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Evaluating scale effects of
topographic variables in landslide
susceptibility models using GIS-
based machine learning techniques

Kuan-Tsung Chang?, Abdelaziz Merghadi(®?, Ali P.Yunus?, Binh Thai Pham* & Jie Dou®>®

The quality of digital elevation models (DEMs), as well as their spatial resolution, are important issues in
geomorphic studies. However, their influence on landslide susceptibility mapping (LSM) remains poorly
constrained. This work determined the scale dependency of DEM-derived geomorphometric factors

in LSM using a 5m LiDAR DEM, LiDAR resampled 30 m DEM, and a 30 m ASTER DEM. To verify the
validity of our approach, we first compiled an inventory map comprising of 267 landslides for Sihjhong
watershed, Taiwan, from 2004 to 2014. Twelve landslide causative factors were then generated from
the DEMs and ancillary data. Afterward, popular statistical and machine learning techniques, namely,
logistic regression (LR), random forest (RF), and support vector machine (SVM) were implemented

to produce the LSM. The accuracies of models were evaluated by overall accuracy, kappa index and

the receiver operating characteristic curve indicators. The highest accuracy was attained from the
resampled 30 m LiDAR DEM derivatives, indicating a fine-resolution topographic data does not
necessarily achieve the best performance. Additionally, RF attained superior performance between

the three presented models. Our findings could contribute to opt for an appropriate DEM resolution for
mapping landslide hazard in vulnerable areas.

Globally, landslides are one of the most devastating of geo-hazards that impose serious threats to human life and
economic conditions by the never-ending socio-economic burdens'. With the recent changes associated with the
unplanned urban expansions and severe climatic extremes, landslides are expected to increase dramatically due
to the heavy rainfall and the serious infrastructure constructions in mountainous areas>?. To reduce the economic
burden and human losses, it is helpful to delineate and identify potential landslide-prone areas. In this regard,
landslide susceptibility mapping (LSM) is regarded as a useful tool in disaster management and mitigation*~’. The
susceptibility zonation maps can be the first step towards a complete risk assessment that assist authorities and
decision-makers for initiating appropriate mitigation measures. Over the past few decades, LSM techniques were
extensively developed and implemented by several researchers, and each technique has proven to have its own
sole merits and demerits®®’.

Landslide susceptibility expresses the likelihood of a landslide event occurring in a given area based on local
terrain conditions. LSM partitions the geographical surface into zones of varying grades of stability based on eval-
uating the consequence of the probability toward landsliding generated using the causative factors estimated to
induce the instability'®~'*. Landslide susceptibility mapping (LSM) plays a significant role in risk mitigation, espe-
cially in introducing counter-measures aimed at decreasing the risks associated with landslides'*'>. Moreover,
LSM could be engaged to depict locations of unknown landslides in the future, support with emergency-decisions,
and mitigate future hazardous events.
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For landslide susceptibility evaluation, GIS has proven to be a powerful tool due to its capability of handling
a variety of spatial data, their processing capability, and easiness in the decision-making process”'®!”. Over the
years, landslide susceptibility assessment topic has gained significant attention of many scholars owing to its
direct consequences on the people life. Numerous studies have been carried out for landslide susceptibility assess-
ment around the world in the current decade using a wide variety of techniques®'®. Several of them employed the
relationship between the landslide causative factors and landslide occurrence through the spatial data analysis®'?.
Such relationships can be categorized in terms of rankings or weight. In this context, such data-driven methods
can be classified into two distinct categories: qualitative and quantitative!>!®. The former are rather subjective®.
On the other hand, the latter are based on statistics, and with the development of computer systems and GIS tools,
these models have become more prevalent than the qualitative methods*'. Quantitative methods such as logistic
regression, fuzzy logic, certainty factor, and information value approaches are useful for problem-solving and
have been successfully used in different scientific fields, such as engineering, and hazard evaluation applications.
Very recently, numerous machine-learning (ML) techniques have been applied for different fields, owing to their
robustness in handling large complicated data®**-2>. These methods include Artificial Neural Networks (ANN),
Decision Trees (DT), Support Vector Machine (SVM) and Random Forests (RF) were comparatively new in the
field of landslide research. Despite different statistics involved, their terminologies, and computation capability,
all of the aforementioned methodologies are largely based upon the following assumptions®’; (i) past is the key
to the future; (ii) factors involving the landsliding are spatially linked and therefore could be used in predictive
functions; (iii) future events will likely happens in similar conditions.

Apart from the statistical and computational aspects, the accuracies of the susceptibility model depend upon
the quality of spatial data and the choice of relevant causative factors. Diverse intrinsic and extrinsic factors are
cast-off to analyze LSM. The typical factors that can be derived from a DEM and other sources which influence
the landslides are known through several past research. For example, the review of ‘statistically-based landslide
susceptibility models’ by Reichenbach et al.?’ grouped the influencing factors into five categories; (i) morpholog-
ical, (ii) geological, (iii) land cover, (iv) hydrological, and (v) others. Siizen and Kaya®, listed about 18 causative
factors in the triggering mechanism of landslides. However, in any given situation, some of these factors may be
important whilst others are irrelevant'®. These factors come from different sources, and their quality varies widely.
Thus, the landslide evaluation exclusively based on a digital elevation model (DEM) has been conducted assum-
ing that topography reflects other causative factors such as hydrology and land use. The availability of global
DEMs and recent advances in DEM acquisition techniques encourage this approach.

Accurate topographic input comes from high-quality DEMs, along with the geological conditions are usu-
ally necessary for producing accurate susceptibility products'®. Generally, DEM’s produced using interpola-
tion of contours from a topographic map, radar-based Shuttle Radar Topographic Mission (SRTM) DEM, and
stereo-optical derived Advanced Space-Borne Thermal Emission Radiometer (ASTER) DEM are used for sus-
ceptibility analysis if no high-resolution DEM is available for the studied region. They come with varying spatial
resolution; 10m - 90 m. A coarser DEM describes the terrain less accurately, resulting in the propagation of error
on to the secondary derivatives such as slope, aspect, and curvature, etc.”’.

While the scale effects of landslide causative factors, particularly topographic variables derived from DEM
are well-known issues in geomorphology, only a few studies have attempted the potential effects it may have on
susceptibility models. For example, Guzzetti and others?® suggested the use of multiple resolution-DEMs for test-
ing and to opt the best performed one in final susceptibility mapping. However, with the increasing availability
of very high-resolution DEMs derived from LiDAR and UAV images, researchers tend to use 1-5m DEM’s in
their modeling part expecting that a finest DEM can describe more detailed topography. Paudel et al.?’ studies,
however, argued that the smallest-scale variability does not well represent the physical processes because the
local topography does not resemble the processes of controlling landslide initiation. On the other hand, Tian et
al* by analyzing 5-190 m DEMs, indicated that the optimal resolution often depends on the chosen size of the
study area. Catani et al.*! coined the term Mapping Unit Resolution (MUR) to define the raster resolution and
performed the scale effects out at six different MUR (10-500 m). Their results are in line with*, where the finer
resolutions are found less accurate. Nevertheless, performing sensitivity analysis was recommended when LSM
results are utilized for planning and protection purposes in a given area. Conclusive answers for identifying the
optimal scale for global reach, therefore needs further investigation, especially for hazard assessments. A poor
understanding of scale effect may inadvertently promote frequent use of high-resolution DEMs, thus demanding
substantial computational requirements. Because disaster management and mitigation require quick responses,
timely interventions are necessary. Therefore, a special focus was given in this work to address the scale depend-
ency in detail.

With these objectives in mind, the present work aims at: (i) producing a rich analysis of the effect scale
dependency in landslide assessment; (ii) demonstrating the appropriateness of certainty factor model in selecting
significant influencing factors; and (iii) address the landslide susceptibility issue for the study area by benefiting
from multiple machine learning models. To achieve the aforementioned objectives, we employed an integrated
approach comprising three varying resolution elevation models, certainty factor for investigating the relationship
between correlated factors and landslide occurrence, and the widely applicable statistical and machine learning
models such as Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM) for produc-
ing the susceptibility maps. All analyses were conducted in the programming environment R (3.6.0). The source
code of this research is publicly made available online (https://github.com/aminevsaziz/lsm_in_Sihjhong_basin)
to ensure results reproducibility. ArcGIS (10.4) and SAGA (4.0.1) were used for compilation and visualization of
factor and susceptibility maps.

The general idea of selecting LR, RF, and SVM in our analysis is that LR is the most popular susceptibility
model”, whereas RF and SVM are the most promising ones>'*. While LR is simple, straightforward, and highly
interpretable, however, it cannot solve non-linear problems. RF, on the other hand, produces a more accurate and
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Figure 1. (a) The location of the case study area showing the landslide inventory, major roads and river
network, (b) inset showing the details of multi-temporal landslide polygons overlying the DEM, (c) overview
map showing the study region within Taiwan.

robust prediction, but is less descriptive’. SVM though delivers a unique solution for complex problems with its
kernel tricks, but the kernel-specific parameter selection is a complex process. A combination of learning models
increases the overall understanding of the issue, but the computational requirements vary. Therefore, we also
aimed to quantify the average time required to train and test each of these popular models in view of mitigation
preparedness.

Study Area and Data Used

Overview of the study area. Taiwan has a land area of 36,000 m?, 26.68% of which is covered by plains,
whereas 27.31% is hilly and 46.01% is mountainous. According to the statistics of the National Fire Agency
(NFA), many natural disaster events are occurring in Taiwan, include typhoons, flooding, earthquakes, torrential
rainfall, windstorms, and landslides. The selected study area-Sihjhong watershed is located in the Hengchun
Peninsula in the southern part of Taiwan (Fig. 1). Because of sustained economic growth and land development,
the steep terrain in this region has undergone frequent modification in land use pattern. Windward portion of
the selected watershed in the recent past has suffered from multiple landslides (Fig. 1b) triggered by heavy rainfall
during Pacific typhoon seasons. On average, about five typhoons are expected to affect the Island nation a year.
In recent years, it is aggravated by global climate change. Rainfall is plenty in the peninsula and annual accumu-
lated rainfall can be reached up to 3600 mm. The altitude of the study area varies from 0 m to 700 m with a mean
of 110 m. Moderately gentle to steep hills and mountains are typical of the Hengchun Peninsula. On the west,
the study area is bounded by the South China Sea with flat long coastal plains. The average and maximum slope
derived from a 5m LiDAR DEM are 15° and 66° respectively. Geologically, the study area is composed of thick
sedimentary strata. The most dominating lithological unit in the Sihjhong area is Shale with alteration sequence.
A detailed description of individual lithologic types is provided in the data section. From a disaster perspective,
Sihjhong is an important case area with multiple hazards from typhoons (e.g., flood and landslides) in the sight
which may aggravate with extreme climate®?. Therefore, performing landslide susceptibility analysis is key for
providing baseline information to practitioners and lawmakers®!!.

Dataused. The multi-temporal landslide inventory database for the study area from 2004 to 2014 was por-
trayed in Fig. 1. Figure 2 shows examples of a landslide inventory map prepared from dynamic time-series image
analysis carried for the study area. This dataset was downloaded from the NGIS Data Warehouse and Web Service
Platform (TGOS Portal) developed by the Information Center, Ministry of Interior in Taiwan. The landslide
inventory was created by interpreting Formosat-2 satellite data and an expert landslide and shaded area delinea-
tion system (ELSADS). The accuracy of landslide inventory has been carefully validated manually with the help
of aerial images at 25 cm spatial resolution. The overall accuracy of this inventory was tested previously and found
to be 98%%. The number and area statistics of landslides and typhoon details for each landslide inventory in the
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Multi-Temporal Validation

Field Visit

Figure 2. Examples of the landslides inventory maps constructed by dynamic time series analysis in the study
area (Left Formosat-2 satellite images acquired from National Space Organization, Taiwan as part of projects
funded to the first author. Right side images are downloaded from https://www.nlsc.gov.tw/, under open
government data license https://www. data.gov.tw/license).

Min. Max. Total Max. 24h
Landslide | Landslid Landslid Landslid Typhoon | Rainfall

Year number area (m?) area (m?) area (m?) number (mm)
2004 29 1252 49892 231620 9 1107
2005 12 1512 18164 56848 7 789
2006 3 1228 2628 5104 7 205
2007 9 1188 17774 53910 6 64.7
2008 111 270 103471 731855 6 1390
2009 8 1357 19910 49295 4 193
2010 29 116 32933 172510 5 629
2011 14 35 11426 56603 5 702
2012 13 1087 14563 57282 7 590
2013 26 41 54736 221620 6 820
2014 13 497 16359 39250 3 559
Total 267 8583 341856 1675897 65 6984

Table 1. Statistics of multi-year landslide inventory (2004 to 2014) for the study area.

study area from 2004 to 2014 is illustrated in Table 1. Many landslides occurred in 2008 because of short duration
and high-intensity rainfall.

The causative factors influencing the spatial distribution of landslides have been extensively explained in lit-
erature®!3°. A general summary of these studies suggests that selection of the landslide predisposing factors in
a given case should take into account: (i) the characteristics of the study area, (ii) the landslide type, (iii) scale of
the analysis, and (iv) the data availability'®!#?!. The causative factors selection in this research was based on the
aforementioned summarization concerning spatial relationships between landslide occurrence and causative fac-
tors comprising topography, hydrology, tectonics, geology, and geomorphology®!*'°. Tectonic factor (distance to
fault) was later discarded because faults are not corresponding with the landslides identified in Fig. 3. Moreover,
the triggering mechanism for our landslide inventory was attributed to rainfall alone®.
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Figure 3. Geology map of the study area (Scale 1:50000) depicting six types of lithology.

After careful assessment, a total of twelve landslide causative factors were finally selected for this case study,
i.e., elevation, slope angle, slope aspect, total curvature, plan curvature, profile curvature, terrain position index
(TPI), terrain roughness index (TRI), distance from the road, distance from drainage networks, rainfall, and
lithology. All twelve causative factors were processed and analyzed with the assistance of SAGA and ArcGIS®
software. The first eight causative factors were derived from three different digital elevation models (DEM).

DEM is a digital grid form of representation for the terrain’s surface. DEM can be created from various
technologies, such as Terrestrial Surveying, Aerial Photogrammetry, Light Detection and Ranging (LiDAR),
Interferometric Synthetic Aperture Radar (InSAR). The common applications of DEMs include geomorphomet-
ric feature extraction, hydrological modeling, geo-hazard inventory, light-of-sight analysis, and landscape mod-
eling and ecosystem management, etc. High-quality DEMs are required for precise applications. For this study,
we have used two kinds of DEM’s: the first one is a LIDAR-derived 5-meter DEM (hereafter termed as 5m LiDAR
DEM) derived from investigation results of changes in surface topography and environmental geology caused by
Typhoon Morakot, happened on August 2009 from Central Geological Survey in 2013. After field verification, the
overall geometric accuracy found between 0.5 and 1.0 m.

The second kind is the ASTER Global Digital Elevation Model with 30-meter resolution (hereafter named
30m ASTER DEM) is a joint product developed and made available to the public by the Ministry of Economy,
Trade, and Industry (METI) of Japan and the United States National Aeronautics and Space Administration
(NASA). It can be available free of charge to users worldwide from the Land Processes Distributed Active Archive
Center or shortly LP DAAC (https://Ipdaac.usgs.gov/products/astgtmv002/). The vertical accuracy of ASTER
GDEM version 2 had been revealed a standard deviation is 5.9~12.7 meters. (https://asterweb.jpl.nasa.gov/gdem.
asp). Additionally, we resampled the 5m LiDAR DEM into 30 m resolution using bilinear interpolation technique
to have a comparison with the 30 ASTER DEM. The source of the road and hydrology network map used in
this study is obtained from a digital map of the traffic network produced by the Ministry of Transportation and
Communications. Lithology data is digitized from a 1:50000 Geology map produced by the Central Geological
Survey (Fig. 3). There are six lithology types contained in the area including Gravel, sand and clay (Type I), Shale
and thin alternation of sandstone and shale with thick-bedded sandstone and conglomerate lentil (Type II), Sandy
conglomerate (Type III), Mudstone and various exotic blocks (Type IV), Thick-bedded sandstone, interbedded
sandstone and shale (Type V), and Thick-bedded sandstone intercalated with conglomerate (Type VI).

Methods

Implemented models. We employed three popular machine learning algorithms to map landslide suscep-
tibilities. While logistic regression (LR) is a parametric machine learning algorithm (learning model that sum-
marizes data with a set of parameters of fixed size - no matter how much data we input at a parametric model, it
won't change its mind); both support vector machine (SVM) and random forest (RF) are non-parametric models
(algorithms that do not make strong assumptions about the form of the mapping function; also the complexity
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grows as the number of training samples increases)'***. Among these two non-parametric models, RF does not
need any real hyperparameters to tune, whereas SVM requires tuning for the right kernel, regularization penal-
ties, and the slack variable'**. Detailed description and computation of each ML algorithm are provided in the
following sections.

Logistic regression.  Logistic Regression is a popular statistical modeling method which has been applied widely
in many problems such as gene selection in cancer classification and crime analysis'®*. In landslide susceptibility
analysis, the LR has also used popularly in many case areas'>*”. In the LR, the main mathematical concept is to use
the logit-the natural logarithm of an odds ratio, which is expressed as follows:

prob
1 — prob

n
a, + ax + ...+ ax,=ao, + Zaix,.
i=1 (1)
where: n is the number of the variables used, a,, means the intercept, and ; are defined as the coeflicients related

with the explained variables x;, and prob means the probability of a landslide occurrence which is a nonlinear
function of x; is expressed as follows:

logit(prob) =

1
—logit(Prob(x))
Prob (x) = 1+e !
1+ e*(a(ﬁrz;':luix,) @)

Support vector machine. Introduced by Vapnik?®, Support Vector Machine (SVM) is a well-known unsuper-
vised learning machine learning method which has been applied successfully and effectively in landslide sus-
ceptibility mapping®**. The main concept of the SVM is to apply the linear model to carry out the nonlinear
class boundaries by nonlinear mapping the input vectors into the new high-dimensional feature space where
the optimal separating hyperplane is built to separate output classes for classification. More detail, the optimal
separating hyperplane is the maximum margin hyperplane, which offers the maximum separation between the
output classes, and the training samples which are closest to this hyperplane called support vectors. In the linearly
separable problem, the optimal separating hyperplane of binary decision classes can be computed as follows*’:

Y=t Wi (3)

where y is defined as the outcome class, x; means the input variables, and w; mean the weights which determine
the hyperplane.

Random forest. Random Forest (RF) is an effective ensemble classifier, which constructs multiple decision
trees for classification utilizing a subset of variables randomly selected*!. It is a machine learning technique as
well, which has been used to solve a lot of real-world problems such as monitoring of land cover, predicting
protein-protein interactions, predicting disease risks>*. In landslide prediction, the RF has also been applied
in several types of research. In literature, the RF is a popular method with high performance as it has several
advantages such as (1) It is a non-parametric nature-based method, (2) it is able to determine the importance
of variables used, (3) it provides an algorithm to estimate the missing values, and it is flexible for the analysis of
classification, regression and unsupervised learning*>.

In the RF, one subset of the predictor variables are utilized to construct each tree, and the number of trees
(nyee) and the number of the predictors used to build each tree (m,,,) can be different which depend on the data-
set. Using the RF, each tree is constructed from a bootstrap sample of primary training dataset used to estimate
the robust error with the testing dataset expressed as follows:

n
MSE=n""5(t; - T)
i-1 (4)
where MSE means mean square error calculated during constructing the classification trees, n is the number of

out of bag observation in each tree, f; is defined as the average of whole out of bag predictions*’. Percentage of the
explained variable is calculated as follows:

|2 (5)

where: V, means the total variation of the response variable. At last, the outcome of the RF is one single prediction
that is the mean of all aggregations.

Certainty factor (CF).  The certainty factor (CF) model is an approach for handling uncertainty in rule-based
systems, which has been broadly used in expert system shell field, additionally, to medical diagnosis studies'.
The CF model is one of the probable favorability functions to solve the problem of incorporating heterogeneous
data*%. The universal theory function is expressed as:
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where PP, is the conditional probability (CP) of owning a number of landslide events happen in class a and PP
is the prior probability (PP) of owning a total number of landslide events in the case study area. The value of PP,
this study is computed to be 0.012.

The range of CF value varies [—1, 1]. Positive values denote an increasing certainty in landslide occurrence;
negative values imply a decrease in the certainty. A CF value near 0 shows that the prior probability is near to the
conditional probability, and thus, it is difficult to determine the certainty of landslide occurrence'. The favorabil-
ity values are acquired by overlapping landslide inventory maps and each data layer and calculating the landslide
frequency. The CF model provides a rank measure of certainty in forecasting landslides. The relationship between
the landslide sites and used causative factors had been analyzed in this study.

Construction of the geospatial database for the training and the validation dataset. The input
dataset obtained from the geospatial database of this experimental research was fed directly into the required
models without extra encoding (i.e., dummying or numerically decoding of categorical variables) because the
selected models handle efficiently diverse space variables (i.e., numeric and categorical). Also, it is critical to
understand that the input dataset is not only for training the models. In the absence of an independent testing
dataset, a common approach is to estimate the predictive performance based on resampling the original data.
These strategies divide the data into training sets and a testing sets, while ranging in complexity from the popular
simple holdout split to K-fold cross-validation, Monte-Carlo K-fold cross-validation, bootstrap resampling®.
They can be used efficiently for models selection, accuracy assessment, and hyperparameters tuning®"*.

In our study, the input dataset was randomly split into two sets (training and testing datasets) by 70:30 ratios,
and then the training set was innerly resampled using ten k-folds cross-validations. The implemented resampling
approach is considered as the golden standard for machine learning, because they are found effective as it reduces
the split randomness that comes with test-train split strategy, which allows the input dataset to be used for three
different purposes: (1) tuning models hyperparameters, (2) to train models with this subset using after optimal
parameters are found, and (3) models validation, assessment, and comparison.

Model configuration and implementation. Some models (i.e., RF and SVM) require a fine-tuning
for its hyperparameters on which the model performance depends. Usually, such feat is achieved by manual
tuning using techniques such as grid search, random search, and even gradient-based optimization. However,
such techniques have proven to be suboptimal at best, considering the fact that manually exploring the resulting
combinatorial space of parameter settings is quite tedious and tends to lead to unsatisfactory results. Moreover,
the obtained optimal hyperparameters cannot be reproduced to a certain degree, and that is because of such
techniques rely on “Trial and Error” experimenting, which depends on analyzing that learning curves and decide
that best learning path. This drawback is so critical especially if the modeling experiment involves complex exper-
iments with a fair amount of data to process and for that fact, we opted for a State-of-the-art algorithm so-called
sequential model-based optimization (SMBO) to fine-tune models hyperparameters.

Sequential model-based optimization (Fig. 4) is unique automated approaches for solving algorithms configu-
ration and hyperparameter optimization of expensive black-box models. SMBO is known to converge for the low
computational budget performance is due to: (1) the capability to reason about the quality of experiments before
they are run; and (2) advancing from the “adaptive capping” to avoid long run®.

When it comes to model implementation, only RF and SVM require tuning to some of its hypermeters. The
overall-hyperparameters utilized for each model was summarized along with its value, short description, and the
package used to run the model, is in Table 2. The search space for each required hyperparameters was set accord-
ing to guides and manuals of each package that implement each model.
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ranger” Formerly: “ranger” package®.

Model | Package Parameters Explanation Value
Replace Sample with False or True
replacement
respect.unordered.factors gz:}odrhcré% :rfi:tr; (:rdered True (default)
RE “A Fast Implementation of Random Forests

sample.fraction

Fraction of
observations to sample

From 0.632to 1

num.trees Number of trees From 2° to 21

mtry Number of variables From2to 8

Kernel Kernel function Radial or polynomial
“Misc Functions of the Department of Cost Regularization cost From 27! to 2! (default)

SVM Statistics, Probability Theory Group, TU

Kernel width From 2715 to 2'° (default)

From 1 to 8 (default)

Wien” Formerly: “E1071” package®. gamma (if kernel =: “radial”)

degree (if kernel =: “polynomial”) | Polynomial degree

Table 2. Parameters set utilized by each model along with respective values.

Suggested Value
package mtry
gbm N.A
ranger JN; =3
xgboost 6
h2o 2t08
Random forest JN=3
N;: Total number of variables (i.e. 12)

Table 3. Heuristics proposed by packages instructions to set the optimal number of variables for RE.

Landslide models
RF SVM
sample. num.
Data Task Replace | fraction trees mtry kernel | cost gamma degree
Lidar 5 Meters FALSE 0.906 100 3 radial 20843 | p=2667 N/A
Lidar 30 Meters FALSE 0.866 49 6 radial | 2117 | 20224 N/A
ASTER 30 Meters FALSE 0.969 164 2 radial 25619 273048 N/A

Table 4. The optimum parameters obtained by the tuning process.

Only “mtry” and “num.trees” are allowed to fix by the user according to some instructions and strategies. Or
else, the left parameters are set exactly to the allowed (or default) values (or range of values) by each package.
The number of variables is for each tree (i.e. “mtry”), various heuristics recommended by packages that provided
RF are used to set the optimum values (Table 3). These heuristics advise that ranges of 2 to 8 would be excellent
for “mtry”. On the other hand, the total number of trees to fit (i.e., “num.trees” for RF) is set to exponential rate
via a base of 2 (i.e.2, i=5, ..., 11). By allowing for the instructions of the used packages and some experimental
researches, an optimal value of 2° to 2'° was set®.

During tuning, hyperparameters need to be carefully optimized, so as much accuracy the model is achieving,
the model selection will be reliable. In general, the tuning process must be a formal and quantified part of the
model evaluation yet, in most cases personal experience and intuition, heavily intervene by influencing the pro-
cess in ways that are hard to quantify or describe®. In this study, three techniques were implemented, i.e., LR, REF,
and SVM, only LR is straight forward and does not require any further tuning. The training process was started
by searching the optimal parameters using SMBO with 10-fold cross-validation on the training set that represents
70% of the input data to prevent overfitting. The chosen optimum pairs of hyperparameters that have the highest
classification accuracy are shown in Table 4.

Models evaluation and comparison. Various performance metrics can be executed for quantitative
assessment; however, we consider the Accuracy (Acc) as main metric for hyperparameters tuning and one of
the main overall performance indicator metrics for the landslide predictive models. In this study, Acc together
with Cohen kappa index (kappa)*” and the Area under the ROC Curve (AUC), were used to evaluate the overall
performance and the predictive capabilities of the tuned models.

Additionally, model performance was evaluated using one of the most important non-parametric tests called
the Friedman test*. The Friedman test is heavily used for multiple comparisons to perceive significant differences
between the performances of two or more approaches because the test involves no previous information for the
used data and still is valid even if the data are normally distributed and was designated in this study*.
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The Friedman test has a null hypothesis, viz., there are no differences between the performances of the land-
slide models. The p-value is the probability of refusing the null hypothesis if the hypothesis is true. Then each
model is assessed. The higher the p-value, the more likely that the null hypothesis is rejected.

Another useful use for the Friedman non-parametric test is the ability to obtaining a “Critical differences” dia-
gram of multiple classifiers. A value called “Critical Difference” (i.e. calculated according to the equation below)
indicates the critical average rank performance. If the average rank of the classifiers is within the critical difference
distance (CD) then they are not statistically significantly different.

K(K + 1)

CDQ, K, N ~ qu, K 6N (7)

where: « is the confidence level, K is the number of models and N is the number of measurements. To calculate
Qo x the Studentised range statistic for infinite degrees of freedom divided by ~/2 is used.

Landslide susceptibility map assessments. At the end of the validation and assessment processes, land-
slide susceptibility maps can be generated to: (1) assess the quality of the generated maps; and (2) check the input
dataset for its suitability for later usage in other tasks (i.e., decision making) because it's common to have some
variables that have high correlation or even multicollinearity and these variables need to be check before using
them as variables. However, to achieve those goals a key step must be performed. Usually, that step involves
assessing the sufficiency and accuracy of the generated susceptibility maps based on the empirical assumption
that state: “A model is sufficient and accurate when there is an increasing landslide density ratio when moving
from low to high susceptible classes and high susceptibility classes cover small areas extent™*”. This means, a
sufficiency analysis is essentially based on susceptibility maps and can be implemented by: (i) reclassifying the
probability pixels produced for the whole study area by each model; (ii) overlying the existing landslide inventory
over the susceptibility maps so to be able to obtain representative statistic for each susceptibility class (i.e., land-
slide density and extent).

Scale Effects of Geomorphometric Factors

It has been proved in the literature that topographic variables coming from a digital elevation model are the prime
component for any susceptibility analysis. Furthermore, several studies indicated that the quality of DTMs would
affect the overall model results?”-*’. Therefore, the certainty factor (CF) method had been conducted to analyze
the scale effects of geo-morphometric factors for two kinds of DEMs in different quality and resolution in this
section. For this, the 5m Lidar DEM is downsampled to 30 meters to have a comparison with ASTER DEM, and
then the CF values are calculated according to the landslide characteristics in each geo-morphometric factors
generated by the three elevation models. The 5m Lidar DEM, 30 m Lidar DEM, 30 m ASTER DEM, and their
derivative factors for the study area is shown in Fig. 5 and 6(a-1), respectively. Subsequently, these DEMs were
employed to produce the LSM maps.

Results and Analysis

The relationship between landslide causative factors and landslide occurrence.  The relationship
between landslide causative factors and landslide occurrence was identified by CF model using 5m Lidar DEM
as shown in Table 5. This table presents the CF value for all causative factors, including the eight geo-morpho-
metric factors. Additionally, the CF value statistics of eight geo-morphometric factors with the varying resolution
of DEMs (5m LiDAR, 30m LiDAR and 30 m ASTER DEM) are summarized in Table 6 for the exploration of
the scale effects. According to the distribution of the CF value in Table 5, for the higher Elevation, Slope, TRI,
and TPI values, the certainty increased in landslide occurrence. With Aspect value of 66-247°, i.e., slope face to
northeast-southwest direction, the certainty increased in landslide occurrence. No matter the type of curvature,
the larger or smaller its value, the larger its corresponding CF value. For lithology, Type II, V, and VI corresponds
with a positive CF value, i.e., the certainty increased for the shale and thin alternation of sandstone and shale
with thick-bedded sandstone and conglomerate lentil (Type II), thick-bedded sandstone, interbedded sandstone
and shale (Type V), and thick-bedded sandstone intercalated with conglomerate (Type VI). The thick-bedded
sandstone intercalated with conglomerate has the least cementation degree and the highest material discontinuity.
Therefore, the inter-layer slip is most likely to occur. Besides, the closer to the drainage networks, the greater the
landslide occurrence.

From Table 6, it is observed that different spatial resolutions of topographic data do not affect largely on the
trend of CF values, except for the impact on the curvature factors, comprising total, profile, and plan curvature
because curvatures are defined by means of a second derivative of the elevation and a second derivative amplifies
greatly even the smallest differences between the DTMs. However, the results on different data quality of DEMs
indicate that geomorphometric features cannot be accurately derived from a lower data quality of DEM, e.g., an
ASTER DEM. Therefore, the CF values shown a different trend for ASTER DEM compared with ones derived
from Lidar DEM with the same resolution. For example, CF values with Slope of 20-30° changed from negative to
positive. And ones with TRI of 2-4 changed from positive to negative. Moreover, the CF value of —1 on curvature
factors shows that results with a lower data quality of ASTER DEM are unable to render more detailed topo-
graphic curvature. It implies that some geomorphometric features derived from different data quality of DEMs
will be affected significantly on the landslide susceptibility modeling.

Landslide susceptibility map assessments.  Achieving decent models’ performance is not the end road
for LSM analysis. Additional steps involve:(1) creating the landslide susceptibility maps for the case study area in
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Figure 5. The used DEMs in different resolution and their corresponding geo-morphometric factors: (a,b,c)
elevation, (d,e,f) slope, (g,h,i) aspect, (j.k,) total curvature.

the form of probability grids using the validated models; (2) reclassifying susceptibility grids; and (3) analyzing
the overall grids and assess its quality. The initial two steps are based on predicting the study area probabilities
toward landsliding and afterward, a simple reclassification into five susceptibly classes that vary from very low
to very high (Fig. 7) using Table 7 is performed. The last step is critical for understanding the overall pattern of
landslides distribution and landslides susceptible areas and can be performed by attaining a landslide density
distribution by overlapping the existing inventory map over the generated susceptibility maps and afterward, a
summary statistic for the area covered by each susceptibility classes (Fig. 8) is obtained.
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Figure 6. The used DEMs in different resolution and derived corresponding geo-morphometric factors: (a,b,c)
profile curvature, (d,e,f) plan curvature, (g,h,i) Topographic Position Index (TPI), and (j,k,1) Topographic
Ruggedness Index (TRI) for 5m Lidar DEM, 30 m Lidar DEM, and 30 m ASTER DEM, respectively.

A visual analysis of the resulting LSM maps (Fig. 7), shows a smooth surface produced by each model for each
DEM dataset. An obvious differentiation between Lidar datasets (5 and 30 meters) maps and ASTER dataset maps
is represented in the form of very smooth transitioning from each susceptibility class to another. The results of
sufficiency analysis (Fig. 8) were positive as they fulfilled the two required spatial conditions: (1) landslide pixels
should belong to the highest susceptible class available; and (2) the extent areas covered by higher susceptible
classes need be lower as possible. The results are similar to models evaluation results, LIDAR datasets (i.e., 5
and 30 meters) in particular and RF models, in general, achieve better results than the rest of the models with
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Percent of | No. of Percent of
Factors Class area (%) landslide pixel | landslides (%) | PPa CF
0~63 39.935 2934 9.219 0.003 —0.767
63~145 27.257 5933 18.641 0.008 —0.313
Elevation (m) 145~242 20.276 9857 30.971 0.019 0.341
242~383 10.159 9149 28.746 0.035 0.639
383~706 2.361 3954 12.423 0.065 0.800
0~15 50.521 2108 6.623 0.002 —0.867
15~20 13.858 814 2.558 0.002 —0.813
Slope (*) 20~25 11.292 1144 3.594 0.004 —0.679
25~30 8.097 1894 5.951 0.009 —0.262
30~40 11.549 9815 30.839 0.033 0.618
40~78 4.671 16052 50.435 0.134 0.896
0~66 30.394 3158 9.922 0.004 —0.671
66~128 10.768 6663 20.935 0.024 0.480
Aspect 128~190 13.617 13153 41.327 0.038 0.662
190~247 15.463 5936 18.651 0.015 0.169
247~302 16.889 1504 4.726 0.003 —0.718
302~360 12.857 1413 4.440 0.004 —0.652
0~1 51.686 1939 6.092 0.001 —0.881
1~2 28.488 2702 8.490 0.004 —0.699
TRI 2~3 13.490 8641 27.150 0.025 0.497
3~4 4.796 11641 36.576 0.095 0.858
4~5 1.010 5065 15.914 0.196 0.925
5~19 0.303 1839 5.778 0.237 0.936
(—18)~(-2) 0.255 382 1.200 0.059 0.778
(=2)~(—1) 1.827 1903 5.979 0.041 0.686
TP (=1)~0 61.735 15183 47.705 0.010 —0.225
0~1 34.788 12628 39.677 0.014 0.122
1~2 1.088 1454 4.568 0.052 0.753
2~12 0.080 277 0.870 0.135 0.896
<(—28) 0.231 326 1.024 0.055 0.765
(—28)~(—12) 3.862 2997 9.417 0.030 0.583
Total curvature (—12)~(—4) | 25.352 8766 27.543 0.014 0.079
(—4)~0 40.479 7324 23.012 0.007 —0.428
0~8 26.008 9088 28.554 0.014 0.089
>8 4.058 3326 10.450 0.032 0.604
<(—6) 3.317 2483 7.802 0.029 0.568
(—6)~(—2) 20.748 7353 23.103 0.014 0.101
(—=2)~2 52.287 12175 38.254 0.009 —0.265
Profile curvature
2~6 20.327 7082 22.252 0.014 0.086
6~13 2.942 2238 7.032 0.030 0.575
>13 0.367 496 1.558 0.053 0.755
<(—14) 0.314 461 1.448 0.057 0.774
(—14)~(—6) 2.633 2171 6.821 0.032 0.607
Plan curvature (—6)~0 69.607 15452 48.550 0.009 —0.299
0~6 24.559 10885 34.201 0.017 0.279
6~16 2.801 2565 8.059 0.036 0.645
>16 0.075 293 0.921 0.153 0.907
0~2745 0.01 0 0.00 0.000 —1.000
2745~2922 10.44 0 0.00 0.000 —1.000
g’l‘r‘l‘f‘:j‘ll ("‘erna)ge 2922~3066 19.63 1802 5.66 0.004 —0.709
3066~3268 49.63 29389 92.34 0.023 0.457
3268~3609 20.260 636 2.00 0.001 —0.900
Typel 38.570 1566 4.92 0.002 —0.871
Type Il 37.110 13675 42.97 0.014 0.135
Type I1I 5.320 1082 3.40 0.00794 —0.358
Lithology
Type IV 12.05 805 2.53 0.003 —0.788
Type V 1.170 614 1.93 0.020 0.388
Type VI 5.780 14085 44.25 0.095 0.859
Continued
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Percent of | No. of Percent of

Factors Class area (%) landslide pixel | landslides (%) | PPa CF
0~50 20.920 1280 4.020 0.002 —0.806
50~100 14.280 1858 5.840 0.005 —0.588

?nif)ta““ from road 100~150 10.190 1374 4.320 0.005 —0.573
150~200 7.400 1467 4.610 0.008 —0.373
>200 47.210 25848 81.210 0.021 0.414
0~50 16.440 9755 30.650 0.023 0.458
50~100 13.570 6803 21.370 0.020 0.361

dDr‘;fflggC: ff;&orks (m) | 100~150 12.120 3966 12.460 0.013 0.028
150~200 11.150 3130 9.830 0.011 —0.116
>200 46.710 8173 25.68 0.007 —0.447

Table 5. The CF computation result of each causative factor with value ranges for the 5m Lidar DEM.

well-balanced outcomes that put confidence in the overall LSM produced by either Lidar 5 meters or 30 meters.
However, it is very crucial to understand that landslide density in Fig. 7a,c,e have a moderate presence of landslide
events in very low susceptibility class despite the models achieved excellent scores regarding performance metric
and that is due to how the stable non-landslide samples are sampled. Usually, misclassifications on the extremes
(very low and very high) tend to indicate the overall confidence in the misclassification of the model, but that
depends on modeling experiment conditions.

Model evaluation and comparison. The optimum hyper-parameters obtained in Table 8 for each model
in each respective dataset, were used to train each model and assess the overall performance of the models using
performance metrics indicators such Acc, AUC, and Kappa index.

The generated overall rank matrix of the implemented models (Fig. 9) based on performance results (Table 8
and Fig. 10) are generally in favor of RF being ranking top of all model in all datasets, followed up by either SVM
or LR depending on the dataset for (i.e. LR on Lidar 30 meters dataset was able to achieve better results than
SVM). However, a detailed analysis on the dataset level shows that Lidar 5 meters dataset models achieved far
better results than Aster 30 meters dataset models, but surprisingly the highest performance results in term of all
metrics were achieved by the resampled Lidar Dataset from 5 meters to 30 meters. These dataset models were able
to achieve excellent results exceeding closest dataset models (i.e., Lidar 5 meters) by a margin ranging from 1% to
3%, 1% to 1.5% and 4% to 10% in term of AUC, Acc and Kappa respectively.

Despite the fact, the difference between each dataset models regarding performance results is relatively notice-
able. However, Friedman non-parametric test at the significant level a=5%was performed on models’ perfor-
mance results in all datasets rather than inside each dataset (Table 9). These results show that the differences
in performance between the implemented model are statistically insignificant between datasets because the p
value exceeds the significant level of 0.05.

Additionally, the critical difference plot (Fig. 11) generated using the Friedman non-parametric test, shows
that there’s a line connecting models indicating that they are within the insignificance range (i.e., critical differ-
ence range) of 1.91, which means that there are no statistical differences among all model.

Discussion

Effect of grid resolution and data quality on susceptibility models. Landslide susceptibility assess-
ment is a useful task for landslide hazard management and mitigation®*>°. However, landslide is a complex nat-
ural phenomenon which is controlled by several geo-environmental factors; thus, it is not easy to be modeled
accurately®®. Data-driven models are proved to be an effective tool for landslide susceptibility modeling'*%. Very
recently, a large number of machine learning approaches are adopted and applied successfully for landslide sus-
ceptibility assessment®?!. However, the performance of these models depends mainly on the input data. Therefore,
it is essential to test and check the quality of the data before providing it as an input in the learning models.
Typically, a large portion of the input factors in susceptibility modeling comes from a DEM?. Consequently, the
quality of DEM data or more specifically, the DEM derived causative factors used in the model are very crucial
input for producing an accurate LSM output. In addition to having an appropriate quality, the scale of selected
DEM is also vital in landslide hazard assessment. This is because the details of the topographic information pro-
vided in a DEM depends upon its spatial resolution?**!. Several studies consider the DEM resolution as a first
filter that assimilated into a model®***. Researchers are often direct for the highest spatial resolution product for
mapping the finest details'®. However, an increase in spatial resolution means increased computational require-
ments for pre-processing the data. Moreover, with different DEM resolution, the primary topographic attributes
such as slope angle and curvature exhibit substantial local variations®.

In this study, we have demonstrated the scale effects of geomorphometric factors derived from two DEMs with
varying spatial resolutions (i.e., LIDAR and ASTER) in analyzing the landslide susceptibility of Sihjhong water-
shed region. Contrary to the general expectations, but in line with the findings of Catani ef al.*! and others?”***,
our result shows that a fine raster resolution DEM (5 m) does not significantly help in increasing the model pre-
diction accuracy. Accuracies (AUC Values - see Fig. 9) obtained for the three different data-driven models indi-
cate that 30 m resampled LiDAR DEM produces the best fit with the field data. Probable reasons are highlighted
below why a finer MUR does not necessarily provide the best results. Firstly, landslide susceptibility assessments
are dealing with the local geomorphological processes. Like any other geomorphic processes, landslides are also
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CF Values
Lidar DEM ASTER DEM
Factors Range 5m 30m 30m
0~63 —0.767 —0.783 —0.799
63~145 —0.313 —0.252 —0.360
Elevation 145~242 0.341 0.346 0.275
242~383 0.639 0.630 0.696
383~706 0.800 0.789 0.797
0~15 —0.867 —0.872 —0.408
15~20 —0.813 —0.808 —0.238
Slope (*) 20~25 —0.679 —0.503 0.174
25~30 —0.262 —0.296 0.322
30~40 0.618 0.625 0.837
40~78 0.896 0.892 0.847
0~66 —0.671 —0.657 —0.376
66~128 0.480 0.525 0.353
128~190 0.662 0.636 0.499
Aspect
190~247 0.169 0.124 0.208
247~302 —0.718 —0.672 —0.536
302~360 —0.652 —0.554 —0.562
0~1 —0.881 —0.888 —0.930
1~2 —0.699 —0.654 —0.958
TRI 2~3 0.497 0.518 —0.677
3~4 0.858 0.852 —0.721
4~5 0.925 0.922 —0.543
5~19 0.936 0.934 0.584
—18~-2 0.778 0.879 0.951
—2~—1 0.686 0.743 0.771
— (=1)~0 —0.225 —0.291 —0.466
0~1 0.122 0.149 —0.270
1~2 0.753 0.768 0.466
2~12 0.896 0.877 0.955
<-28 0.765 0.853 -1
—28~—12 0.583 0.623 -1
Total curvature B 0079 0.034 !
—4~0 —0.428 —0.468 0.043
0~8 0.089 0.119 —0.055
>8 0.604 0.606 -1
<—6 0.568 0.620 -1
—6~—2 0.101 0.116 —1
Profile curvature —2~2 —0.265 —0.284 0.00001
2~6 0.086 —0.019 -1
6~13 0.575 0.643 -1
>13 0.755 0.790 -1
<-14 0.774 0.821 -1
—14~—6 0.607 0.650 —1
Plan curvature —6~0 —0.299 —0.326 0.139
0~6 0.279 0.318 —0.149
6~16 0.645 0.566 -1
>16 0.907 0.906 -1

Table 6. The CF results of eight geo-morphometric factors with different quality and resolution of DEMs.

influenced by the morphology measured at the mesoscale level that is more representative of the hillslope forms
and processes of such kind. However, finer DEMs would account for topography variations at the micro-scale,
and probably those forms are not very much related to mesoscale processes like landslides.

Furthermore, the minimum landslide size mapped from the satellite images is 0.1 hectare, hence the LSM
results from a 30 m resolution DEM is a good option. Excessive detailing of topography from the high-resolution
models are discussed in several studies and pointed out that the general trend of relief is often a better predictor
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Figure 7. LSM maps produced by LR, RE, and SVM models, respectively, using different resolution DEMs.

Probability Range 0~0.15 0.15~045 |045~0.75 |0.75~0.90 |0.90~1

Table 7. The probability intervals classes used to classify the landslide susceptibility maps.

of mesoscale processes than detailed information®>*°. Additionally, slope and curvature derived from a fine reso-
lution DEM are higher than the coarser resolutions (see Fig. 5); this may result in more number of false positive
rates. Similar results were also noticed in other studies**>>*”. Zhang and Montgomery®!, portrayed that for many
landscapes, a medium resolution grid size explores a rational compromise between improving resolution and data
volume for simulating geomorphic and hydrological processes. Therefore, appropriate DEM resolution should be
selected depending upon the aim of the modeling, characteristics of the study area, and the availability of data.
On the other hand, sub-par quality of DEM can decrease the modeling accuracy as well. Therefore, the CF
values showed a different trend for 30 m ASTER DEM compared with the one derived from Lidar DEM with
exactly the same resolution. Although the terrain representation by ASTER GDEM used in this study is superior
to SRTM-3 for most landform elements®, their accuracies for forested terrains and low elevated regions remains
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Figure 8. Sufficiency analysis of the landslide susceptibility maps: (Left) Landslide density distribution by
susceptibility zones; (Right) Total area covered by susceptibility zones; (A,B) Lidar 5 meters, (C,D) Lidar
30 meters; (E,F) ASTER 30 meters; (Left).

LR 0.885 0.807 0.613 0.917 0.854 0.707
Lidar 5 Meters RF 0.935 0.868 0.737 0.999 0.986 0.972
SVM 0.905 0.856 0.712 0.967 0.928 0.855
LR 0.916 0.860 0.720 0.904 0.841 0.683
Lidar 30 Meters RF 0.966 0.893 0.786 1.000 0.991 0.982
SVM 0.913 0.848 0.697 1.000 0.995 0.989
LR 0.854 0.786 0.573 0.904 0.831 0.661
ASTER 30 Meters | RF 0.881 0.844 0.687 0.997 0.974 0.947
SVM 0.929 0.881 0.761 1.000 0.997 0.993

Table 8. Overall performances of the tuned models.
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Figure 9. The overall rank matrix of the implemented models based on performance results.
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Figure 10. Stacked ROC curves of the implemented models: (A) Lidar 5 meters; (B) Lidar 30 meters; and (C)
Aster 30 meters.

Degree of
Freedom chi-squared | p value Significance
2 4.667 0.097 No

Table 9. Friedman rank test results.

questionable®*°. Furthermore, when compared with locally derived LIDAR DEMs, their RMSE is found to be
large®. This implies that ASTER DEM has inherent artifacts in producing a realistic representation of terrain fea-
tures. A large part of inherency comes from the processing stage itself as they were developed from a compilation
of over 1.2 million ASTER AVNIR scenes, many of it contains clouds obscuring the features. The aforementioned
artifacts in ASTER DEM will also inherent to their derivatives®'.

Execution time of different susceptibility assessments. A random sampling of non-landslides points
from the overall study area carry some artifacts and randomness to the evaluation process and that randomness
can vary in size and effect. This drawback is one of the disadvantages of LSM using ML modeling, and efficiently
eliminating those artifacts and randomness is nearly impossible. To overcome such drawback, machine learning
needs to have decent performance with less computational time (i.e., execution time).
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Figure 11. Critical difference plot of the implemented models; Values on the top indicate average rank
performance (i.e., 1.91).

The results of computational time required for each model (training and testing the final models excluding the
time spent on tuning the hyperparameters) and each dataset (Fig. 12) shows that SVM models are at least 50%
faster than RF, and LR models are 50 times faster than SVM. Besides, 5 meters Lidar DEM based models required
a relatively close computational time to LSM models based of 30 meters (i.e., LR and SVM), except for RF and
LiDAR 30 meters dataset slightly require less computational time for LR and SVM models compared to the result
of datasets. Note that the pre-processing time for deriving topographical variables from 5 m DEM is much larger
than the 30 m DEMs. Therefore, the overall performance results that reported in Tables 8, 9 and Figs 8-12, when
combined with the computational process, it is obvious that resampling the LIDAR dataset (i.e. from the original
5 meters to 30 meters) with LR and/or RF models combination would be “Go To” solution as they provide decent
results. However, it is widely accepted that no single or particular model can be depicted as the most suitable for
all case scenarios, as it depends on the subjective opinion of the decision-maker of whether the more accurate
results matter more than the computational time or vice-versa. After all, recent studies'*®* suggest that a rather
fast and simple model, such as SVM would be much better than an advanced machine learning models like REF, if
the consideration was not solely based on the overall performance but on balance of overall performance and the
computational time. For instance, SVMs are useful non-linear classifiers whose goal is not only to classify land-
slide instances correctly but also to keep the distance between instances and keep the separation of the hyperplane
at a maximum. On the other hand, RF models offer an excellent performance with decent interpretability and
moderate number of hyperparameters to tune in but require a considerable time budget (they require a lot of time
to converge especially if used on large-scale analyses) compared to LR models which are the opposite of being
simple, fast, easy to implement, and only able to capture the linear relationship between the causative factors and
the landslide susceptibility which translate into poor performance. This makes SVM models appealing for sus-
ceptibility evaluation considering the number of hyperparameters to tune in. However, if those hyperparameters
are inappropriately set, SVM will often lead to unsatisfactory results®!*. Though the computational performance
for all the models in this study was quick (i.e., <3 minutes), the aforementioned analysis and discussions will be
helpful while dealing with a larger amount of data in the machine learning environment.

Summary and Conclusions

This paper conducts the scale dependency of DEM data in the analysis of landslide susceptibilities. The study
area is characterized by steep slopes with frequent debris flows and landslides in the typhoon seasons. The LIDAR
DEMs provided unprecedented high-quality terrain data for detailed topographic representations. This study
tested the appropriateness of such high accurate grid sizes in the susceptibility studies. The obtained results high-
light that a fine resolution DEM not necessarily produce an accurate LSM as they found to be carrying exces-
sive information. These results are in line with the findings of some previous studies?**~*'. The results prove that
entailing different DEM scales introduced different results for the same models. A 30-meter resolution DEM
depicting accurate topography could be plausible for LSM as they produced decent levels of generalization of the
topography. In fact, higher resolution DEMs introduce more noise, which makes the model perform worse than
it supposed to be. Entailing high-resolution DEMs (5 meters Lidar) have proven to be hindered on susceptibility
models as they feed a steady flow of data 36 times more than 30 meters DEMs which are supposed to theoretically
produce better models. However, in reality, the data flow was treated as noise that worsens the overall resulting
models instead of enhancing it, which prove that a generalized DEMs of 30 meters used for DEM-derived con-
dition factors is much valuable than their 5 meters counterpart. Additionally, inappropriate spatial resolution
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Figure 12. Comparison of the average time* (in seconds) required to training and testing each model in each
dataset (*excluding the hyperparameters tuning time).

increases the pre-processing time. For this reason, it is suggested that an analysis should be performed to under-
stand the scale effects of topographic variables on landslide susceptibility mapping. Our results also indicate that
the scale effects of topographic variables are mainly caused by the resolution impact on topographic parameter
derivation, while factors such as geology and rainfall are insensitive to resolutions. For susceptibility mapping, RF
models are found to be the best model in term of performance for the study area, while SVM is more suitable in
the decision-making process when looking for a balanced LSM model between computational time and overall
performance.

Further research is required to test variation over a more continuous range of resolutions (e.g. 10 m, 15m,
and 20 m) in more case studies for reducing some uncertainties behind the obtained results. Also, to enhance
the results, deep learning techniques such as convolutional neural network and testing other machine learning
models are recommended. The obtained landslide susceptibility maps are based on present and past landslides.
However, Future landslides are not foreseeable, and thus the obtained LSM models are obsolete after a given
period of time. Thus, the inventory and model should be updated constantly.
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