial muscle to eject the blood into the circulation, 

Figure 5.  WSS normalized by peak WSS distribution along the RA circumference at Section II and III for eight 
different time instances (PRA represents posterior right atrium, ARA represents anterior right atrium).
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which also increases myocardial oxygen consumption16. It is known that vortex rings optimize the blood flow 
within the heart14,17. We show in the phase averaged field that coherent vortical structures arise in the RA during 
the atrial filling stage which may transport the momentum efficiently reducing the energy loss.

RA thrombosis is a rare phenomenon, and has been reported under specific circumstances such as endocar-
dial pacing9, and the condition is likely underdiagnosed10. Significant tricuspid regurgitation, low cardiac output, 
pulmonary hypertension and decreased pulmonary blood flow are predisposing parameters18,19. In some clin-
ical cases, it is found that RA thrombi are in transit, having migrated from the venous system to the heart;10,18 
which may predispose to pulmonary embolism. Right atrial enlargement in cardiovascular diseases affecting the 
right-sided cardiac chambers may also predispose to RA thrombus formation due to loss of atrial contractility, 
atrial arrhythmias such as atrial fibrillation and finally blood stasis. ARVC is a genetic myocardial disease that 
primarily affects the right ventricle, which is characterized by dilatation of the right ventricle wall motion abnor-
malities, as well as aneurysms. It is a common cause of sudden cardiac death in the young and athletes due to 
rapid ventricular arrhythmias. However, recently, it has become evident that the RA is commonly involved in the 
disease process leading to atrial arrhythmias20. In ARVC, RA dilation frequently occurs due to significant tricus-
pid regurgitation, RA volume and pressure overload, and atrial arrhythmias21. In some case studies, it is suggested 
that RA thrombosis needs to be recognized as a complication of ARVC22,23.

With regard to this, our results show that – even in the healthy human heart - low shear stress zones arise 
within the anterior RA in the absence of coherent vortical structures, which may be potential risk regions for 
development of thrombi, as low wall shear stress can provoke intimal wall thickening24. Our findings are in line 
with the case study showing a solid thrombus was attached to the free wall of the right atrium22. Recently, Parikh 
et al.25 qualitatively studied the right atrial flow patterns in the normal heart and in patients with patent foramen 
ovale (PFO). They found that vortical flow exist in the structurally normal heart, whereas the absence of the 
“standard” vortex formation during the atrial filling is more common in the patients with PFO. This in vivo study 
supports our findings on the vortex formation in the healthy right atrium.

Platelet adhesion and aggregation are responsible for triggering the thrombus formation mechanism and acti-
vated platelets might adhere to the thrombogenic surface at low WSS regions26. From a clinical point of view, low 
blood flow and stasis are risk factors for thrombosis. As shear rate increases, advective effects become dominant 
preventing thrombin production on the subendothelium27. Based on the findings from this study, we hypoth-
esize that the influence of rinsing motion of the large vortex rings during atrial filling increases the WSS and 
thereby avoids RA thrombus formation. This assumption well agrees with clinical research on shear rate related 
thrombosis.

Limitations: We investigated flow patterns in a physiological right heart model, which is however obtained 
from a real patient geometry and driven with realistic forcing. Nevertheless, clinical studies on the differences in 
the formation of vortical structures in patients with right heart diseases, such as ARVC are still missing and this 
is subject of future work.

Methods
We confirm that all methods were carried out in accordance with relevant guidelines and regulations. This study 
was conducted in full agreement with the principles of the “Declaration of Helsinki” and current Swiss law. It has 
been approved by the Ethics Committee of the Canton of Zurich (approval number KEK-ZH-Nr. 2014-0443). All 
probands signed an informed consent form for prospective inclusion.

Anatomic reconstruction of the right heart.  ECG-gated cardiac-magnetic resonance imaging (MRI) 
with 1.5 Tesla (Philips, The Netherlands) was performed in a healthy adult male aged 25 years in order to obtain in 
vivo time-resolved anatomic maps of the right atrium (RA), superior vena cava (SVC), inferior vena cava (IVC), 

Figure 6.  Time evolution of spatially averaged WSS (blue circles) and kinetic energy of the vortex ring (red 
squares).



www.nature.com/scientificreports/

7SCIentIfIC REPOrTS | 7: 16772  | DOI:10.1038/s41598-017-17117-3

and RV including the RV outflow tract (RVOT) (Fig. 6, top). The blood enters the right heart via the SVC and 
IVC (Fig. 7, bottom). The two inflows mix in the right atrium, which acts as a reservoir for systemic venous return 
when the tricuspid valve (TV) is closed, whereas it acts as a passive conduit when the TV is open, and acts as an 
active conduit during atrial contraction to assist in RV filling28.

3D-PTV measurements.  3D Particle Tracking Velocimetry (3D-PTV), an optical imaging tool based 
on tracing neutrally buoyant particles in the flow, has been applied to an anatomically accurate silicone replica 
(Elastrat GmbH, Switzerland) of the human RV and RA derived from an in vivo MRI heart scan of a healthy 
male proband. Other investigators and in our own work, we have previously used 3D-PTV to assess turbulence 
related quantities such as turbulent kinetic energies (TKE), and irreversible energy loss in the ascending aorta in 
vitro29–31. In this study, the investigation domain for 3D-PTV measurements comprises the RV, RA, IVC and SVC 
(Fig. 8, bottom). Two prosthetic mechanical valves (Regent 25 mm, St. Jude Medical, St. Paul, USA) were imple-
mented at the pulmonary valve and tricuspid valve positions. The pulsatile flow along the region of interest (ROI) 
is provided by a pump system, which is composed of an external pressure chamber, i.e. an 80 ml-ventricular assist 
device (VAD, MEDOS, Germany), and a waveform generator, i.e. an electro-pneumatic pump (Berlin Heart, 
Germany). The heart model allows active expansion and contraction of the right ventricle using an external 
pressure chamber, which results in physiological flow conditions. The atrium expands in the atrial filling phase 
by means of the inflows from both venae cavae, whereas it contracts in the ventricular filling phase (Fig. 8). The 
chamber volumes of this model are similar to those in clinical studies8.

3D-PTV is an optical imaging tool and its main principle is to track tracer particles illuminated with a light 
source with a high-speed camera. In our experimental setting, a high-speed camera (Photron SA5, Japan), which 
allows recording 1.56 seconds at full resolution of 1024 × 1024 pixels and 7000 frames per second, with a Nikkon 
AF Micro Nikkor 60 mm f/2.8 D lens (Japan) was used to capture images during flow. The high-speed camera was 
synchronized with the heart pump system to trigger the recordings at the beginning of every cardiac pulse. As a 
light source, a diode-pumped Nd-YLF laser (Quantronix, Darwin Duo 527 nm, USA) was used to illuminate the 
investigation domain. As tracer particles, fluorescent rhodamine particles (Cospheric, USA) with a diameter of 
200 μm were used32. It is important to avoid optical distortions due to index of refraction mismatch between the 
silicone material and the working fluid for the 3D-PTV measurements. To overcome optical distortions, a mix-
ture of glycerine, water and sodium chloride was used as working fluid, which matches the refractive index of 
silicone. The kinematic viscosity is . × − m s4 85 10 /6 2  which is similar to the one of the blood at high shear rates. The 
position accuracy of the particles was 0.17, 0.17 and 0.35 mm in x, y and z directions, respectively. The velocity 
uncertainty of the raw PTV data, as obtained from the calibration, was 0.038 m/s. As for the velocity assigned to a 
voxel and after smoothing, the final accuracy was estimated to be 4 × 10−4 m/s32. The investigation domain covers 
the RA, SVC and IVC. A total of 36 cycles were recorded to obtain a phase averaged flow field. The measurements 
comprise around 105 images corresponding to a total number of 108 particle positions, which allows obtaining 

Figure 7.  4 chamber view (top, left), RV short axis view (top, middle), RV long axis view (top, right) by in vivo 
magnetic resonance imaging (MRI) of a healthy male heart; image of the compliant in vitro silicone phantom 
(bottom left), region of interest and parts of the right heart (bottom, middle), qualitative visualization of the 
flow streamlines (white color-coded) and two inflow and one outflow regions (blue colored arrows) within the 
right heart. (IVC: inferior vena cava, RA: right atrium, RV: right ventricle, RVOT: right ventricular outflow 
tract, SVC: superior vena cava).
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converged statistics for phase averaged flow fields and velocity fluctuations. The RV stroke volume was 77 ml and 
the heart rate 50 beats per minute, resulting in a physiologic cardiac output of 3.9 l/min at resting conditions.

Vorticity identification.  Vorticity is the curl of the velocity field. The phase averaged vorticity is defined as 
Ω = ∇ × Ui obtained from the phase averaged velocity, Ui, whereas the fluctuating vorticity field is defined as 
ω = ∇ × ui obtained from the fluctuating velocity, ui. The Q criterion, which identifies vortices if the norm of the 
local rate of rotation tensor ( R ) is dominant over the norm of the local rate of strain tensor ( S )33, is used for 
the identification of coherent rotational structures in the phase averaged and fluctuating velocity fields. The Q 
criterion is defined as

= - >Q R S1/2( ) 0 (1)2 2

where = ∇ - ∇R U U1/2( [( )] )i i
T , = ∇ + ∇S U U1/2( [( )] )i i

T  for the phase averaged velocity. The same definition 
using ui instead of Ui is applied for the fluctuating fields.

Wall shear stress analysis.  The investigation of wall shear stress is of high interest as it has been suggested 
to represent an indicator for thrombosis formation24. The total wall shear stress (WSS), which includes both vis-
cous and turbulent WSS, is defined as

τ τ τ= + (2)vis turb

The viscous WSS at a certain time instant is a tensor calculated as

τ μ δ δ= U x( / ) (3)vis i j

where μ is the dynamic viscosity of the fluid.
The turbulent WSS tensor is defined as

τ ρ= − ′ ′u u( ) (4)turb i j

where ρ is the density of the fluid and ′ ′u u( )i j  are the Reynolds stresses. We use the L2 norm of the WSS tensors to 
quantify WSS magnitudes.

As shown in Fig. 7, the measurements were performed in a transparent, compliant silicon model in our in 
vitro study where the location of the walls is not known a priori. We extracted the geometry of the atrium from 
our 3D-PTV measurements. Firstly, we transformed the volumetric velocity data into a binary data by assigning 
to each voxel “1” if there is velocity information (meaning that the voxel is part of the flow domain in the atrium) 
or “0” if the voxel if there is no velocity information (meaning that the voxel is in the atrium walls or outside 
the atrium). Secondly, we set an iso-value of 0.99 (Fig. 8, left) to the binary field to reconstruct the walls of the 
atrium geometry. The reconstruction is not sensitive to the particular choice of the isovalue between zero and one 
because the transition from zero to one is very sharp. The error in the estimation of the wall location is of about 
250 μm.

An accurate assessment of viscous wall shear stresses is challenging as it needs a very fine spatial resolution 
comparable to the length scale of the viscous sublayer. The size of the viscous layer is estimated around 60 μm, 
which is more than an order of magnitude smaller than the voxel size (1 mm) However, we can make use of the 
fact that the total wall shear stresses decrease slowly over the transition between viscous sublayer and turbulent 
layer where the viscous shear is gradually replaced by the turbulent WSS component34. Even though we measure 
shear stresses at a finite distance from the wall the sum of viscous and turbulent shear stresses are therefore repre-
sentative to the effective shear stresses at the wall.

The wall shear stresses are calculated using a velocity interpolation to positions with fixed normal distance 
to the detected boundary. We achieve a resolution of O(1 mm) in our measurements. Depending on the spatial 

Figure 8.  The right heart geometry including IVC, SVC and RA extracted from 3D-PTV measurements (left), 
time variation of cross-sectional areas for different cross-sections (middle), and right atrial volumetric variation 
(right).
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resolution, the WSS may vary, i.e. fluctuating WSS become dominant outside the viscous layer, whereas they are 
zero at the wall (Fig. 9a). The velocity pattern and WSS relation in the vortex and non-vortex regions are qualita-
tively shown in Fig. 9(c,d). Fluid velocity and its spatial gradients are typically higher in proximity of the vortex 
resulting in a high WSS region whereas the velocity tends to be more uniform in the regions where no vortex is 
present.
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