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In recent years, the world witnessed many devastating wildfires that resulted in destructive human 
and environmental impacts across the globe. Emergency response and rapid response for mitigation 
calls for effective approaches for near real-time wildfire monitoring. Capable of penetrating clouds and 
smoke, and imaging day and night, Synthetic Aperture Radar (SAR) can play a critical role in wildfire 
monitoring. In this communication, we investigated and demonstrated the potential of Sentinel-1 
SAR time series with a deep learning framework for near real-time wildfire progression monitoring. 
The deep learning framework, based on a Convolutional Neural Network (CNN), is developed to detect 
burnt areas automatically using every new SAR image acquired during the wildfires and by exploiting 
all available pre-fire SAR time series to characterize the temporal backscatter variations. The results 
show that Sentinel-1 SAR backscatter can detect wildfires and capture their temporal progression as 
demonstrated for three large and impactful wildfires: the 2017 Elephant Hill Fire in British Columbia, 
Canada, the 2018 Camp Fire in California, USA, and the 2019 Chuckegg Creek Fire in northern Alberta, 
Canada. Compared to the traditional log-ratio operator, CNN-based deep learning framework can 
better distinguish burnt areas with higher accuracy. These findings demonstrate that spaceborne SAR 
time series with deep learning can play a significant role for near real-time wildfire monitoring when 
the data becomes available at daily and hourly intervals with the launches of RADARSAT Constellation 
Missions in 2019, and SAR CubeSat constellations.

Research shows that human-induced climate changes have led to hot, dry conditions that increase the outbreaks 
of wildfires in various regions1. In both 2017 and 2018, the world witnessed many devastating wildfires. Hotter 
summers and drought across northern Europe and North America have resulted in increased wildfire activ-
ity in cooler and wetter regions such as Sweden, even north of the Arctic Circle. During the summer of 2018, 
Sweden experienced an exceptionally long period of drought resulting in over 50 forest fires. In British Columbia, 
Canada, a total of 2,092 wildfires burnt more than 1.3 million hectares of land in 2018, while in California, USA, 
a total of 8,527 wildfires burned an area of 800 000 hectares, the deadliest and most destructive wildfire season in 
California’s history. Early identification of the location and size of these fires can inform fire-fighting operations 
at an early stage. Moreover, being able to monitor wildfire progression and burnt areas in both cloudy and smoky 
conditions as well as during day and night would increase the information base for decision-making and improve 
the speed and efficiency for wildfire emergency response. With its synoptic view and large area coverage at regular 
revisits, satellite remote sensing has long played a crucial role in disaster management including wildfire. Owing 
to the rapid development of satellite technology, we are moving forward to a new era of Earth Observation (EO). 
National and International space agencies, as well as innovative companies have started various EO programs 
that are able to acquire massive amounts of satellite imagery with increasingly higher spatial resolution and rapid 
temporal intervals. With the recent launches of the European Space Agency (ESA)’s Sentinel-1 and Sentinel-2 
satellites, SAR and optical data with global coverage and frequent revisits have become freely available. These 
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open EO big data represent a great opportunity to develop innovative methodologies for near real-time wildfire 
monitoring. The main challenge is the lack of robust and automated methods to extract relevant information from 
such massive amounts of EO data.

For active wildfire monitoring, the low spatial resolution Visible Infrared Imaging Radiometer Suite (VIIRS) 
and the Moderate Resolution Imaging Spectroradiometer (MODIS) are often used for preliminary mapping and 
contextual awareness while Landsat and Sentinel-2 data are deployed for post-fire boundary determination and 
burn severity mapping2–5. Optical images at critical time frame, however, are often unavailable due to frequent 
cloud cover in the boreal and tropical regions6. As an active sensing technology, not relying on solar radiation, 
SAR is capable of penetrating clouds and smoke as well as imaging day and night7. As a result, SAR has been 
playing an increasingly important role in environmental change monitoring. Past studies evaluated various SAR 
data at X-, C-, and L-bands in different polarizations for burnt area mapping and burn severity estimation8–17. For 
examples, Bourgeau-Chavez et al.17 evaluated European remote sensing satellite (ERS) C-band SAR for detection 
of boreal fire scars in various boreal ecosystems globally was possible using C-band SAR data. Gimeno et al., 
identified burnt areas in Mediterranean forests using Principle Component Analysis (PCA) and neural network 
classification18. Polychronki et al. evaluated Advanced Land Observing Satellite (ALOS) the Phased Array type 
L-band Synthetic Aperture Radar (PALSAR) imagery for burnt area mapping using an object-based classification 
in Greece13. Tanase et al. investigated spaceborne X-, C- and L-band co- and cross-polarized data for burn sever-
ity estimation in Spanish pine forests16. Previous results reported a substantial decrease of the C-band VH backs-
catter in fire-disturbed forests and demonstrated the effectiveness of cross-polarized SAR for detection of burn 
scars11,19. Conversely, several C-band SAR-based studies revealed an increase in co-polarized backscatter from 
fire-disturbed forests in boreal and Mediterranean due to rain-fall events and low evapotranspiration10,13–15,17,20,21. 
As a result of the partial or complete removal of forest canopy, changes in the soil moisture have a significant effect 
on SAR backscatter. C-band SAR backscatter from fire scars were observed to 3–6 dB higher than the adjacent 
unburnt forest in Alaska when the soil was wet. Similar backscatter behaviors caused by soil moisture changes 
were also observed in fire-disturbed forests in various environmental conditions around the world, including 
Australia, Canada, Indonesia, the Mediterranean and Siberia17,18,20,22,23.

The capability of Sentinel-1 for fire scar mapping was investigated in recent studies with mixed results8,11,24. 
According to Imperatore et al.11, there is an obvious change in VH backscatter for the burnt area dominated by 
forests, thus, permitting the delineation of the fire-affected areas. However, the detection of the burnt areas for grass 
and non-forest vegetation is more complex. C-band SAR backscatter of burnt grass is similar to that of dry grass. The 
main challenges of using SAR for detecting burnt areas and mapping fire scars are related to the complex interactions 
of SAR system parameters, including frequency, polarization, incidence angles and look direction, and land surface 
parameters, including geometric properties (type and structure, surface roughness, geometry and topography etc.) 
and dielectric properties (i.e., surface moisture), as well as environmental conditions (e.g., rain, dew, wind etc.). 
Therefore, further research is needed to better understand the temporal backscatter behavior of Sentinel-1 C-Band 
SAR in VV and VH polarizations for burnt forest and grassland compared to that of burnt areas. Spaceborne SAR 
data and their fusion with Landsat data were also investigated for near-real time deforestation monitoring25–27. To 
the best of our knowledge, however, no study was found on SAR for wildfire progression monitoring. Therefore, it 
is desirable to investigate Sentinel-1 SAR dense time series data for wildfire progression monitoring. Wildfires burn 
vegetation thus result in changes in the SAR backscatter intensity that can be identified with change detection.

Change detection has been used successfully in many diverse applications, including monitoring environmen-
tal changes, land-use/land-cover dynamics, deforestation, disaster damage, and urbanization28–33. Various change 
detection techniques have been developed, such as those by Bruzzone and Prieto34, Bazi et al.35, Bovolo and 
Bruzzone36 and Bovolo et al.37. However, most of these methods and algorithms were developed considering the 
availability of a few or just two images (pre- and post-event) that can be used to detect the changes. Change detec-
tion remains a challenging task using SAR data due to complexity of wildfire affected forest environment. Some 
of the common issues of change detection, however, could be resolved by exploiting the high temporal resolution 
of Sentinel-1 time series using the highly redundant information following the big data paradigm. The idea is to 
exploit the temporal fluctuations of the remotely sensed measurements to remove the confusion between burnt 
areas and other changes. As one of the fastest-growing trends in big data analytics, deep learning is proving to be a 
very effective technique for large-scale image recognition38–40 and semantic segmentation41. Among deep learning 
models, the most exciting is the potential of CNN in learning complex non-linear transformation and extracting 
mid- and high-level feature representations from raw image pixels by interleaving convolutional and pooling 
layers. Recent studies highlight the potential to extract changes from EO data using deep neural networks42–45. 
Therefore, CNN-based framework and other deep learning methods are investigated in this research.

In this research, we investigate Sentinel-1 SAR dense time series for near real-time wildfire progression mon-
itoring through smoke, cloud and night using a deep learning-based framework. Our specific objectives are: (1) 
better understand the temporal backscatter patterns of burnt forest and grassland; (2) evaluate Sentinel-1 SAR 
dense time series for near real-time wildfire progression monitoring; (3) develop a CNN-based deep learning 
framework that could efficiently and automatically detect burnt areas using the SAR dense time series data; and 
(4) validate the proposed deep learning framework in three different study areas, the Elephant Hill Fire (2017) in 
British Columbia of Canada, the Camp Fire (2018) in California, U.S.A., and the Chuckegg Creek Fire (2019) in 
northern Alberta of Canada.

Study Areas and Data Description
Study areas.  Three recent wildfires, the Elephant Hill wildfire (Canada, 2017), the Camp Fire (U.S.A., 2018) 
and the Chuckegg Creek Fire (Canada, 2019), were selected for this research to represent different environmental 
conditions. The Elephant Hill wildfire (Canada) was British Columbia’s largest wildfire in 2017. Started on July 
6 along the Thompson River near Ashcroft and contained in mid-September, 2017, the fire destroyed over 300 
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buildings, prompted mass evacuations and burnt an estimated 192,000 hectares of forest. The notably large fire 
burned from Ashcroft and Cache Creek in the southwest, north to Clinton and further northwest, then over to 
Sheridan Lake in the northeast and south along the margin of the Deadman Valley. The region is sparsely popu-
lated and has complex terrain with limited access capability. The elevations in the area range from 278 m to 1785 
m with a mean elevation of 1142 m and a standard deviation of 224.9 m. Further relating the topographic com-
plexity of the terrain, the slopes vary from 0° to 71° with the mean slope of 8.1° and standard deviation of 6.85°. 
The major land cover classes include forest, grassland, clear cuts, barren land and settlements.

The Camp Fire was the deadliest and most destructive wildfire in California history. Started on November 
8 near Camp Creek Road in Butte County, northern California and contained on November 25, 2018, the fire 
caused at least 85 civilian fatalities, 3 missing and 17 injured, and the evacuation of 52000 people. The fire also 
destroyed 18804 structures and burnt over 62000 hectares. The area is located in the foothills of the Sierra Nevada 
and the Sierra Nevada mountain range in the western United States. Compared to Elephant Hill, this region has 
steep complex mountainous terrain. The elevations in the area range from 49 m to 1569 m with a mean elevation 
of 551 m and a standard deviation of 325 m. The slopes vary from 0° to 72°. The mean slope is 14.6°, double that of 
the Elephant Hill, with a standard deviation at 9.91°. The major land cover types include forest, grassland, barren 
land, crop land and settlements.

The Chuckegg Creek Fire, located west of High Level, was the largest forest fire in Alberta in 2019. Started 
on May 17, 2019 and contained on July 26, 2019, the fire burned an estimated 350,134 hectares of vegetation. 
Compared to the above two study areas, the terrain in the region is less complex and relatively flat. The elevations 
in the area range from 248 m to 796 m with a mean elevation of 375.5 m and a standard deviation of 55.4 m. The 
corresponding slopes vary from 0° to 60° with a mean slope of 2.25° and a standard deviation of 2.06°. The major 
land covers include forest, shrubland, grassland, wetland and barren land. The geography and topography of the 
three study areas are shown in Fig. 1.

Data description.  Sentinel-1 SAR data.  The Sentinel-1 mission, the first of European Space Agency’s five 
Copernicus Missions, is a constellation of two polar-orbiting satellites launched on April 3, 2014 and April 25, 
2016 respectively. The C-band Synthetic Aperture Radar (SAR) operates day and night in dual polarizations and 
acquires imagery continuously regardless of weather with a 6-day revisit at equator 46 (ESA, 2019). In this study, 
all available Sentinel-1 SAR C-band time series data in VV and HV polarizations, acquired in Interferometric 
Wide Swath (IW) mode, were collected for the Elephant Hill Fire, Camp Fire and Chuckegg Creek Fire sites dur-
ing 2017, 2018 and 2019 respectively. Downloaded from the Google Earth Engine (GEE) Platform47, the Level 1 
Ground Range Detected (GRD) products consist of focused SAR data that has been detected, multi-looked and 
projected to ground range using an Earth ellipsoid model. The SAR data were then terrain corrected converted to 
decibels (dB) via log scaling.

Figure 1.  Study areas: Elephant Hill Fire (Canada, 2017), Camp fire (USA, 2018) and Chuckegg Creek Fire 
(Canada, 2019). The maps of the study areas were generated using ArcGIS 10.7.1 software based on the Terrain 
Base Map layer in Google Earth Engine (Map data ©2019 Google).
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Reference data.  High resolution Worldview-3 post-fire imagery over the Elephant Hill Fire site was acquired on 
September 28, 2017 and used to visually verify the SAR-based burnt area maps. Fieldwork was also conducted 
in the Elephant Hill Fire area in July, 2018, one-year after the wildfire. Ground truth data representing various 
burn severities were collected by field inspection and with a drone. Figure 2 shows various burn severities under 
different terrain conditions.

To verify and validate the SAR-based mapping results, cloud-free Sentinel-2 Multispectral Instrument (MSI) 
imagery before, during, and after the wildfires were selected in the Elephant Hill Fire in 2017, the Camp Fire in 
2018 and the Chuckegg Creek Fire in 2019. For validation, burnt areas were automatic extracted using pre-fire 
and post-fire Normalized Burn Ratio (NBR) and their difference (denoted as dNBR) using Eqs. (1) and (2)48. For 
each study area, the accuracy of the SAR-based final burnt area map was quantitatively assessed using 20,000 vali-
dation points (10,000 points each for burnt and unburnt areas respectively) randomly selected based on the burnt 
area map derived from the post-fire Sentinel-2 imagery. It should be noted that the randomly selected training 
and validation data sets are from the same geographical region. Therefore there is a slight chance that a few of the 
validation samples overlap or in close vicinity of the training samples. This may affect the overall accuracy of the 
mapping results. Due to lack of ground truth data during the wildfires and no Sentinel-2 or Landsat imagery to 
couple with each SAR acquisition during the wildfires, the SAR-based progression maps were visually compared 
with the burnt area maps that were derived from Sentinel-2 imagery acquired right after each acquisition date of 
the SAR data.
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To better understand the behavior of SAR temporal backscatter under different conditions, precipitation data 
over the study areas was collected. For the Elephant Hill Fire, the precipitation data used is PERSIANN-CDR, 
a daily precipitation estimation from remotely sensed information with artificial neural network-Climate Data 
Record, at a resolution of 0.25 arc degrees49,50. For the Camp Fire, the precipitation data is from the Climate 
Hazards Group InfraRed Precipitation with Station data (CHIRPS), which is a 30 year quasi-global daily rainfall 
dataset and it incorporates 0.05° resolution satellite imagery with in-situ station data51.

Results and Discussion
Sentinel-1 SAR temporal backscatter patterns of burnt and unburnt vegetation.  To better 
understand the SAR backscatter behaviors of burnt and unburnt vegetation, several areas of interest (AOI) on 
SAR time series representing forest and grassland in similar vegetation (pre-fire) and topographic conditions 
(elevation, slope, aspect) were selected for analysis and comparison of their temporal backscatter patterns. The 
SAR backscatter statistics corresponding to several comparable pairs of AOIs for burnt and unburnt forest and 
grassland is presented in Table 1. For each AOI, the location, size and topographic information as well as their 
temporal means and standard deviations of SAR backscatter are listed. The reason why we use differently sized 

Figure 2.  Burn severities in various terrain conditions shown in photos from fieldwork at the Elephent Hill Fire 
(July 18–19, 2018).
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AOIs for these two fire events is that the terrain of the Camp Fire is much more complex and locally dynamic than 
that of the Elephant Hill Fire. Therefore, the smaller AOIs are more homogenous and representative.

The examples of the SAR temporal backscatter behaviors of burnt and unburnt forest and grassland, cor-
responding to the AOIs listed in Table 1 and shown in Fig. 3. For each pair of the AOIs, the daily precipitation 
histograms are also shown in this figure since vegetation wetness and soil moisture conditions could impact the 
SAR backscatter. Figure 3(a,b) show the SAR backscatter variations over time for forest and grassland respec-
tively in Elephant Hill Fire site while (c) and (d) display the temporal backscatter variations in the Camp Fire site. 
Figure 3(a) shows that, before the wildfire event on July 6, 2017, the AOIs of burnt and unburnt forest share the 
same SAR backscatter patterns, indicating that the forested areas have very similar vegetation and topographic 
conditions before the fire. After July 6th, however, the mean backscatters for both C-VH and C-VV polarization 
in the burnt AOI decreased approximately 2–3.5 dBs, with a larger standard deviation while the SAR mean backs-
catters in the unburnt AOI remain rather stable. The temporal trends of C-HVs and C-VV backscatter are very 
similar even though C-VV backscatter coefficients are several dBs higher than that of C-VH. The precipitation 
events did not affect the backscatter for either burnt or unburnt forest as the rain events were not right before the 
SAR data acquisitions. Similarly, burnt AOI shares similar backscatter patterns to unburnt AOI before fire in the 

Fire Event Land Cover

AOI Topography C-VH (dB) C-VV (dB)

long. (°) lat. (°) size (m) elevation(m)
slope 
(°)

aspect 
(°) mean stdDev mean stdDev

Elephant Hill
(ASC-64)

forest
unburnt 121.43W 50.85N

300

1120 16.80 60 −17.40 0.71 −11.37 0.49

burnt 121.35W 50.78N 1074 16.25 71 −20.17 1.17 −13.63 0.74

grass
unburnt 121.38W 50.69N 790 5.12 135 −24.11 1.04 −16.40 0.49

burnt 121.33W 50.75N 748 5.36 136 −26.84 0.80 −18.60 1.08

Camp Fire
(ASC-137)

forest
unburnt 121.38W 39.73N

100

769 11.64 113 −16.64 0.86 −10.75 0.65

burnt 121.53W 39.79N 729 5.06 108 −14.53 0.89 −8.25 0.73

grass
unburnt 121.76W 39.75N 170 5.68 163 −19.11 1.35 −10.82 0.45

burnt 121.70W 39.69N 171 3.49 161 −19.53 1.29 −7.77 0.62

Table 1.  SAR backscatter statistics of burnt and unburnt forest and grassland.

Figure 3.  SAR backscatter varies over time in four pairs of unburnt and burnt AOIs, each of which are with 
similar terrain and same vegetation type. SAR backscatter behavior in two comparable. (a) Forest AOIs in the 
Elephant Hill (ASC-64). (b) Grass AOIs in the Elephant Hill (ASC-64). (c) Forest AOIs in the Camp fire (ASC-
137). (d) Grass AOIs in the Camp fire (ASC-137).
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forest AOIs of the Camp Fire site. However, both C-VV and C-VH backscatter coefficients increased after the fire 
event, as shown in Fig. 3(c). The increase in backscatter of burnt forest is likely caused by rain events immediately 
before the SAR data acquisitions resulting in higher soil moisture contents in burnt areas.

For the grassland AOIs in the Elephant Hill Fire site, similar temporal backscatter patterns to forest are 
observed, as shown in Fig. 3(b). The mean backscatters of the burnt AOI decreased while that of unburnt AOI 
remain relatively stable. Again, the precipitation events did not affect the SAR backscatter as the rain events were 
not right before the SAR data acquisitions. For the grassland AOIs in the Camp Fire site, as shown in Fig. 3(d), 
obvious increases in C-VV backscatters after the start of the wildfire are observed due to rain events, similar to 
forest backscatter increase in the Camp Fire site. Several heavy rain events occurred between Nov. 21 and Nov. 28 
of 2018, and VV is more sensitive to the soil moisture than VH in burnt areas. However, the C-VH backscatter 
patterns of unburnt and burnt grassland remain the same after the fire. The reasons for this need further investi-
gation as C-band radar signature is usually not significantly influenced by dry grass subject to fire event according 
to literature. This observation further confirms the previous findings that identification of the burnt area for 
non-forest vegetation (i.e., grassland) is not so straightforward.

Sentinel-1 SAR for near real-time wildfire progression monitoring.  Elephant hill fire.  The 
SAR-based wildfire progression maps of the Elephant Hill Fire are presented in Fig. 4, estimated by different 
methods, including the classical log-ratio (logRt)35, the ratio between the logRt and the corresponding historical 
stdDev map (kmap) and CNN-based framework. The first three rows show the estimated change maps, while the 
fourth row shows the binary progression maps corresponding to the burn confidence maps predicted by CNN 
in the third row. Row 5, labeled as CNN_mrg, presents the merged progression maps for each date, produced by 
accumulating all the progression maps before a date. To reduce unnecessary noises, the merging operation was 
not applied on the first two dates, i.e., July 8 and July 20, 2017. In the last row, CNN_tsc_mrg denotes that a simple 
time series correction (TSC) was applied on the progression maps in the same orbit before merging them. It is 
assumed the burnt area would not disappear in the later progression once it appeared before, TSC can be used to 
reduce the noisy pixels in the earlier progression maps based on the later progression maps. However, with TSC, 
the CNN_tsc_mrg is not a near real-time approach any longer because it depends the future progression maps. 
For any date in the Elephant Hill Fire, the TSC was implemented by multiplying it with the future progression 
maps in the same orbit.

To quantitatively assess SAR-based burnt area results, Sentinel-2 dNBR is segmented into a binary map of 
burnt and unburnt areas and used as the reference maps together field data and WorldView-3 imagery. 10,000 val-
idation points are randomly selected from burnt and unburnt areas respectively. Table 2 presents the quantitative 
evaluation of SAR-based wildfire progression results for the Elephant Hill Fire. Among logRt, kmap, CNN_mrg 
and CNN_tsc_mrg, CNN_mrg achieves the highest values in Precision, Recall, OA, Kappa and F1, CNN_tsc_mrg 
ranks second, and both of them are much higher than logRt and kmap-based results. It is worth noting that 
CNN_tsc_mrg reaches a very high value in Recall (0.9952), which implies that TSC greatly reduces the false alarm 
rate, compared to CNN_mrg’s Recall (0.9336).

Due to lack of field data and optical images acquired on the same date as the SAR imagery during the wild-
fire, the progression maps are validated visually by overlaying CNN_mrg on the Sentinel-2 false color composite 
(R = SWIR2, G = SWIR1, B = SWIR2). For each map in CNN_mrg_overlay, the Sentinel-2 image with the closest 
cloud-free date after the SAR acquisition. Visual observation shows that there is a high level of agreement between 
Sentinel-1 SAR progression map and Sentinel 2 burnt area in the full time series. The examples of the overlays are 
presented in Fig. 5.

Camp fire.  The SAR-based wildfire progression maps of the Camp Fire are presented in Fig. 6, estimated 
by different methods, including logRt with absolute operation (denoted as logRt_abs), kmap and CNN burnt 
Confidence map (CNN burnConf). Compared with logRt_abs and kmap, we can find that CNN burnConf high-
lights the burnt areas very well, that is critical for subsequent segmentation. The row marked with CNN burnMap 
shows the corresponding binary map of CNN burnConf maps with Otsu thresholding52, and CNN_mrg and 
CNN_tsc_mrg are produced with similar procedures for the Elephant Hill Fire. For the Camp Fire, the logRt_abs 
is exploited to detect both positive and negative backscatter changes, due to the fact that there exist both increased 
and decreased backscatter changes in the fire related areas. In the logRt_abs maps, as shown in the first row in 
Fig. 6, are the false color composite (R = |ΔβVH|, G = |ΔβVV|, B = |ΔβVH|).

In the first four stages, most of the burnt areas are in purple, indicating that VH backscatter is more sensitive 
than VV to the changes caused by the wildfire event, while the white pixels indicate that VH and VV show similar 
sensitivity to the changes. However, in the last four stages, the burnt area appears very different, in green instead 
of purple. The green pixels show that VV backscatter are more sensitive than VH to the fire-induced changes. This 
is because several heavy precipitations occurred between Nov. 21 and Nov. 28 of 2018, and VV is more sensitive 
to the soil moisture than VH in burnt areas. As shown in the CNN burnConf maps, the first two stages (a) and (b) 
indicate that CNN helps enhance the difference between burnt and unburnt areas, but significant over and under 
estimations are observed. As new SAR data comes, the CNN model is fine-tuned further, then the predicted CNN 
burnConf maps show much better contrast between burnt and unburnt pixels than the first two stages. With 
Gaussian filtering followed by Otsu thresholding52, CNN burnConf maps in range [0, 1] are binarized into CNN 
burnMap. As expected, the first stage (a) looks rather noisy and the later stages detect most of the burnt areas with 
less noise. CNN_mrg combines all detected burnt areas on different orbits before current dates, except for the first 
date, Nov. 11, 2017, which is too noisy. CNN_tsc_mrg provides non near real-time results with less false alarm pix-
els by applying time series correction on the same orbit. By overlaying Senintel-1 SAR-based progression results 
(in transparent red) and Sentinel-2 SWIR composite, the bottom row demonstrates that there is a certain degree 
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of agreement between Senintel-1 SAR-based progression maps and Senintel-2 fire scars. Compared to the visual 
observations in the Elephant Hill Fire, the agreement on the Camp Fire is not as good.

Quantitative evaluations of SAR-based wildfire progression results of the Camp Fire are presented in Table 3. 
With kmap, C-VV achieves a much higher value than C-VH in OA, Kappa and F1 score, and combining C-VV 
and C-VH can reach a higher accuracy than VV or VH alone. By combining VH and VV, CNN_mrg achieves 
an overall accuracy of 83.58% (Kappa: 0.6716, F1: 0.8139), and CNN_tsc_mrg reaches a higher Recall value than 
CNN_mrg, i.e., a lower false alarm rate.

0708-ASC64 0720-ASC64 0801-ASC64 0809-DSC13 0821-DSC13 0902-DSC13 0906-ASC64 0918-ASC64 0930-ASC64

logRt

CNN 
burnConf

[0, 1]

CNN
burnMap

{0, 1}

CNN_
tsc_mrg

(a) (b) (c) (d) (e) (f) (g) (h) (i)

CNN_mrg

kmapkmapkmap

Otsu

2017

Figure 4.  SAR-based results by three different methods on the Elephant fire. logRt is the false color composite 
with [ΔβVH, ΔβVV, ΔβVH], while the second row shows the false color composite of kmap with [kVH, kVV, kVH]. 
The third row shows the burn confidence map predicted by CNN (denoted as CNN burnConf), and the fourth 
row are the corresponding binary burn map, marked with CNN burnMap. CNN_mrg is the accumulated burn 
map before the considering date, while CNN_tsc_mrg are produced with time series correction, following the 
merging operation same as CNN_mrg.

Sat. Bands Method Seg. Precision Recall OA Kappa F1

S1

VH
logRt

Otsu

63.34% 97.12% 80.73% 0.6146 0.7667

VV 59.42% 93.86% 77.78% 0.5553 0.7277

VH
kmap

60.92% 98.53% 79.70% 0.5939 0.7480

VV 57.98% 97.23% 78.17% 0.5633 0.7264

VH, VV kmap >2 83.66% 94.71% 89.50% 0.7899 0.8884

VH, VV
CNN_mrg

Otsu
90.41% 93.36% 94.92% 0.8983 0.9467

CNN_tsc_mrg 85.89% 99.52% 92.74% 0.8548 0.9221

Table 2.  Quantitative Evaluation of SAR-based Results on the Elephant Hill Fire (2017).

https://doi.org/10.1038/s41598-019-56967-x


8Scientific Reports | (2020) 10:1322 | https://doi.org/10.1038/s41598-019-56967-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Chuckegg creek fire.  Figure 7 presents the SAR-based wildfire progression maps of the Chunkegg Creek Fire, 
estimated by logRt, kmap and the proposed CNN-based deep learning framework. Different from the Elephant 
Hill Fire and the Camp Fire, Sentinel-1 SAR acquired images every six days in the same orbit (ASC20) over the 
Chuckegg Creek Fire, a higher imaging frequency. The logRt-based progression maps showed that the VV and 
VH backscattering have similar sensitivity to changes caused by fire, thus the burnt areas appear white. However, 
they have very different responses to changes caused by agricultural activities. While VH increases slightly, VV 
decreases significantly over the agricultural areas (in green). Similar to a wildfire event, the agricultural activities 
may cause a significant decrease in VV backscattering, which would result in false alarms. Owning to the fact 
that the agricultural fields often have a high standard deviation in the historical time series, kmap can suppress 
the agricultural activities-related changes better than log ratio, as shown in the second row. Trained with samples 
from the binarized kmap, the CNN-based framework can highlight the burnt areas and suppress false alarms due 
to agricultural activities, as shown in CNN_burnConf and CNN_burnMap. CNN_mrg and CNN_tsc_mrg show 
the merged results of the burnt areas without or with TSC respectively. The bottom row shows the visual compar-
ison between optical images and SAR-based results, which indicate that SAR data has the potential to detect most 
of the burnt areas, but some low burn severity areas without structural changes may be missed.

Table 4 summarizes the quantitative analysis of the SAR-based wildfire progression mapping results, and these 
statistics are based on 10,000 samples randomly selected from burnt areas and unburnt areas respectively. With 
kmap, both VH and VV reach a very high Recall value but a low Precision value, indicating that both of them 
have a very low false negative rate and high false positive rate. By combining VH and VV together, kmap achieves 
a much higher precision without a significant decrease in Recall, resulting in the increase in OA (73.05%), Kappa 
(0.4609) and F1 (0.6339). By applying the proposed CNN-based framework using both VH and VV data, CNN_
mrg can achieve a significant improvement in Precision with a minor decrease (0.3%) in Recall, leading to 88.09% 
in OA, 0.7618 in Kappa and 0.8666 in F1 score. By exploiting TSC, CNN_tsc_mrg can reduce the noisy pixels very 
well, but the accuracy decreases slightly.

Figure 5.  Sentinel-1 based wildfire progression maps in the Elephent Hill (CNN_mrg in transparent red) 
overlaid on the Sentinel-2 MSI false color composites (R = SWIR2, G = SWIR1, B = SWIR2). (a) SAR-July 8 on 
MSI-July 10. (b) SAR-July 20 on MSI-July 30. (c) SAR-Aug. 1 on MSI-Aug. 4. (d) SAR-Aug. 8 on MSI-Aug. 11. 
(e) SAR-Aug. 21 on MSI-Aug. 22. (f) SAR-Sept. 18 on MSI-Oct. 3. The images were generated using Google 
Earth Engine platform (Map data: Google, ESA).
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Conclusions
In this paper, we evaluated Senitnel-1 SAR time series for near real-time wildfire progression monitoring using 
a novel and fully automatic deep learning framework based on CNN. The analysis of SAR temporal backscat-
ter profiles showed that significant differences between burnt forest and grassland can be observed in both the 
Elephant Hill Fire and the Camp Fire sites (except C-VH over the Camp Fire site). The CNN-based deep learning 
framework performed much better than log-ratio based kmap in detecting burnt areas, achieving a significant 
improvement in Kappa over these three study areas: (0.11 for the Elephant Hill Fire, 0.27 for the Camp Fire and 
0.30 for the Chuckegg Creek Fire, respectively). By fine-tuning with local data, we demonstrate the proposed 
CNN framework is effective in monitoring the progressions of three large wildfires in different geographic regions 

Figure 6.  SAR-based results on the Camp fire. logRt_abs is the false color composite with [|ΔβVH|, |ΔβVV|, 
|ΔβVH|], while the second row shows the false color composite of kmap with [kVH, kVV, kVH]. The third row 
shows the burn confidence map predicted by CNN, and the fourth row lists the corresponding binary burn 
map, marked with CNN burnMap. CNN_mrg is the accumulated burn map by keeping all burn map detected 
CNN before the considering date, while CNN_tsc_mrg are produced with time series correction on the same 
orbit, following the merging operation same as CNN_mrg. The bottom row shows the overlayed maps that lay 
CNN_mrg map over the S2-based false color map with composite [R = SWIR2, G = SWIR1, B = SWIR2].

Sat. Data Method Seg. Precision Recall OA Kappa F1

S1

VH
kmap >2

21.82% 65.13% 55.07% 0.1014 0.3269

VV 45.21% 80.19% 67.02% 0.3404 0.5782

VH, VV kmap >2 51.17% 82.11% 70.01% 0.4002 0.6305

VH, VV
CNN_mrg

Otsu
71.82% 93.91% 83.58% 0.6716 0.8139

CNN_tsc_mrg 70.60% 95.07% 83.47% 0.6694 0.8103

Table 3.  Quantitative Evaluation of SAR-based Results on the Camp Fire (2018).
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Figure 7.  SAR-based results on the Chuckegg Creek Fire (2019). logRt is the false color composite with [ΔβVH, 
ΔβVV, ΔβVH], while the second row shows the false color composite of kmap with [kVH, kVV, kVH]. The third 
row shows the burn confidence map predicted by CNN, and the fourth row lists the corresponding binary burn 
map, marked with CNN burnMap. CNN_mrg is the accumulated burn map by keeping all burn map detected 
CNN before the considering date, while CNN_tsc_mrg are produced with time series correction on the same 
orbit, following the merging operation same as CNN_mrg. The bottom row shows the overlayed maps that lay 
CNN_mrg map over the S2-based false color map with [R = SWIR2, G = SWIR1, B = SWIR2].

Sat. Data Method Seg. Precision Recall OA Kappa F1

S1

VH
kmap >2

29.34% 99.69% 64.63% 0.2925 0.4534

VV 21.38% 99.21% 60.61% 0.2121 0.3518

VH, VV kmap >2 46.67% 98.77% 73.05% 0.4609 0.6339

VH, VV
CNN_mrg

Otsu
77.38% 98.47% 88.09% 0.7618 0.8666

CNN_tsc_mrg 67.09% 99.94% 83.53% 0.6705 0.8028

Table 4.  Quantitative Evaluation of SAR-based Results on the Chuckegg Creek Fire (2019).
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in various topographic conditions. Additional studies are planned to further demonstrate the transferability of 
the CNN framework to other wildfire events via pixel-wise network forward propagation. By exploiting all the 
available SAR data acquired before the wildfire event to characterize the area in terms of backscatter variations 
due to different environmental conditions, the time series based anomaly detection method is effective in pro-
ducing coarse burnt area maps that are essential for automatic training of the CNN framework. This research 
is the first attempt on wildfire progression monitoring using SAR time series and deep learning in challenging 
topographic conditions. The findings demonstrates that, using a fully automatic deep learning framework, space-
borne SAR data can play a significant role for real-time wildfire progression monitoring when the data becomes 
available at daily and hourly intervals with the launches of RADARSAT Constellation Missions and SAR CubeSat 
constellations.

Methodology
The main goal of the methodology is to develop a novel and fully automatic procedure based on a deep learn-
ing framework that utilizes every new Sentinel-1 SAR image acquired during the wildfire event to monitor the 
fire progression in near real-time. When a wildfire occurs, pre-fire SAR dense time series of the study area are 
collected from the archive and new SAR images are acquired in near real-time during the wildfire event. In par-
ticular, the proposed method has two innovative aspects, one is to exploit all available SAR data acquired before 
the wildfire event to characterize the area in terms of SAR backscatter variations due to different environmental 
conditions (e.g., seasonal effect, different land cover, weather conditions, etc.) while the other is to automatically 
train an implicit deep learning framework to estimate the changes in the SAR images acquired during the wildfire. 
The methodology includes four major processing steps. First, log-ratio of the pre-fire and post-fire SAR images is 
performed to detect changes caused by wildfire. Then the coarse binary map of burnt and unburnt areas is gener-
ated using a time series based anomaly detection technique. Using training samples automatically generated from 
the coarse binary change map, the CNN is trained and fitted to refine the burnt area detection and to generate the 
burnt confidence maps. The last step is to binarize the confidence maps using the Otsu automatic thresholding 
approach and to combine the individual wildfire progression maps progressively to improve their reliability and 
consistency. The overview of the methodology is presented in Fig. 8. In the following sub-sections, a full descrip-
tion of the different steps is reported.

Log-ratio based change measurement.  To detect changes caused by the wildfire. comparison of pre- 
and post-fire SAR images is performed. For each new SAR image acquired after the start of the wildfire, a pre-fire 
image is selected as a master image for each available ascending (ASC) or descending (DSC) orbit. By applying 
log-ratio operator on the master (pre-fire) and slave (after the start of the fire) image, a change map can be derived 
for C-VV and C-VH respectively, and the corresponding log-ratio time series can be established. The optimal 
master image is selected taking into account both minimizing the seasonal effects and avoiding master images 
acquired after heavy rain events. Log-Ratio based change measurement is defined accordingly with the following 
formula:

Figure 8.  CNN-based Online Learning Framework for Near Real-Time Wildfire Monitoring.
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where r ∈ {ASC-μ, DSC-ν} denote the corresponding orbit direction (ASC or DSC) and relative start orbit num-
ber (μ or ν), and βr is the radar backscattering value, m and s represent pre-fire (master) and post-fire (slave) 
image, respectively. By applying log-ratio on the master and slave images, the change map Δβr can be derived, 
which estimates the difference degree between master and slave images. The change map Δβr are subsequently 
binarized using the StdDev map as a reference estimation of the regular oscillation of the SAR backscatter. 
Hereafter, Δβr and σr are rewritten as Δβ and σ for convenient and compact mathematical notation.

Time series based anomaly detection.  Based on the pre-fire SAR time series, the corresponding mean 
and standard deviation (StdDev) are computed with respect to every pixel, forming a mean map and a StdDev 
map. Over the same study area, the StdDev maps σ are computed based on the historical SAR time series for ASC 
and DSC orbit respectively, including both VH and VV polarizations. The StdDev maps estimate the normal var-
iance of SAR backscatter with seasonal changes over time, which would provide a pixel-wise reference level for 
different land cover types in the study area.
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where β  represents the mean image over the available SAR time series on the same orbit, and the length is 
denoted as N, i.e., the total number of available images acquired on the same orbit.
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In order to detect the abnormal variance caused by wildfire events, a k-Map can be computed by dividing σ 
from |Δβ(i, j)|, as shown in Eq. 5. The k-map Ik estimates the times that |Δβ(i, j)| is larger than the corresponding 
σ for each pixel in the study area: a higher value in the k-Map means it is abnormal variation corresponding to a 
higher probability of changes.
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As illustrated in Eq. (6), the Ik map can be transformed into a binary map I with a threshold k0, which means 
the pixels will be considered as abnormal ones (i.e., burnt pixels) if they are larger than the k0 value in the esti-
mated log-ratio map, otherwise, they will be taken as the normal ones, i.e., unburnt pixels. In practice, k0 = 2 is 
a good trade-off between detecting abnormal changes and suppressing noise. The produced binary maps are the 
main input in the next CNN refinement step as reference data to automatically select the training samples.

Deep learning-based burnt area refinement.  As shown in Fig. 8, we use the binary logRt map time 
series to select burnt and unburnt samples for training a CNN model to detect burnt area automatically. By 
iterating over the available dates, each image is stacked with the corresponding master image and StdDev map 
in the same orbit, and the DEM products such as elevation, slope and aspects can also be stacked on them. The 
same number of training samples are randomly chosen from the burnt areas and unburnt areas identified by the 
log-ratio algorithm with StdDev binarization, and these training samples are stored into a database, used to train 
a CNN model to further refine the burnt areas. In the testing phase, when the image stack is fed into this CNN 
model, the corresponding burnt area mapping will be generated automatically.

The CNN framework is designed to produce a confidence map characterized by a bi-modal distribution of 
burn and un-burnt pixels. Let F(θ) denotes the learnable deep network for detecting burnt areas, we can derive 
the output Oi

l of the first l layers by forward passing patch Pi in network F(θ) (short for FL(θ), where L is the total 
number of network layers), and the forward passing is denoted as ⊗ in Eq. (7).

θ= ⊗O P F ( ) (7)i
l

i
l

Layer No. Operation

Output

Train Test

0 (input) — 7 × 55 × 55 7 × (w + 54) × (h + 54)

1 20@3 × 3Conv + ReLU 20 × 53 × 53 20 × (w + 52) × (h + 52)

2–8 20@7 × 7Conv + ReLU 20 × 17 × 17 20 × (w + 16) × (h + 16)

9–17 20@3 × 3Conv + ReLU 20 × 1 × 1 20 × w × h

18 2@1 × 1Conv + Sigmoid 2 × 1 × 1 2 × w × h

Table 5.  CNN Architecture (18 layers, learning rate: 0.0001, optimizer: Adam53, epoch: 20).
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where Fl(θ) denotes the first l layers of F(θ), and θ collects the weights and bias of Fl(θ), l = 0, 1, 2, …, L. Specially, 
the input layer is taken as layer 0, and =O Pi i

0 . So, the relationship between Oi
l and −Oi

l 1 can be formulated as:

δ= ∗ +−W bO O( ) (8)i
l l

i
l l1

where Wl and bl represent weights and bias of l-th layer in F(θ), respectively, and δ is the ReLU activation func-
tion38. Table 5 lists the CNN architecture used, it has 18 layers of neural networks, and each convolutional layer 
is followed by a ReLU activation (sigmoid for the last layer). The CNN burnConf map is derived by applying the 
sigmoid activation on the output of the last layer, since burnt area detection is actually a binary classification 
problem, and the sigmoid activation is a good choice to scale the predicted confidence into the range [0, 1].

With randomly sampled data (Pi, yi), a CNN-based non-linear change indicator F(θ) can be learnt for high-
lighting the burnt areas based on the SAR data. The predicted burn confidence vector ∈ ×ˆ Ryi

2 1 can be derived by 
squeezing θ= ⊗ ∈ × × ×RO P F( )i

L
i

2 1 1 1. Therefore, the loss function can be formulated as:
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n
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where n is the number of training samples, θ is the learn-able network parameter over all layers, including weights and 
bias, and λ controls the weight decay rate. In our experiment, we set λ = 0.001. Once trained, the corresponding burn 
confidence map can be obtained, which can be used to update the binary logRt time series for next training. Like this, 
the Pseudo label updating can contribute to providing more reliable ones, but it is not necessary. Moreover, Digital 
Elevation Model (DEM) products can be integrated to take topography into consideration as additional input layers.

CNN BurnConf maps: binarization and time series merging.  The outputs of the CNN refinement 
are CNN burnConf maps, where the pixel values are ranging from 0 to 1 and they are proportional to the prob-
ability that each pixel represent a burnt area (0: unburnt, 1: burnt). The main advantage of using the proposed 
CNN framework is that the differences in term of backscatter variation between burnt and unburnt pixel are 
represented by a clear bi-modal distribution (see Fig. 9) with respect to unimodal distribution of the log-ratio 
based results (scaled to [0, 1] by dividing the maximum). Consequently, the CNN burnConf maps are easy to be 
binarized using an Otsu automatic thresholding technique52.

To produce more reliable and consistent fire progression maps, the binary wildfire progression maps at differ-
ent stages are combined using two different methods. The first method is for near-real time wildfire progression 
monitoring and it simply combines the new wildfire progression map with the previous ones to generate the latest 
burnt area map. This method does not use the later burnt map to improve the results of the previous ones. This 
method has been investigated to highlight the potential of the SAR-based CNN framework for near real-time 
wildfire monitoring. The second method is a post-processing step that uses all the generated binary maps to 
update the fire progression maps exploiting the available multitemporal information. The method reduces the 
noise using a gaussian temporal filtering of the produced burnt map time series and it can be used to obtain a 
more reliable delineation of the fire progression for post-fire analysis (i.e. calibration of fire progression models).

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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