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Assessing and mapping multi-
hazard risk susceptibility using a 
machine learning technique
Hamid Reza Pourghasemi   1*, Narges Kariminejad2, Mahdis Amiri2, Mohsen Edalat3, 
Mehrdad Zarafshar4, Thomas Blaschke5 & Artemio Cerda   6

The aim of the current study was to suggest a multi-hazard probability assessment in Fars Province, 
Shiraz City, and its four strategic watersheds. At first, we construct maps depicting the most effective 
factors on floods (12 factors), forest fires (10 factors), and landslides (10 factors), and used the 
Boruta algorithm to prioritize the impact of each respective factor on the occurrence of each hazard. 
Subsequently, flood, landslides, and forest fire susceptibility maps prepared using a Random Forest (RF) 
model in the R statistical software. Results indicate that 42.83% of the study area are not susceptible to 
any hazards, while 2.67% of the area is at risk of all three hazards. The results of the multi-hazard map in 
Shiraz City indicate that 25% of Shiraz city is very susceptible to flooding, while 16% is very susceptible 
to landslide occurrences. For four strategic watersheds, it is notable that in the Dorodzan Watershed, 
landslides and floods are the most important hazards; whereas, flood occurrences cover the largest area 
of the Maharlou Watershed. In contrast, the Tashk-Bakhtegan Watershed is so sensible to floods and 
landslides, respectively. Finally, in the Ghareaghaj Watershed, forest fire ranks as the strongest hazard, 
followed by floods. The validation results indicate an AUC of 0.834, 0.939, and 0.943 for the flood, 
landslide, and forest fire susceptibility maps, respectively. Also, other accuracy measures including, 
specificity, sensitivity, TSS, CCI, and Gini coefficient confirmed results of the AUC values. These results 
allow us to forecast the spatial behavior of such multi-hazard events, and researchers and stakeholders 
alike can apply them to evaluate hazards under various mitigation scenarios.

The Sendai Framework, with its comprehensive vision, recommends more efforts to decrease disaster risk and 
increase sustainable development. Especially communities who are increasingly susceptible to natural hazards 
should adhere to these guidelines and plan accordingly. In this regard, the multi-hazard approach is often used 
in risk reduction projects and studies addressing risks associated with human activities or climate change on a 
regional and local scale1. It is obvious that introducing a universal set of multi-hazard assessment techniques is of 
fundamental importance for reducing disaster risk, and constitutes a valuable asset to share with other stakehold-
ers, including the private sectors, local governments, and other stakeholders.

The use of the term multi-hazard in the current research is related to the objective of risk reduction among 
natural hazards, including flood, landslides, and forest fires, in a specified spatial distribution in this study2,3. 
Recently, susceptibility modeling approaches related to single processes have advanced considerably for river 
floods4 and landslides5–7. However, there is still neither a common terminology nor a uniform conceptual 
approach for analyzing multiple hazards in conjunction. This is not unexpected because multi-hazard analyses are 
not the sum of single-hazard examinations. The various hazard characteristics and the methods used to analyze 
them are completely different8. A variety of quantification measures and susceptibility descriptions exist, which 
need to be adapted to enable the comparison of multiple hazards9. Also, natural processes have various effects on 
different elements at risk, and the techniques used to determine vulnerability diverge between hazards3. These 
topics constitute the main challenges for multi-hazard analyses.
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The possibility of predicting which areas are susceptible to a specific type of disaster, including landslides or 
forest fires, is undisputed. The prediction techniques have proven valuable for predicting various characteristics 
of a natural disaster that has occurred10. Many researchers recognized that the occurrence of landslides and forest 
fires is influenced by various aspects that involve human activities and climate conditions11,12. Several methods for 
spatially modelling landslides and forest fires have been developed13,14.

Moreover, floods affect more than 20,000 human-lives per year15. In Asia, approximately 90% of all human 
losses are caused by floods16,17. A flood that occurred in the center of Fars Province (Shiraz City) on March 25, 
2019, killed 21 persons, while injuring 164 others and damaging 1186 homes. In terms of economic impact, finan-
cial losses were estimated to be about $ 9,344,615 (http://www.irna.ir/fars/fa/News/83266320). In recent years, 
with the help of GIS and RS technology, the accuracy of flood susceptibility maps has been improved. Techniques 
include frequency ratio, logistic regression18, weights-of-evidence19, fuzzy logic20, artificial neural networks21, 
decision tree22, support vector machines (SVM)23, and Random forest models24. In this study, the RF model was 
selected because it is a very fast machine learning method. It produces an accurate classifier with an internal unbi-
ased estimate of generalizability during the forest building processes25. It makes no statistical assumptions, and it 
is characterized by high prediction performance13,26.

In the present study, the assessment was carried out for Fars Province (133,400 km2), which is strongly affected 
by floods, landslides, and forest fires. However, the area is also influenced by other climatic hazards (such as gully 
erosion), which are not systematically recorded at a municipal level. In this research, the first step was to assess the 
importance of effective factors on flood, landslide, and forest fire occurrence using the Boruta algorithm. Next, 
the aim was to prepare susceptibility maps for different hazards using the RF data mining algorithm. Then, the 
three risks were combined in a multi-hazard probability index (MHPI) with respect to their occurrence probabil-
ity and the range of susceptibility classes. Based on extensive literature review and to the best of our knowledge, 
no research related to the multi-hazard modeling of floods, landslides, and forest fires exists to date.

Study Area
The study area is in the Fars Province (SE Iran) between 27° 2′ to 31° 42′ N latitudes and 50° 42′ to 55° 36′ E lon-
gitudes, with an area of approximately 133,400 km2 of mainly arid and semi-arid land27. It covers 8.1% of Iran 
and includes 26 cities (Fig. S1). The Fars Province has three different atmospheric regions: First, the mountain-
ous areas in the north and northwest with moderately cold winters and moderate summers. Second, the central 
regions with rainy winters and hot, dry summers. And, third, the southern and southeastern regions with cold 
winters and hot summers28. The geology of the study area is shown in Table S1.

Material and Methods
The methodology of the presented study is shown in Fig. 1. The flow chart comprises three main steps, namely 
1) data preparation, i.e. obtaining the location of 365 floods, 358 forest fires, and 179 landslides based on inten-
sive fieldwork using a Global Positioning System (GPS) and different province reports; 2) recognizing the most 
important factors contributing to the occurrence of floods, forest fires, and landslides using the Boruta algorithm; 
3) constructing flood, forest fire, and landslide susceptibility maps along with validation processes using the RF 
model; and, finally, preparing a MHPI in the study area.

Gathering data related to flood, forest fire, and landslide hazards.  Detailed terrain mapping was 
carried out to locate and recognize floods, forest fires, and landslides. Also, the position of these three hazards 
was recorded using a GPS receiver. All data were used to verify the locations of these hazards mapped dur-
ing the fieldwork. The susceptibility modeling technique applied in this study requires samples of both hazards 
and non-hazards to generate susceptibility maps. Of the total recorded hazard events (365 floods (Fig. S2a), 358 
forest fires (Fig. S2b), and 179 landslides (Fig. S2c)) that occurred in the Fars Province, 70% were used in the 
model building process, while the remaining 30% were used in the validation step (Fig. S2). The same number 
of non-hazard locations was randomly sampled in the study area. Also, the values of all effective factors were 
extracted for both samples to validate and train datasets for further processing.

Construction of flood, forest fire, and landslide conditioning factors.  The main factors influencing 
the occurrence of forest fires are divided into two groups, namely, biophysical and human factors. The biophysical 
factors are further divided into atmospheric factors (humidity, rainfall, and temperature), and topographic factors 
(altitude, slope aspect, slope degree). The human factors include land use, access to the forest, and fuel manage-
ment processes29,30. Landslides are influenced by a collection of geo-environmental and anthropological factors31. 
To evaluate the importance of the various effective factors controlling hazard locations, 12 (flood), 10 (forest 
fire), and 10 (landslide) factors were selected. The factors used in this study to predict the occurrence of flood 
events are altitude, slope angle, aspect, plan curvature, TWI, distance from rivers, distance from roads, drainage 
density, lithology, rainfall, land use, and soil features. For landslides, the selected influencing factors are altitude, 
slope aspect, slope degree, plan curvature, profile curvature, distance from rivers, distance from roads, distance 
from faults, lithology, and land use. Moreover, for the occurrence of forest fires, the selected effective factors are 
altitude, slope aspect, slope degree, TWI, distance from rivers, distance from roads, drainage density, distance 
from urban, rainfall, and annual mean temperature. Topographical factors were extracted using a digital elevation 
model (ASTER-GDEM) with a spatial resolution of 30 m. Data layers were prepared using ArcGIS 10.2.2 with 
the pixel size of 30 m2. The distance from rivers, roads, and urban maps was obtained from the rivers, roads, and 
urban areas maps, respectively. The lithology map was obtained from the Geological Survey of Iran at a scale of 1: 
100,000. The land use map of the study area was also obtained from the Natural Resources Office of Fars Province 
at a scale of 1:100,000 and was updated using Google Earth images. Finally, the soil feature map was prepared 
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using data of the soil and water research institute of Fars Province, provided at scale of 1:100,000 and detailed in 
Table 2S. In general, all effective factor maps are shown in Fig. S3 (a-p).

Boruta algorithm.  The Boruta algorithm was used to prioritize the selected factors affecting natural hazards. 
The Boruta algorithm is built on the combined dataset by the Random forest classifier and performed in the R 
statistical package32. Boruta is based on a similar viewpoint to that which underlies the Random forest classifier. 
However, by increasing randomness to the system and collecting results from the ensemble of randomized sam-
ples, the devious impact of random variation and relations decrease. Here, this extra randomness shall provide 
us with a clearer view of which properties are really important33. This algorithm has been successfully applied in 
predicting gully erosion in Iran34.

Random forest data mining model.  Random forest (RF) is a supervised classifier35,36 that consists of 
many decision trees and has low error in contrast to other classification algorithms. In this study, the number of 
trees, minimum node size, and the number of features were used to split each node35. However, if one of the pre-
dictors has a much stronger effect on the predicting function than the other factors, that predictor is going to be 
the top splitter in all the trees. Consequently, all trees are going to be similarly constructed and, hence, correlated. 
Averaging predictions from correlated trees may not decrease the variance significantly36.

Evaluation of susceptibility maps produced by random forest.  The area under the ROC curve 
(AUC) indicates the capability of a model to properly predict the occurrence or non-occurrence of landslides, 
forest fires, and floods. The ROC curve represents the trade-off between two rates (the false-positive and 
true-positive rates on the X and Y axes). The AUC values are interpreted as reflecting the following model accura-
cies: 0.6–0.7 poor, 0.6–0.7 medium, 0.7–0.8 good, 0.8–0.9 very good, and 0.9–1 excellent37,38. In the current study, 
different techniques and measures were applied to evaluate the robustness and uncertainty of the RF model for 
three different hazards, namely, floods, forest fires, and landslides. These accuracy measures are the true positive 
rate (TPR), false positive rate (FPR), F-measures, fallout, sensitivity, specificity, true skill statistics (TSS), overall 
accuracy, corrected classified instances (CCI), and the Gini coefficient39–41. All of these indices were calculated 
based on the four parameters of true negative (TN), false positive (FP), false negative (FN), and true positive (TP).

The TPR (sensitivity) and TNR (specificity) show the probability of correct predictions of the positives and 
negatives as observed in the reality. The FPR (1– specificity) indicate the probability of incorrect predictions of 
non-event location as an event. TSS also measure the ability of a predicted value to discriminate between the 
events and non-events, using all of the elements in the confusion matrix42. The CCI considers TN and FN for 
true- and false-negative predicted events, and TP and FP for true- and false-positive, respectively. The coefficient 
of variation may often be suggested over the Gini coefficient if a measure of relative precision is selected to eval-
uate inequality43.

Figure 1.  Flowchart of methodology used for multi-hazard spatial modeling in the Fars Province, Iran.
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= +TPR TP TP FN/( ) (1)

= +FPR FP TN FP/( ) (2)

− = ∗ ∗ +F measure 2 precision recall/(precision Recall) (3)

= +Precision TP/(TP FP) (4)

=Recall TPR (5)

= +Fallout FP/(TP FP) (6)

= +Specificity TN/(TN FP) (7)

= +Sensitivity TP/(TP FN) (8)

= + −TSS Sensitivity Specificity 1 (9)

= + + + + ∗CCI (TN TP/(TN TP FP FN)) 100 (10)

= ∗ −Gini coefficient 2 AUC 1 (11)

Results
Prioritizing and determining effective factors using the Boruta algorithm.  The first aim of using 
the Boruta algorithm was to select the best conditioning factors for the occurrence of landslides, forest fires, and 
floods. The resulting rank of features for these three hazards according to their importance is shown in Tables 1–3. 
According to the mean importance for the occurrence of flood events depicted in Table 1, land use (33.23), drain-
age density (21.21), and TWI (20.97) are the most important factors, followed by distance from rivers (14.07), 
aspect (12.39), lithology (12.07), distance from roads (9.81), rainfall (9.70), slope (8.74), plan curvature (7.43), 
altitude (6.15), and soil (2.99). The highest rank of effective factors for the occurrence of forest fires was assigned 
to closeness to residential areas (35.36), slope (20.07), aspect (15.03), rainfall (13.48), distance from rivers (9.46), 
annual mean temperature (8.64), TWI (6.40), and land use (2.71) (Table 2). However, distance from roads (2.24) 
and altitude (0.08) were found to have no relevance among all considered factors. Additionally, the ranking of 
effective factors for the occurrence of landslides assigned the highest value to slope (15.95), followed by distance 
from rivers (12.56), lithology (10.50), land use (8.20), profile curvature (7.08), aspect (6.29), altitude (5.85), and 
distance from faults (4.82) (Table 3). Distance from roads (1.07) and plan curvature (0.09) were rejected based 
on this algorithm.

Providing natural hazard susceptibility maps using the RF model.  In this study, susceptibility maps 
were produced for three natural hazards using the RF model (Fig. 2). Based on the flood susceptibility map pro-
duced by the RF model, 39.03%, 31.20%, 18.04%, and 11.73% of the total area in Fars Province are considered 
as having low, moderate, high, and very high flood susceptibility, respectively (Figs. 2a and 3). According to the 
forest fire susceptibility map, 74.57%, 8.57%, 7.80%, and 9.07% of the total area was classified into low, moderate, 
high and very high classes of susceptibility, respectively (Figs. 2b and 3). Also, the landslide susceptibility map 

Factors
Mean 
Importance

Median 
Importance

Min 
Importance

Max 
Importance Decision

Altitude 6.15 6.08 3.19 8.39 Confirmed

Aspect 12.39 12.41 10.53 14.34 Confirmed

Slope 8.74 8.74 6.77 10.92 Confirmed

Plan curvature 7.43 7.50 5.29 9.14 Confirmed

Distance from roads 9.81 9.84 7.63 11.63 Confirmed

Distance from rivers 14.07 14.24 11.80 16.46 Confirmed

Drainage density 21.21 21.34 19.65 22.90 Confirmed

Rainfall 9.70 9.73 7.98 11.68 Confirmed

TWI 20.97 20.83 18.17 22.96 Confirmed

Lithology 12.07 12.12 10.03 13.55 Confirmed

Land use 33.23 33.38 30.74 35.60 Confirmed

Soil 2.99 2.92 0.85 4.72 Confirmed

Table 1.  Considering flood variables importance using by Boruta algorithm.
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derived from the RF model implied that the largest part of the study area (49.76%) has low susceptibility to land-
slide occurrence, 34.08% of the area has medium susceptibility to landslide occurrence, while the high and very 
high susceptibility classes cover 13.22% and 2.95% of the area, respectively (Figs. 2c and 3). The spatial aggrega-
tion of these three susceptibility maps produced by the RF model confirmed that the majority of the study area 
has a low susceptibility to the occurrence of flood, forest fire, and landslide events.

In order to produce a multi-hazard probability map (Fig. 4), all three hazard susceptibility maps were con-
sidered together. The susceptibility classes of the multi-hazard map produced for Fars Province confirmed that 
42.83% of the study area is not susceptible to any hazards. Meanwhile, areas of 17.26%, 5.95%, and 14.16% were at 
found to be at risk of floods, landslides, and forest fire, separately. Regarding multi-hazard susceptibility, 0.95% of 
the study area was found to be at risk of floods and forest fires together. Moreover, the combined risk of forest fires 
and landslides was detected for 7.28% of the study area. Regarding the combined risk of floods and landslides, 
8.87% of the study area was deemed susceptible, while, finally, 2.67% of Fars Province was found to be at risk of 
all three hazards together (Fig. S4).

Considering natural hazards in Shiraz City (center of Fars Province).  The results of our multi-hazard 
analysis (Fig. 5) presented for Shiraz City indicated that 25% of Shiraz City is very susceptible to flood occurrence, 
whereas about 1.12% of the study area is susceptible to both floods and forest fires. Furthermore, 18.13% and 
3.57% of Shiraz City face the combined risk of landslides and floods, respectively landslides, forest fires, and 
floods. The flood event that occurred on March 25, 2019, which killed 21 persons, injured 164 others, dam-
aged 1,186 homes, and caused financial losses around $ 9,344,615, impacted two areas, in particular, namely the 
Quran Gate and Saadi Zone (http://www.irna.ir/fars/fa/News/83266320). One of the most important findings and 
achievements of this study is that the prepared EMHM could very accurately predict flood events in the areas of 
Quran Gate and Saadi Zone.

Studying the susceptible watersheds of natural hazards.  Dorodzan Watershed is one of the strategic 
areas of Fars Province and plays a very important role in the agricultural production and self-sufficiency of Iran. 
It is an area which supplies water resources to Tashk and Bakhtegan lakes and is affected by wind erosion. Figure 6 
illustrates that 36.35% and 68.64% of Dorodzan Watershed are covered by the low class of susceptibility to flood 
and forest fire, respectively. However, regarding landslides, the moderate susceptibility class covers the largest area 
(42.45%). The Maharloo Watershed, as a second grade watershed of the Ministry of Energy, is the main source 
of the Kor River. In this watershed (Fig. 6), the moderate class covers the largest area (27.76%), although the 
classes of low susceptibility to forest fires (88.81%) and landslides (36.48%) covered the greatest area in Maharloo 

Factors
Mean 
Importance

Median 
Importance

Min 
Importance

Max 
Importance Decision

Plan curvature 0.09 0.03 −2.04 1.73 Rejected

Aspect 6.29 6.21 4.43 8.72 Confirmed

Altitude 5.85 5.86 2.93 8.84 Confirmed

Distance from faults 4.82 4.87 1.67 7.21 Confirmed

Distance from roads 1.07 1.17 −1.93 3.23 Rejected

Distance from rivers 12.56 12.53 10.31 14.22 Confirmed

Profile curvature 7.08 7.12 5.30 9.61 Confirmed

Slope 15.95 15.90 13.51 18.58 Confirmed

Lithology 10.50 10.47 8.76 12.26 Confirmed

Land use 8.20 8.20 6.64 10.90 Confirmed

Table 3.  Considering landslides variables importance using by Boruta algorithm.

Factors
Mean 
Importance

Median 
Importance

Min 
Importance

Max 
Importance Decision

Distance from rivers 9.46 9.48 6.66 12.59 Confirmed

Residential areas 35.36 35.29 32.15 39.12 Confirmed

Distance from roads 2.24 2.26 0.37 4.18 Rejected

TWI 6.40 6.46 3.36 8.66 Confirmed

Slope 20.07 20.21 17.38 23.16 Confirmed

Rainfall 13.48 13.42 10.04 16.94 Confirmed

Altitude 0.08 0.18 −1.71 2.12 Rejected

Aspect 15.03 15.11 10.96 17.83 Confirmed

Temperature 8.64 8.64 6.80 11.19 Confirmed

Land use 2.71 2.81 −0.65 4.83 Confirmed

Table 2.  Considering forest fire variables importance using by Boruta algorithm.
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Watershed. The Ghareaqaj Watershed, which is currently used for drinking and agricultural purposes, is one of 
the most important rivers in Fars Province. The construction of the Salman Farsi Dam in Qir and Karzin and 
studies on the construction of the Kavar Dam on this river indicates the importance of the river in the mentioned 
province. In this watershed (Fig. 6), all three hazards (floods, forest fires, and landslides) pose a low risk (37.68%, 
64.71%, and 42.80%). Moreover, the most important source of water supply are the Bakhtegan and Tishak lakes. 
Based on Fig. 6 (Tashk-Bakhtegan watershed), the low susceptibility class covers the largest area of flood (33.85%) 
and forest fire (77.59%), while, based on the landslide susceptibility map produced by the RF model, 38.19% of the 
total area was covered by the moderate class.

Figure 2.  The susceptibility maps of three natural hazards produced using the random forest model.

Figure 3.  The susceptibility maps of three natural hazards produced using the random forest model.
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Studying the validation of natural hazard susceptibility maps.  In order to produce natural hazard 
susceptibility maps, all hazards were divided into two data sets: one for modeling and one for validation. The 
accuracy of the three maps produced by the RF model was verified using ROC curves (Table S3). The AUC values 
for the flood, forest fire, and landslide maps were 0.834, 0.943 and 0.939, respectively. Regarding the standard 
error, floods had the highest value (0. 028), followed by forest fires (0.016), and landslides (0.023). Further, the 
forest fire map had excellent accuracy (0.958), while the model considered the landslide and flood maps as very 
good. Also, the results of the other measures (Table 4) confirmed the accuracy of the three hazard maps, as, 
according to Table 4, the F-measure, specificity, and sensitivity of each hazard is more than 0.77. Furthermore, 
the TSS index is 0.541 for floods, which indicates fair accuracy, whereas its values for landslides and forest fires 
were 0.889 and 0.850, respectively, indicating an excellent model, based on the findings of Allouche et al. (2006)44. 
Also, according to published reports, a Gini coefficient value above 0.6 (60%) indicates a good model in terms of 
accuracy. On the other hand, when the CCI (overall accuracy) is between 0.6–0.8, it shows that the accuracy of 
the model is good. So, the RF model is known as an accurate classifier for the three depicted hazards.

Discussion
In this study, the importance of factors controlling landslide, flood, and forest fire locations was analyzed using 
the Boruta algorithm. The Boruta algorithm provided quantitative results, which is a significant advantage that 
allows the potential comparison of studies in different regions around the world. As it was already stated, the 
study area is prone to combinations of landslides, floods, and forest fires. Generally, the development and for-
mation of these natural hazards are controlled by several factors, and the distribution of these hazards cannot be 
random.

Figure 4.  Percentages of susceptibility classes of multi-hazard in Fars province.

Figure 5.  EMHP and percentage of each hazard in Shiraz City.

https://doi.org/10.1038/s41598-020-60191-3


8Scientific Reports |         (2020) 10:3203  | https://doi.org/10.1038/s41598-020-60191-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

The most statistically significant relationship among factors, based on the Boruta algorithm, was found 
between flood location and land use, and land use presented as the most important factor influencing flood haz-
ards among all considered variables. Wheater and Evans (2009)45 implied that land use affects the hydrology that 
determines water resources leading to flood hazards. It is increasingly identified that the management of water 
and land are strongly linked. Generally, steeper slopes are more vulnerable to massive erosion, including land-
slides. The steepness of slopes is reported as a factor of primary importance that promotes high runoff velocity, 
which results in this type of erosion. Regarding slope and aspect, forest fires predominantly occur in the steep 
slopes of the southern areas, as vegetation is typically dry. The effects of slope and aspect on fire behavior in the 
occurrence of forest fires have been reported by Adab et al. (2013)46. According to Pourghasemi (2016)47, topo-
graphic data (i.e. slope and aspect) are the most important factors for forest fire assessment. Contrary to the above 
results, Bui et al. (2017)48 found that NDVI (Normalized Difference Vegetation Index) had the strongest impact 
on the occurrence of forest fires. However, Hong et al. (2017)49 and Gigovic et al. (2019)50 respectively demon-
strated that slope has a significant positive effect on the occurrence of forest fire events. In relation to flood effec-
tive factors, the research carried out by Liu et al. (2005)51 confirmed that the urbanization scenario has a strong 
influence on heightening flood volume. For instance, afforestation has a positive impact, while deforestation has 
a negative impact on the occurrence of floods.

Besides determining variable importance, the RF model was used to prepare susceptibility maps for landslides, 
floods, and forest fires, first separately (Fig. 2), and then jointly in the form of a multi-hazard map (Fig. 4). The 
susceptibility maps for floods, landslides, and forest fires revealed that most of the study area is characterized by 
low susceptibility to each hazard when analyzed separately (Fig. 3). The multi-hazard probability map modeled by 
RF revealed that the most parts of the study area are not susceptible to any hazards, whereas few areas are at risk of 
all three hazards together (Fig. 3). Floods are recognized as the most dangerous hazard in the study area, followed 
by landslides and forest fires (Fig. S4). Further, effective flood risk reduction requires more analysis of this indi-
vidual hazard and its interaction with the other hazards. Additionally, the validation of the RF models determined 
an excellent accuracy of the forest fire and landslide susceptibility maps (Table S3). Pourghasemi et al. (2019)52 
produced a susceptibility map for three hazards (i.e. landslides, floods, and earthquakes) using the ensemble 
model named SWARA-ANFIS-GWO. They showed that 17.14% of the area is affected by no hazards, whereas 
most parts were susceptible to landslide and flood hazards together (33.70%). They also indicated accuracies of 

Figure 6.  Percentages of susceptibility classes of multi-hazard in Dorodzan, Maharlou, Ghareaghaj, and Tashk-
Bakhtegan Watershed.

Hazards TN FP FN TP TPR FPR F-measures Fallout Specificity Sensitivity TSS CCI Gini

Flood 84 25 25 84 0.771 0.229 0.771 0.229 0.771 0.771 0.541 77.06 0.668

Landslides 48 6 6 48 0.889 0.111 0.889 0.111 0.889 0.889 0.778 88.89 0.878

Forest fire 91 16 16 91 0.850 0.150 0.850 0.150 0.850 0.850 0.701 85.05 0.886

Table 4.  Different robustness measures for validation of the built model of each hazard.
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84% and 80% for flood and landslide maps, respectively. Skilodimou et al. (2019)53 applied the analytical hierar-
chy process (AHP) to produce separate maps for landslide, flood, and earthquake hazards and combined them 
into a single multi-hazard map. They showed that 80% of the landslide occurrences and all the recorded flood 
events fall within the boundaries of the moderate, low and very low susceptibility classes.

There are several advantages that make the RF model suitable for the approach in the present study. First, it 
is a simple, fast algorithm that makes no statistical assumptions and is characterized by a high prediction per-
formance54,55. It produces an internally unbiased evaluation of generalizability with an accurate classifier during 
the forest building processes26 and provides better consistency of results and robustness of forecasts56. The RF 
can precisely handle heterogeneous inputs of different nature and scalability from different sources55,57. Another 
important benefit of the RF model is that there are significant criteria that indicate the importance of each pre-
dictor variable55,58. However, it has some sources of uncertainty that are frequently unacknowledged or even 
unrecognized.

One source of uncertainty in the modeling process is related to the gathered data. It is important to consider 
non-linear correlations among dependent and independent variables; this problem can be solved by machine 
learning techniques. One of the advantages of machine learning techniques in comparison to traditional methods 
(bivariate and multivariate statistical methods) is that the ML algorithms can deal with noises in the data and are 
also accurate in the presence of uncertain data and limited measurement errors. Quality of data is also impor-
tant. In the current study, different extensive field surveys were conducted to collect suitable data for all three 
hazards; however, according to the accuracy of the flood susceptibility map (Tables S3 and 4), there appears to be 
greater uncertainty compared to the landslide and forest fire hazards, because the selection of flood locations is 
so difficult compared to other hazards. Another uncertainty source is the accuracy of the built model. For solving 
this problem, different techniques were applied, and the results are presented in Table 4. According to Table 4, 
the achieved results of the AUC values confirmed the accuracy of the built model for the three examined haz-
ards, namely floods, landslides, and forest fires. Also, dividing the entire dataset into two sets for training (70%) 
and validation (30%) can be effective in decreasing uncertainties in a model’s performance. Another uncertainty 
source is limitations of the learned model that the ML techniques such as the RF isn’t faced to this problem, 
meanwhile this algorithm for removing this uncertainty, used from error rates (Table 4) and out-of-bag indicator. 
Results of the out-of-bag values for forest fires, landslides, and floods were 3.55%, 15.6%, and 22.27%, respectively.

Nowadays, the necessity of using machine learning techniques is increasingly emphasized in the susceptibility 
modeling of geomorphological features and processes37. A universal framework describing which factors to com-
pare is required. This general framework can be semi-quantitative, qualitative, or quantitative3. It should be suit-
able for both single hazard and multi-hazard assessments, because multi-hazard evaluation plays the main role 
in reducing disaster risk and provides crucial information for sharing with the other stakeholders, such as local 
governments and private sectors55. Considering multi hazards jointly and applying the same technique to analyze 
them can give us a comprehensive view of the changes occurring in the environment. Further, a synthesized 
multi-hazard probability map supports planners in sustainable development and adaptive management because 
this map provides homogenized information about different environmental hazards for a specific area64. It means 
that the potential use of hazard evaluation becomes obvious when considering all hazards together, on the basis of 
which plans and projects can be implemented considering this comprehensive view of a region59. From this point 
of view, a multi-hazard probability map can be used for integrated and comprehensive watershed management 
and land use planning and, consequently, for the sustainable development of a region.

Conclusion
A better understanding of the factors controlling flood, forest fire, and landslide occurrence is crucial to the sus-
tainable development of regions prone to these three hazards, such as the Fars Province. In this study, 365 floods, 
358 forest fires, and 179 landslides were mapped for an area of 133,400 km2. The Boruta algorithm enabled us 
to analyze the impact of effective factors on the occurrence of three different natural hazards. According to the 
Boruta algorithm, the most important factor controlling flood occurrence in the study area was land use, followed 
by drainage density, and TWI. Among the different factors controlling forest fire occurrence, residential areas 
ranked highest, followed by slope, and aspect. Moreover, the highest rank of conditioning factors regarding land-
slide occurrence was found to be slope, followed by distance from rivers, and lithology. The RF model was also 
applied to prepare a susceptibility map of flood, landslide, and forest fire locations. The multi-hazard probability 
map produced for floods, forest fires, and landslides in Fars Province revealed that the majority of the land is not 
prone to any hazards. Total areas of 17.26%, 5.95%, and 14.16% were found to be at risk of floods, landslides, and 
forest fire, separately. However, 2.67% of Fars Province was found to be at risk of all three hazards together. Based 
on the AUC values, the best accuracy was determined for the forest fire susceptibility map, followed by the maps 
produced for landslides, and floods. Further, the multi-hazard probability map prepared in this study can be used 
for integrated and comprehensive watershed management and land use planning and, consequently, for sustain-
able development in the study region.
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