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Modal analysis and frequency 
matching study of subway bogie 
frame under ambient excitation
Longjiang Shen * & Shizhong He 

A wealth of practical cases indicates that the fatigue failure of subway bogies primarily stems from 
the modal resonance of the structure. If the modal characteristics of the entire vehicle, including 
equipment and bogies, are mismatched, rail vehicles may experience abnormal vibrations and noise. 
Therefore, it is imperative to conduct modal analysis and matching design for subway vehicle bogies 
to ensure smooth operation, reduce structural vibrations and noise, and enhance vehicle safety and 
ride comfort. Modal identification methods under the ambient l excitations during vehicle operation 
were employed to identify the modal parameters of the bogie structure before and after wheel 
reprofiling and under different load conditions. According to the test results, wheel reprofiling has 
minimal impact on the modal parameters of the structure, but with an increase in load, the modal 
frequencies of each order generally increase. This is associated with boundary constraint states, such 
as the increased stiffness of the bogie air spring with an increase in vehicle load. By comparing the test 
results with simulation analysis results of the bogie structure under free and constrained states, it is 
evident that simulating realistic boundary constraint conditions is crucial to ensure the accuracy of the 
finite element model. Based on frequency isolation criteria and vibration isolation theory, a frequency 
planning basis for the bogie structure was established. The study found that as the vehicle load 
increases, changes in the boundary conditions of the bogie affecting the elastic modal frequencies 
of the structure may have a certain impact on matching design, and may even better comply with 
the requirements of frequency management equations. This provides a new direction for subsequent 
scholars researching modal matching design.

Keywords  Subway bogie, Modal experiment, Finite element analysis, Modal matching

Trains encounter diverse vibration environments with distinct characteristics during operation, such as periodic, 
random, and transient excitations, as well as combinations thereof. These different excitation types have varying 
impacts on equipment, potentially leading to resonance amplification, frequency coupling, functional failures, 
fatigue damage, and strength degradation. To mitigate these effects, it is critical to enhance the train’s adaptability 
to vibration environments by avoiding resonance or significant amplification.

The bogie, a key component ensuring the safety and operational quality of the vehicle, supports, guides, and 
facilitates traction and braking1. Common issues include cracks at motor mount connections, antenna beam 
fractures, and axle box suspension ear breaks2. Modal resonance is often the root cause of fatigue failures in 
subway bogies. Misalignment of the modal characteristics of the entire vehicle, including its equipment and 
bogies, can lead to abnormal vibrations and noise3.

Conducting modal analysis and matching design for subway vehicle bogies is essential to ensure smooth 
operation, reduce structural vibrations and noise, and enhance safety and ride comfort. Accurately determining 
the structural dynamics characteristics of rail vehicles is crucial for improving their dynamic performance. 
Structural modal parameters—modal frequencies, damping ratios, and mode shapes—are fundamental 
expressions of structural dynamics properties and are closely monitored during the design phase of rail vehicles.

Finite element numerical simulation4 and vibration testing are the primary technical approaches currently 
used to obtain the structural modal parameters of rail vehicles. Test modal analysis is the process of modal 
identification of a research object under laboratory conditions or operational working conditions. Based on 
whether the external excitation signal is measurable during the identification process, test modal analysis 
methods can be classified into two categories5. Firstly, Experimental Modal Analysis (EMA), where the input 
signal of the system is controllable and measurable. The input excitation signal to the system is controllable 
and measurable. It involves analyzing and processing the response and excitation data to obtain the frequency 
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response function of the structure. By combining modal identification methods, the inherent frequency, mode 
shapes, modal damping ratio, and other dynamic characteristic parameters of the structure can be identified. 
Secondly, Operational Modal Analysis (OMA), where the input signal of the system is not measurable, and 
the excitation signal comes from ambient excitations, with only the output response being measurable. OMA 
does not require measuring the input signal to the system. It solely relies on the output response under ambient 
excitation. Instead of frequency response functions, OMA replaces them with cross-correlation functions. By 
applying modal identification methods, the modal parameters of the structure can be identified. Compared to 
EMA, OMA can perform online analysis using only measured response signals, requires simpler equipment, 
and can identify modes that are easily excited under operational conditions.

Modal parameter identification methods in OMA can be classified according to various criteria. When 
categorized by the domain of identification, these methods are divided into frequency-domain and time-domain 
approaches. Frequency-domain methods, with their clear physical concepts and ease of representation of system 
responses in terms of amplitude and phase, were predominantly used in early identification techniques, such as 
peak picking6 and circle fitting6. These techniques later evolved into more advanced methods like PolyMAX7, 
which utilize common denominator models and matrix fraction descriptions.

Time-domain methods include the Ibrahim time-domain method8,9, multiple reference point least-squares 
complex exponential method10, and state-space model-based stochastic subspace methods11,12 as well as time 
series methods13,14. More recently, blind source separation-based techniques have also been developed. A key 
advantage of time-domain methods is that they do not require transforming the measured time-domain signals 
into the frequency domain, thus avoiding potential errors associated with signal transformations.

Traditional frequency-domain identification methods typically rely on frequency response function 
information, or spectral matrices when input information is unavailable, and their accuracy is limited by 
data transformations between domains. Time-domain identification methods generally use impulse response 
functions and input–output time histories, substituting covariance and output time histories when input 
information is lacking, but they face challenges in selecting the correct model order. Methods for time-invariant 
structures in both time and frequency domains are well-established, while time–frequency domain methods that 
utilize time–frequency representations are more suitable for time-varying structures.

Due to limitations in traditional identification methods, there has been an emergence of intelligent 
identification methods based on smart algorithms. Regarding the identification model, methods can be 
categorized as non-parametric or parametric, and concerning the use of identification data, they can be batch 
or recursive. In terms of cost functions, methods include maximum likelihood, ridge regression, Kalman filtering, 
and Bayesian estimation. The three main elements—data, model set, and criterion or cost function—have 
undergone significant development: from single-output to multi-output data, from synchronous to asynchronous 
sampling; from non-parametric to parametric models, from single-channel to multi-channel models, and 
from frequency-domain to time-domain models; and from point estimation (such as least squares, maximum 
likelihood, ridge regression, Kalman filtering) to Bayesian estimation.

In railway vehicles, instability is related to modal shapes, and modal shapes have a damping rate that 
decreases as the driving speed increases. When the speed exceeds a certain value, the excitation from the track 
cannot be suppressed by the vehicle, resulting in an unstable state15. This unstable state leads to higher levels 
of acceleration experienced by passengers and higher interaction forces between the wheels and the track, 
which may pose safety hazards. Calvo et al.16 used OMA to identify the vibration modes that cause vehicle 
instability. By applying OMA techniques to railway vehicles, a valuable application of OMA technology is 
proposed, which is to identify modal shapes corresponding to instability. Gong et al.17 used the OMA method 
to identify the diamond deformation mode of the railway vehicle car body. They explained that the cause of the 
car body chattering is due to the coupled interaction between the car body diamond deformation mode and the 
hunting motion of the bogie. An optimization scheme for suspension parameters and wheel tread profiling was 
proposed, which significantly reduced the occurrence probability of car body chattering. Li et al.18 compared 
simulation results with experimental results, suggesting that when conducting finite element analysis of the 
bogie structure’s modal properties, it is essential to fully consider the constraints of the corresponding boundary 
conditions under operating conditions. There were significant differences between the tested structure and the 
free modal calculation results of the bogie structure during operation. Liu et al.19 conducted modal testing on 
an operational high-speed train to obtain cross-spectral signals between structural response points and identify 
modal parameters. The modal parameter identification method used the least squares complex frequency domain 
method to obtain the actual modal parameters of the structure, which were then validated in conjunction with 
the measured vibration spectra of the axle boxes and the exterior floor of the car body.

However, there is currently no research on OMA of bogies under different vehicle loading states and different 
wheel wear conditions. There is a lack of studies and methodologies regarding modal matching of bogies and 
their attached components. Issues such as cracking and fatigue in bogie frames still occur frequently. Therefore, 
this paper adopts an operational modal parameter identification method based on ambient excitation to identify 
the modal parameters of the bogie frame. It conducts, for the first time, modal identification studies under 
different vehicle loading states (the tare loading (AW0) and the crush loading (AW3)) and different vehicle 
wear conditions, and compares these results with finite element simulations. The paper also compares modal 
calculation results considering the constraints of the bogie suspension and the influence of major components 
such as motors and gearboxes. Finally, based on a combination of frequency isolation criteria and vibration 
isolation theory, it proposes a frequency planning method for the bogie structure. Additionally, the modal 
matching design of the bogie under different conditions of wheel non-roundness is explored.
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Operational modal identification methods
In this study, the PolyMax algorithm is used for operational modal identification of the steering frame. The 
PolyMax method is an extension of the multiple-reference least squares complex frequency domain method. 
It approximates the power spectral density of the output response instead of the frequency response function 
and minimizes the error using maximum likelihood estimation. This method allows for the identification of 
global modes, produces clearer steady-state diagrams, exhibits good anti-interference capabilities, and provides 
relatively high accuracy in parameter identification. For multiple output channel signals of the system, when 
selecting one channel as the reference point, the mathematical model of the cross-correlation function between 
each channel and the reference channel is expressed as follows20:

In the equation, k represents the numerical index of the test signal; y1 represents the selected reference point; 
m represents the measurement point number; N represents the data length for each channel; τ represents the 
time delay; Rm,1(τ ) represents the cross-correlation function between signals y1(k) and ym(k + τ) . Equation (1) 
is transformed into a power spectral density function through fast Fourier transform. Then, combined with the 
PolyMax algorithm, Eq. (2) is solved.

In this case, H(ω) represents the frequency response function replaced by the power spectral density function, 
M(ω) represents the numerator matrix polynomial, and N(ω) represents the denominator matrix polynomial. 
The two matrices on the right side of Eq. (2) can be defined as follows:

If the system has m-dimensional inputs and l-dimensional outputs, βr(l×m) represents the coefficient matrix 
polynomial for the numerator, and αr(m×m) (r = 0, 1, …, p) represents the coefficient matrix polynomial for the 
denominator. Here, p is the chosen order of the mathematical model, Z represents the polynomial basis function 
e−jω�t , and �t represents the sampling time. After selecting different frequencies, the coefficient matrix [βr ,αr] 
can be approximated using the least squares method21. Based on the obtained coefficient matrix αr for the 
denominator, an extended unitary matrix is constructed, and then the unitary matrix is decomposed to obtain 
eigenvalues, which ultimately provides the modal participation factors and poles of the system. The modal 
participation factor matrix is located at the bottom row of the eigenvector matrix, and there exists the following 
relationship between the system poles pi , p∗i  and the diagonal elements �i , �∗i (i = 1, . . .mp).

The calculation Equation for modal damping ratio is:

In the equation, ωi represents the undamped natural frequency, and ωdi represents the damped natural 
frequency. After obtaining the poles pi and modal participation factors Li , theoretically, all coefficients αr , βr can 
be calculated, and then substituted into Eq. (2) to obtain the modal shapes, as shown in the following equation:

In the equation, �i represents the modal shape, LTi  represents the modal participation factor row vector, LHi  
represents the conjugate transpose of Li , LR represents the low-frequency residue, and UR represents the high-
frequency residue. Since the poles pi and modal participation factors Li have already been calculated, Eq. (8) 
can be formulated using the measured values of H(ω) at different sampling frequencies. The unknown modal 
shapes �i as well as the low-frequency LR and high-frequency UR residues can be obtained using the linear 
least squares method.
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Bogie modal test
The running modal experiments on the bogie frame of the subway vehicle were conducted under four different 
operating conditions, including the AW0 condition before reprofiling wheels, the AW3 condition before 
reprofiling wheels, the AW0 condition after reprofiling wheels, and the AW3 condition after reprofiling wheels. 
The identified running modal results of the bogie frame under different operating conditions were analyzed, and 
the subsequent finite element modal calculation results were validated and compared.

Testing protocol
Accelerometers were arranged on both sides of the subway bogie frame, with six sensors on each side on the side 
beams. Additionally, two acceleration sensors were placed on the crossbeam, one located at the midpoint and the 
other at the connection point between the motor and the crossbeam. Each motor on both sides was equipped 
with one acceleration sensor. There are 18 accelerometers in total. The vibration measurement points are shown 
in Fig. 1, The vibration measurement points are shown in Fig. 1, and the actual test point layout for the bogie 
frame is illustrated in Fig. 2. The selected accelerometers have a measurement range of ± 50 g. During the testing 
process, all acceleration sensors are configured to collect data synchronously, measuring both vertical and lateral 
vibration accelerations, with a sampling frequency set at 1024 Hz. A segment of stationary test signal is taken for 
modal identification, and the resulting modal parameters are used to validate subsequent finite element models.

In addition, the main experimental instruments and equipment used in the test, including data acquisition 
devices and handheld accelerometer calibrators, are shown in the Table 1.

Fig. 1.   Schematic diagram of the measurement points for the bogie frame vibration test.

Fig. 2.   Actual test point layout for the bogie frame.

Table 1.   Main experimental instruments.

Number Instrument name Quantity Model Producer

1 Three-axis accelerometer 18 – Langs

2 Data acquisition system and analysis software 1 – Oriental Institute

3 Portable accelerometer calibration instrument 2 JX-2A Jinyang Wanda

4 Computer 1 ThinkPad Lenovo
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Test results
In the same line section, modal testing is conducted on the bogie frame under different operating conditions. 
The tested conditions include four scenarios: AW0 reprofiled wheels before, AW0 reprofiled wheels after, AW3 
reprofiled wheels before, AW3 reprofiled wheels after. Taking a certain measuring point at the end of the bogie 
frame as an example, the vertical and lateral vibration spectra under different testing conditions are shown in 
Fig. 3. It can be observed from Fig. 3 that regardless of the testing condition, as long as there is unevenness in 
the track, it can effectively stimulate the operational modes of the frame.

Based on the Polymax method, modal identification is performed using test data with a sample length of 
30 s under constant speed operating conditions. Taking the AW0 reprofiled wheels before test condition as an 
example, the identified modal shapes of the bogie frame are shown in Fig. 4, and the modal frequency test results 
are shown in Table 2.

According to the statistical table of working modes for the bogie frame under different test conditions, it can 
be observed that for the bogie frame of the EMU bogie, the modal frequencies corresponding to the four modal 
mode shapes do not differ significantly between not reprofiled and reprofiled wheel conditions, with variations 
within ± 2%. Under different load conditions, the modal frequencies corresponding to the AW3 condition of the 
bogie frame are generally higher than those under the AW0 condition, which is related to the increase in load 
affecting the stiffness of the bogie frame air spring and other boundary constraint states.

Bogie frame structural modal analysis in simulation
Finite Element Modal Analysis is a structural vibration analysis method based on finite element calculations. It 
investigates the vibration characteristics of structures, including natural frequencies, mode shapes, and modal 
damping ratios, by discretizing the structure and employing principles and techniques of the finite element 
method.

Generally, the process of finite element modal analysis includes the following steps: Firstly, establish the 
geometric model of the object under study. Then, sequentially set the material properties, define contact 
relationships, perform meshing, and apply boundary conditions. Finally, conduct simulation analysis and output 
the simulation results. Therefore, based on the geometric model of the subway bogie frame, finite element modal 
analysis is performed, considering different constraint conditions, to calculate the modal results under different 
constraint states.

The software used for this modal analysis is Hypermesh. This software provides three main methods for 
extracting eigenvalues: the Power Method, the Transformation Method, and the Lanczos Method. Among these 
methods, the Lanczos Method combines the advantages of the previous two methods. It performs well and is 

(a)

(b)

Fig. 3.   Vibration spectrum of the measurement point at the end of the bogie frame under different test 
conditions.
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commonly used as the default method in most finite element software for calculating eigenvalues efficiently, 
without losing accuracy like the Transformation Method or the computational cost of the Power Method. 
Finite Element Modal Analysis is a structural vibration analysis method based on the finite element method. 
By discretizing the structure and combining the principles and techniques of the finite element method, it 
investigates the inherent characteristics of structural vibration, such as natural frequencies, mode shapes, modal 
mass, modal stiffness, and modal damping.

Establishment of finite element model
For the modal analysis of complex and large assemblies, it is reasonable to consider simplifying the geometric 
model to improve computational efficiency while ensuring accurate simulation analysis of the structure. 
Therefore, for complex large assemblies like the subway bogie frame, which consists of side beams, cross beams, 
and various welded structures such as motor mounts and brake hangers, the following simplifications can be 
applied:

(1)	 Ignore the auxiliary components of the frame, such as bolts and nuts.
(2)	 Neglect small fillets, chamfers, and other structural details.
(3)	 Disregard non-load-bearing structures, small-hole structures, and other insignificant small-sized structures.

These small structures not only increase the difficulty of meshing but also affect mesh quality, and they 
increase the computational workload by increasing the number of elements. Therefore, it is reasonable to consider 
their removal for simplification.

The main structural components of the bogie frame, such as side beams and cross beams, are connected by 
seamless welding and are primarily manufactured using carbon steel Q345E, as shown in Table 3, indicating its 
material properties.

Fig. 4.   Modal shapes of the bogie frame under different conditions.

Table 2.   Statistical table of working modes for the bogie frame under different test conditions.

Modal shape description AW0 reprofiled wheels before/Hz AW0 reprofiled wheels after/Hz AW3 reprofiled wheels before/Hz AW3 reprofiled wheels after/Hz

The frame torsion 43.829 44.369 46.158 45.257

The frame side beams is bent 
laterally 79.269 79.781 81.124 82.017

The frame cross beam is bent 
vertically 80.579 82.014 83.157 81.278

The horizontal plane of the frame 
side beam is deformed 93.667 92.357 95.458 94.285
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Considering that the bogie frame is a complex and large assembly with irregular and diverse shapes, using a 
general automatic meshing method may not guarantee the quality of the mesh, leading to significant deviations 
between simulated modal results and actual conditions. Therefore, a manual meshing approach is employed to 
partition the bogie frame. To ensure mesh quality, suitable methods and sizes are chosen based on the actual 
dimensions of each component. Hexahedral elements are given priority for solid element meshing. Sweeping 
methods are applied for regular and simple structures, and mid-surface extraction combined with shell element 
meshing is employed for beam structures with length and width dimensions significantly larger than thickness. 
For assemblies consisting of multiple regular bodies, a multi-zone approach combined with tetrahedral meshing 
is utilized. Following these meshing methods, the overall model of the bogie frame is discretized into 312,793 
elements with 668,101 nodes. Figure 5 illustrates the completed meshing of the bogie frame finite element model.

Modal simulation analysis
The bogie frame experiences constraints from the vehicle body, motor, gearbox, primary suspension, and 
secondary suspension during actual operation of the subway vehicle. The actual operational modes may differ 
from the results of free modal calculations. To obtain more accurate modal simulation results, it is essential to 
establish the boundary constraint conditions for the bogie frame.

Regarding the primary suspension, the actual constraint conditions are simulated by employing a series of 
parallel spring elements at the corresponding positions. These spring elements are connected to the frame at one 
end, and the other end is subjected to displacement constraints. The stiffness parameters of the spring elements 
match the actual design values.

For the secondary suspension, only the actual constraint conditions of the secondary series air springs are 
simulated. Spring elements are used at the positions of the secondary series air spring supports to simulate the 
actual constraint conditions during the operation of the frame. Similar to the primary suspension, one end of 
the spring element is connected to the frame, and the other end is subjected to displacement constraints. The 
stiffness parameters of the spring elements match the actual design values. Additionally, the vertical load forces 
applied by the vehicle body to the frame at this position are considered.

Regarding the constraints of the auxiliary equipment on the bogie frame, only the constraints of the heavier 
components, such as the motor and gearbox, are considered. The motor is simplified to a centroid structure 
using mass elements to approximate the actual structure, and spring elements are used to connect the motor 
mass element to the frame motor support. A relatively large stiffness value is set to simulate the rigid connection 
between the motor and the frame. Similarly, a centroid-simplified approach is used to simulate the gearbox’s 
constraints, with spring elements representing the rigid connection between the gearbox and the frame.

Following the above boundary constraint method, the modal simulation calculation frequencies for the bogie 
frame under constrained conditions are shown in the Table 4, and the corresponding modal shapes are depicted 
in the Fig. 6. In order to investigate the influence of frame constraint conditions on the modal calculation results 
in the finite element model, a free modal calculation was performed on the frame, and the results are shown in 
Table 4.

Comparison of test results and finite element results
The final identification results of operational modes for the frame under different operating conditions and the 
finite element simulation modal calculation results under various constraint conditions are presented in Table 5.

Based on the test results, the simulated results under constrained ready-to-operate conditions for the dynamic 
car bogie frame are close to the test results under different loading conditions and wheelset conditions. The 

Table 3.   Material properties of the bogie frame.

Material Density/(kg/m3) Elastic modulus /MPa Poisson’s ratio

Q345E 7850 2.1e5 0.3

Fig. 5.   Finite element model of the bogie frame.
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deviation is around 10%, with a maximum deviation of 13% and an average deviation of 6.7%. However, under 
the free state, the results show larger deviations from the test results under different conditions, with deviations 
around 20%, a maximum deviation of 28%, and an average deviation of 23.7%. This indicates that there is a 
significant difference in the finite element modal calculation results under different constraint conditions. It is 
essential to simulate the actual boundary conditions as closely as possible to ensure the accuracy of the finite 
element model.

Modal frequency matching of bogie frame
Structural vibration is a superposition of modes. To prevent resonance and reduce amplification factors, it 
is necessary to consider the frequency matching relationships between excitation sources, the entire system, 
subsystems, and substructures. Through frequency planning, combined with finite element simulation and on-site 
testing, it is possible to comprehensively analyze the excitation frequencies of the bogie and their hierarchical 

Table 4.   Modal frequencies of the bogie frame under readiness and free-state.

Modal order Modal frequency in the load state /Hz Modal frequency in the free state /Hz Modal shape description

1 48.98 36.92 The frame torsion

2 82.80 64.44 The side beams lateral bending mode

3 84.17 64.97 The side beams vertical bending mode

4 102.57 76.69 The side beam horizontal bending 
mode

Fig. 6.   Modal shape diagram of bogie frame.

Table 5.   Statistical table of modal parameters for different operating conditions: test results versus finite 
element simulation results.

Modal shape 
description

AW0 reprofiled wheels 
before

AW0 reprofiled wheels 
after

AW3 reprofiled wheels 
before

AW3 reprofiled wheels 
after

Modal frequency in the 
free state

Modal frequency in 
the load state

The frame torsion 43.829 44.369 46.158 45.257 36.92 48.98

The side beams lateral 
bending mode 79.269 79.781 81.124 82.017 64.44 84.17

The side beams vertical 
bending mode 80.579 82.014 83.157 81.278 64.97 82.80

The side beam 
horizontal bending 
mode

93.667 92.357 95.458 94.285 76.69 102.57
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frequencies. This helps to clarify the frequency isolation status of the bogie and its major mass components, 
providing a reference for structural optimization design. In this analysis, the bogie frame is taken as an example 
to analyze the matching design between the bogie and wheel polygons, and the impact of different loading 
conditions on matching design is discussed.

Main structure and known forced excitation relationship
Based on frequency isolation criteria
According to vibration theory calculations, it is understood that severe vibrations will occur in a system at its 
resonance frequency. However, in practical systems, intense vibrations occur not only precisely at the resonance 
frequency. When the excitation frequency falls within a region near the calculated resonance frequency, the 
system will undergo resonance. This region is referred to as the resonance region. The range of the resonance 
region is typically determined using the half-power bandwidth. This is illustrated by the vibrational response of 
a single-degree-of-freedom system, as shown in Fig. 7. The system’s vibration transmissibility T(f ) reaches its 
maximum at frequency f = fn , with an amplification factor Q = 1/(2ζ ).

From Fig. 7, it can be observed that regardless of how damping varies, when the natural frequency fn of the 
system is at a certain distance from the excitation frequency f  , the system’s vibrational response rapidly decreases. 
Therefore, for a single-degree-of-freedom system, the isolation criterion between the excitation frequency and 
the system frequency, based on the half-power bandwidth, can be formulated as:

For multi-degree-of-freedom systems, they can be transformed into a series of single-degree-of-freedom 
systems. In this analysis, the focus is primarily on the first 3–5 modes of each hierarchical system. Similarly, 
for multi-degree-of-freedom systems, the isolation criterion between the excitation frequency and the system 
frequency, based on the half-power bandwidth, can be formulated as:

In the equation: f1 is the first-order mode of the system; fn and fn+1 are the natural frequencies of adjacent 
two-order system modes, and fn < fn+1.

For local structures with high natural frequencies exceeding 1000 Hz, and relatively low inherent damping, 
achieving the criterion in the above equation can be computationally expensive. Therefore, in this analysis, 
the isolation criterion between the excitation frequency and the system frequency for high-frequency local 
structures is:

Based on vibration isolation theory
In terms of vibration transmission direction, isolation measures can be classified into two categories: active 
isolation and passive isolation. Active isolation aims to isolate the vibration source, meaning an object that is itself 
a source of vibration. To reduce its impact on surrounding equipment, it is isolated from the entire foundation. 
Passive isolation, on the other hand, aims to isolate the response. For instruments or devices that allow only 
small vibrations, and to prevent the influence of surrounding vibration sources, they are isolated from the entire 
foundation. For both types of isolation, the transmissibility can be expressed as:

(9)f < 0.7fn or f > 1.414fn

(10)f < 0.7f1 or 1.414fn < f < 0.7fn+1, n = 1, 2, . . .

(11)f < 0.85f1 or 1.15fn < f < 0.85fn+1, n = 1, 2, · · ·

Fig. 7.   Dynamic response curve.
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In the equation, � is the ratio of the excitation frequency f  to the modal frequency f0 , and ζ is the modal 
damping ratio.

Based on extensive engineering experience, the modal damping ratio for rail vehicle structures typically ranges 
from 0.1 to 5%. Figure 8 illustrates the transmissibility of existing rail vehicle structures with different damping 
ratios. The figure is divided into two regions. In the vicinity of point � = 1 , structures with different damping 
ratios exhibit pronounced resonance regions. However, as the frequency ratio � surpasses a certain range, the 
damping ratio no longer affects the vibration transmissibility of rail vehicles. If the difference in transmissibility 
for different modal damping ratios is within 3%, their response to frequency ratio changes is relatively small, 
as shown in Fig. 8.

Substituting Eqs. (13) into (12), we obtain 0.82 < � < 1.20 , representing a more effective isolation:

At this stage, despite adjustments to the modal damping ratio, relatively high levels of transmissibility may 
still occur, indicating ineffective vibration isolation. Therefore, in engineering applications, it is advisable to avoid 
having the excitation frequency fall within this critical range.

Frequency management based on wheel polygons
With the continuous increase in train speed and running mileage, the operational boundary conditions of rail 
vehicles are constantly changing. During train operation, wheel-rail excitation and the resulting vibrational 
response still play a significant role. The wheel surface roughness (wheel polygons) is one of the main influencing 
factors of wheel-rail excitation. In this analysis, we mainly consider wheel polygons as the primary dynamic 
excitation load affecting the bogie.

In the process of wheel rolling along the steel rail, the excitation frequency generated by the i-th order polygon 
of the wheel can be calculated using Eq. (15).

In the equation, v represents the train speed in km/h, ri is the wheel polygon order, and D is the semi-worn 
diameter of the wheel (0.84 m).

In this analysis, considering the design speed of the train is 120kmh, it is mainly concerned that the train 
traction motor is in the characteristic interval speed, that is, the train speed interval is 100kmh to 120kmh, and 
the motor output torque is low at this time, and the vehicle is used to running at a uniform speed under this 
speed level.

This analysis focuses on the modal frequencies of the bogie and its various components under different 
states of maintenance. The order characteristics of different wheels exhibits varying distributions. Typically, the 
order distribution for a well-maintained wheel is dominated by low-order components up to the third order. 
The histogram depicting the distribution of wheel roughness levels, from low to high order, closely follows the 
limit curve specified by ISO 3095. As the order increases, the roughness level decreases. This study primarily 
examines the impact of the first five orders of wheel polytonality. The frequency at which these orders occur at 
specific speeds is detailed in Table 6.

(12)η =

√

1+ 4ζ 2�2
(

1− �2
)2

+ 4ζ 2�2

(13)η0.1% − η5% > 3%η5%

(14)f < 0.82 f0 or f > 1.20 f0

(15)fi =
v × ri

3.6× π × D

Fig. 8.   Vibration transmissibility of rail vehicles.
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In this analysis, the frequency planning management object includes only the bogie frame structure. Based on 
the operational modal test results under the conditions of “Before Wheelset AW0” and “Before Wheelset AW3,” 
it is observed that the main frequencies of the bogie frame are below 100 Hz. This allows the use of Eq. (11) as 
the basis for frequency planning.

Considering the dynamic excitation frequencies of wheel polygons at different train speeds, taking the train 
speed as 100 km/h as an example, the excitation frequencies for wheel polygons at the 3rd, 4th, and 5th orders 
are 31.59 Hz, 42.10 Hz, and 52.63 Hz, respectively. Under the “Before Wheelset AW0” condition, the first modal 
frequency of the bogie frame is 43.829 Hz. It does not satisfy Eq. (11) under the excitation of wheel polygons 
at the 4th and 5th orders. Under the excitation of wheel polygons at the 3rd order, it does not satisfy Eq. (13). 
In the “Before Wheelset AW3” condition, the first modal frequency of the bogie frame is 46.158 Hz. Under the 
excitation of wheel polygons at the 4th and 5th orders, it does not satisfy Eq. (11), without interference from the 
frequency of wheel polygons at the 3rd order.

Therefore, as the vehicle’s load increases, the changes in the boundary conditions of the bogie affect the 
elastic modal frequencies of the frame. This may have an impact on modal matching design and could better 
satisfy frequency management Equations. This provides a new direction for further research by other scholars 
in modal matching design.

Conclusion
For the subway bogie frame, there is little difference in modal frequencies for frame torsion, lateral bending of 
the side beams, vertical bending of the frame cross beams, and deformation of the horizontal plane of the side 
beams between the conditions “before wheel reprofiling” and “after wheel reprofiling.” Variations in these modal 
frequencies are within ± 2%, indicating that the wheelset has minimal impact on the modal characteristics of the 
bogie frame. Under different loading conditions, the modal frequencies corresponding to the “AW3 after wheel 
reprofiling” condition are generally higher than those for the “AW0 before wheel reprofiling” condition. This 
is attributed to the increased load affecting the stiffness of the bogie air springs and other boundary constraint 
states.

Under various loading and wheel reprofiling conditions, the simulated results of the bogie frame in the 
constrained state closely match the test results under different conditions, with discrepancies of approximately 
10%, a maximum deviation of 13%, and an average deviation of 6.7%. However, in the free state, the simulation 
results deviate significantly from the test structures under different conditions, with discrepancies of around 
20%, a maximum deviation of 28%, and an average deviation of 23.7%. This indicates that there are significant 
differences in finite element modal calculation results under different constraint conditions, and efforts should 
be made to simulate realistic boundary constraint states to ensure the accuracy of the finite element model.

Combining frequency isolation criteria and vibration isolation theory can provide a basis for the frequency 
planning of the bogie frame. When the vehicle load increases, changes in the boundary conditions of the bogie 
affect the elastic modal frequencies of the frame. This may have implications for modal matching design and 
could better satisfy frequency management Equations. This provides a new direction for further research by 
other scholars in modal matching design.

Despite providing useful insights into the modal characteristics of the bogie frame, there are several limitations 
that need to be acknowledged. Firstly, the load conditions used in the experiments (such as AW0 and AW3) are 
specific and may not fully represent the load distribution encountered in all vehicle load environments. Secondly, 
the discrepancies between the simulation results and the experimental results indicate that the current finite 
element model may not completely capture all the intricate details of the actual bogie frame. Additionally, while 
this study focuses on the conditions before and after wheelset reprofiling, it does not consider other factors that 
might influence the modal characteristics, such as wheel diameter differences.

Compared to relevant previous studies, the results of this study have a certain degree of generality, particularly 
regarding the relationship between modal frequencies and load changes. However, given the differences between 
different vehicle models and manufacturers, the direct application of the study’s results may require adjustments 
based on specific circumstances. To enhance the general applicability of the research findings, future studies 
could consider a wider range of boundary conditions and more complex models to more accurately reflect real-
world operating conditions.

Table 6.   Dynamic excitation of different wheel non-rounding orders at different vehicle speeds.

Order

Vehicle speed/(km/h)

100 (Hz) 110 (Hz) 120 (Hz)

1 10.53 11.58 12.63

2 21.05 23.16 25.26

3 31.59 34.74 37.89

4 42.10 46.31 50.52

5 52.63 57.89 63.15
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Data availability
The data that support the findings of this study are available on request from the corresponding author upon 
reasonable request. Coinv DASP V11, http://​www.​coinv.​com/​node/​id/​50463​232.​html; MATLAB 2022b, https://​
ww2.​mathw​orks.​cn/; HyperWorks 2019X https://​www.​altair.​com.​cn/.
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