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Topological indices are the numbers that remain constant under graph automorphism. Topological 
indices describe a network’s connectivity, structure, and topological characteristics. These indices have 
many applications in crisp graphs. However, in many cases, it is observed that some situations can’t 
be described using the idea of crisp graphs. So, to overcome this issue, the need to define topological 
indices for fuzzy and bipolar fuzzy graphs arises. The F-index, or the Forgotten Index, is a significant 
topological index. A bipolar fuzzy graph with two opposite-sided opinions of both the edges and 
vertices measures the impreciseness or uncertainties of the edges and vertices along the positive and 
negative sides. In this article, we have presented the Forgotten Index for bipolar fuzzy graphs. Then, 
we have proved some theorems regarding the F-index of numerous types of bipolar fuzzy graphs, 
such as regular bipolar fuzzy graphs, complete bipolar fuzzy graphs, etc., the bounds of the F-index 
in bipolar fuzzy graphs, and the relationships of the F-index with other topological indices in bipolar 
fuzzy graphs. We have applied the proposed topological index, the F-index for bipolar fuzzy graphs, 
to matrimonial websites to find potential life partners based on compatibility and discussed the 
application of the Forgotten Index in gene regulatory networks.
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Background and literature review
A crisp set is a well-defined group of distinct objects. In real life, we come across many situations where we 
cannot describe every situation with the concept of crisp sets. To overcome this issue, Zadeh1 came up with the 
concept of fuzzy sets in 1965, revolutionizing the idea of set theory. Rosenfield2 presented the notion of fuzzy 
graphs in 1975 and discussed their applications. The notion of bipolar fuzzy sets was first developed by Zhang3 in 
1994. An expansion of Zadeh’s fuzzy set theory with a membership value range of [-1, 1] is called a bipolar fuzzy 
set. In a bipolar fuzzy set, an element with membership degree 0 indicates that it does not relate to the associated 
property; an element with membership degree (0,1] indicates that it partially satisfies the property; and an 
element with membership degree [-1,0) indicates that it partially satisfies the underlying counter-property. 
Akram4 proposed the concept of bipolar fuzzy graphs in 2011. When there are positive and negative thinking 
sides as effect and side effect, gain and loss, friendship and animosity, collaborative and competitive, etc., then 
bipolar fuzzy sets and bipolar fuzzy graphs play a significant role in real-life decision-making problems. The 
mathematical definition of a bipolar fuzzy graph is provided in Definition 2.4. in Sect. "Preliminaries". For better 
understanding, let us consider an example of a graphical representation of a students’ network. A small group of 
students can form a network among them. There exist two conflicting types of characteristics among them. One 
is friendship, and the other one is rivalry or animosity. A bipolar fuzzy graph can easily demonstrate this network 
and the two contrasting characteristics. Such a bipolar fuzzy graph demonstrating a students’ network formed 
by a small group of students is provided in Fig. 1. Here, the vertices and edges represent the students and their 
relationships, respectively. The positive and negative membership of a particular vertex demonstrates the specific 
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student’s nature of friendship and rivalry. Similarly, the positive and negative membership value of a particular 
edge depicts the friendship and animosity or rivalry, respectively, between the two students, represented by 
the end vertices of that edge. A few other examples of bipolar fuzzy graphs can be the graphical representation 
of a network formed by different mutual fund companies where growth and risk factors, two opposite-sided 
characters occur, a graphical demonstration of the network formed by various countries where friendship 
and rivalry both occur, etc. Thus, using the concept of bipolar fuzzy graphs, one can easily demonstrate two 
conflicting opinions.

In 2013, Akram5 defined the cardinality of the edge set, vertex set, neighborhood degree of bipolar fuzzy 
graphs, and bipolar fuzzy directed graphs. In the same year, Yang et al.6 presented the generalized idea of different 
kinds of bipolar fuzzy graphs. Akram and Karunambigai7 defined distance, eccentricity, diameter, radius, etc. 
in bipolar fuzzy graphs in 2011. In the same article, they also gave the idea of centered bipolar fuzzy graphs and 
discussed their properties. In 2013, Akram5 developed the notion of neighborly irregular, highly irregular, totally 
irregular, and highly totally irregular bipolar fuzzy graphs and discussed bipolar fuzzy influence graphs in the 
same article. Poulik and Ghorai8 defined the degrees of the vertices in bipolar fuzzy graphs and bipolar fuzzy 
digraphs in 2013. Akram and Farooq9 introduced cut-vertices, bridges, cycles, and trees in bipolar fuzzy graphs 
in 2016 and discussed their properties. Akram et al.10 introduced different graph operations, such as strong 
product, cartesian product, etc., on m-polar fuzzy graphs in the same year. Akram11 defined several kinds of 
bipolar and m-polar fuzzy graphs and discussed their applications in 2018. In the same year, Ghorai and Pal12 
introduced various degrees and defined regular bipolar fuzzy graphs. In 2020, Poulik and Ghorai13 proposed 
the Connectivity index for bipolar fuzzy graphs and proved some theorems. Akram et al.14 discussed decision-
making methods in bipolar fuzzy graphs and discussed their applications in real-life scenarios in 2021. Poulik 
and Ghorai15 introduced the Wiener Index and Wiener Absolute Index and compared them to the Connectivity 
Index the same year. Binu et al.16 discussed the connectivity status of bipolar fuzzy graphs and several bipolar 
fuzzy subgraphs in 2021.

A mathematical invariant that provides information on a network or graph’s connectivity, construction, or 
other topological features is called a topological index. It is a measure that helps us comprehend the network’s 
characteristics and behavior. Topological indices have been developed using various network features, including 
nodes’ degrees, nodes’ distances, eccentricity, and other structural metrics. During his research on the boiling 
point of paraffin, Wiener17 first developed a distance-based topological index, the Wiener Index, in 1947. In 
mathematics, numerous vertex-degree-based topological indices have been developed, and their general 
formula is TI(∆) =

∑
xy∈Λ f (d(x), d(y)). The 1st and 2nd Zagreb Indices are two of the former topological 

indices that were presented by Gutman and Trinajstic18 in 1972. The Randic Index was developed by Randic19 
in 1975. Shirdel et al.20 proposed another degree-based topological index, the Hyper Zagreb Index, in 2013. 
Gutman et al.21 presented the idea of the Reciprocal Randic Index in 2014. The Forgotten Index, or F-index, was 
developed by Furtula and Gutman22 in 2015. In 2021, Gutman23 presented the idea of the Sombor Index and 
gave a geometrical interpretation of the Sombor index. In many real-life situations, many circumstances cannot 
be handled using crisp graphs. So, topological indices had to be introduced for fuzzy and bipolar fuzzy graphs. 
Binu et al.24 introduced the Wiener Index for fuzzy graphs in 2020. Islam et al. commented on the Wiener Index25 
for fuzzy graphs and discussed its application in the same year. Poulik and Ghorai13 presented the Connectivity 
Index for bipolar fuzzy graphs in 2020 and proved some properties. The same authors15 developed the Wiener 
Index and Wiener Absolute Index the following year and compared them to the Connectivity Index. Islam and 
Pal presented the idea of the 1st Zagreb Index26 for fuzzy graphs in the same year. The Randic Index for bipolar 
fuzzy graphs was developed by Poulik et al.27 in 2022. Islam and Pal discussed the properties of the F-index28 
for different graph operations and transformations for fuzzy graphs in 2023. Islam and Pal29 applied the Second 

Fig. 1.  A bipolar fuzzy graph representing a students’ network formed by a small group of students.
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Zagreb Index for fuzzy graphs in mathematical chemistry in 2023. Ahmed et al.30 utilized the idea of fuzzy 
topological indices for application in cybercrime problems in the same year. In the following year, Islam and 
Pal31 introduced a multiplicative version of the 1st Zagreb index in fuzzy graphs and applied it to crime analysis. 
Gutman et al.32 introduced the concept of the Elliptic Sombor Index and presented its geometric approach in 
2024. In the same year, Lal et al.33 used graph entropies and topological indices to apply to the Y-junctions of 
carbon nanotubes.

Research gaps and motivation
The application of topological indices in molecular and chemical graph theory, network theory, spectral graph 
theory, etc., is enormous. One of the earliest and most significant topological indices are the 1st and 2nd Zagreb 
Indices, which Gutman and Trinajstic18 developed in 1972. They used these degree-based topological indices 
to determine a conjugate system’s π-electron energy. These topological indices were followed by the F-index 
(Forgotten Index) introduction by Furtula and Gutman22 in 2015. The authors demonstrated that the 1st Zagreb 
Index and the F-index (Forgotten Index) had nearly identical entropy, acentric factor, and predictive ability, 
and the Forgotten Index obtained correlation coefficients higher than 0.95. As a result, this topological index is 
extremely helpful in molecular chemistry and network theory. These indices were defined for only crisp graphs. 
However, in real-life scenarios, there are some situations where the idea of crisp graphs cannot be implemented. 
So, the need to use fuzzy graphs or bipolar fuzzy graphs arises. So, researchers had to develop topological indices 
for fuzzy and bipolar fuzzy graphs. Binu et al.24 developed the Wiener Index for fuzzy graphs and provided 
various applications related to illegal immigration in 2020. The same authors16 discussed the connectivity status 
of fuzzy graphs in the following year. Researchers have introduced several topological indices for fuzzy graphs 
and are still working on this topic. Islam and Pal34 presented the Forgotten Index for fuzzy graphs in 2021. In 
situations with two contrasting opinions, like gain and loss, growth and risk factors, fortune and misfortune, 
likes and dislikes, etc., bipolar fuzzy sets and graphs become essential. Although much research has been done 
on topological indices for crisp and fuzzy graphs, not so much research has been done on the topological indices 
for bipolar fuzzy graphs. Topological indices have many real-life applications. Although topological indices 
were originally introduced for chemical structures, research is not limited to them. Islam and Pal34 applied the 
Forgotten Index to find the most influential researcher in the co-authorship network in 2021. The same authors28 
applied the Forgotten Index to Indian railway crimes and found the most crime-free and crime-centric railway 
routes in 2023. To overcome the research gap, Poulik et al.27 proposed the Randic Index for bipolar fuzzy graphs 
and applied it to the transmission network system between a few cities and a Wi-Fi network in a town. These 
research works encouraged us to extend the results for the Forgotten Index, to prove some new theorems, and 
to investigate new application areas. The Forgotten Index for bipolar fuzzy graphs can be applied to friendship 
networks, investment in stock markets, etc., where two contrasting opinions occur, like likes and dislikes, growth 
and risk factors, etc. These vast areas of application of topological indices and the large research gaps motivated 
us to develop the Forgotten Index for bipolar fuzzy graphs, discuss its properties, and apply it to matrimonial 
websites and gene regulatory networks.

Objective and significance of the article
As in real-life scenarios, sometimes decision-making cannot be performed using the concept of crisp graphs, so 
bipolar fuzzy graphs are of huge importance. These graphs use the degree of belongingness for the vertices and 
the edges to depict imprecise situations. Bipolar fuzzy graphs are in huge demand where there is an opposite 
or contrasting opinion. Our main objective is to introduce the Forgotten Index in bipolar fuzzy graphs, discuss 
its properties, and apply it to matrimonial websites and gene regulatory networks. In reality, finding potential 
partners is a very time-consuming and laborious job. We aim to apply the Forgotten Index to bipolar fuzzy graphs 
obtained from a group of males and females seeking life partners on matrimonial websites to find potential life 
partners based on compatibility, making the process easy and less time-consuming. The significance of this article 
is that the newly introduced Forgotten Index for bipolar fuzzy graphs can be applied to many real-life problems. 
Here, we have proved several theorems on regular bipolar fuzzy graphs, complete bipolar fuzzy graphs, star 
graphs, etc. We have also proved some theorems regarding the relationships of different topological indices with 
the F-index in bipolar fuzzy graphs. As we have applied the F-index to matrimonial websites and gene regulatory 
networks, similarly, one can apply this Forgotten Index to bipolar fuzzy graphs where contrasting indecisive 
opinions occur. Although this research article focuses on introducing the Forgotten Index in bipolar fuzzy 
graphs, several other topological indices for bipolar fuzzy graphs are also introduced in Section "Preliminaries". 
Using these topological indices, some interesting results can be proved in the future and used them in real-life 
applications.

Framework of the article
In this article, we have developed the Forgotten Topological Index for bipolar fuzzy graphs and proved some 
theorems on the newly introduced Forgotten Index. We have also applied the Forgotten Index to matrimonial 
websites to find potential life partners based on compatibility and gene regulatory networks to determine 
influential genes that play an important part in characterizing the overall activating or inhibiting properties 
of the network. The article is structured as follows. In Sect. "Introduction", we introduce the article with some 
background and literature review, discuss the research gaps and motivation, and talk about the significance and 
objectives of the article. In Sect. "Preliminaries", some basic definitions are discussed. Section "Forgotten index 
and its properties in bipolar fuzzy graphs" introduces the Forgotten Index in bipolar fuzzy graphs and provides 
proof of some exciting theorems regarding the Forgotten Index in bipolar fuzzy graphs. In Sect. "Applications", 
we have applied the newly presented Forgotten Index to matrimonial websites and gene regulatory networks, 
and in Sect. "Conclusion and future works", we have concluded the article with limitations and future works.
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Preliminaries
Here, we have provided some definitions that are needed to understand this article. We’ve also proposed the 
First, Second, and Hyper Zagreb Index, Sombor Index, and Reciprocal Randic Index for bipolar fuzzy graphs.

Definition 2.1  An ordered pair of two components is called a graph, where the first and second components are 
the vertex set and the edge set of the graph, respectively.

Definition 2.2  A bipolar fuzzy set S on a non-empty set W is given as, S = {(w, µP
S (w), µ

N
S (w)) : w ∈ W}, 

where µP
S : W → [0, 1] and µN

S : W → [−1, 0] are two mappings.5

Definition 2.3  Let W (̸= ϕ) be a set. Then the mapping D = (µP
D, µ

N
D) : W ×W → [0, 1]× [−1, 0] is said to be 

a bipolar fuzzy relation on W such that µP
D(bibj) ∈ [0, 1] and µN

D(bibj) ∈ [−1, 0], ∀bi, bj ∈ W .

Let C = (µP
C, µ

N
C ) be a bipolar fuzzy set on W (̸= ϕ). If D = (µP

D, µ
N
D) is a bipolar fuzzy relation on W, 

then D = (µP
D, µ

N
D) is a bipolar fuzzy relation on C = (µP

C, µ
N
C ) if µP

D(bibj) ≤ min{µP
C(bi), µ

P
C(bj)}, and 

µN
D(bibj) ≥ max{µN

C (bi), µ
N
C (bj)}, ∀bi, bj ∈ W .5

Definition 2.4  A BFG ∆ of a graph ∆∗ = (Γ,Λ) is a triplet (Γ, C,D), where C = (µP
C, µ

N
C ) is a bipolar fuzzy 

set in Γ and D = (µP
D, µ

N
D) is a bipolar fuzzy set in Λ ⊂ Γ× Γ such that µP

D(bibj) ≤ min{µP
C(bi), µ

P
C(bj)}, and 

µN
D(bibj) ≥ max{µN

C (bi), µ
N
C (bj)}, ∀bibj ∈ Λ. Here, C and D are bipolar fuzzy vertex set of Γ and bipolar fuzzy 

edge set of Λ, respectively.5

Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ). ∆ is called a bipolar fuzzy cycle if ∆∗ is a cycle and 
there is no edge bibj ∈ ∆ for which µP

D(bibj) is minimum and µN
D(bibj) is maximum.27

Let ∆ = (Γ, C,D) be a BFG and Γ = {b1, b2, ...., bn}. Then ∆ is called a star if bi has edges with every vertex 
of {b1, b2, ..., bi−1, bi+1, ..., bn} and each vertex of {b1, b2, ..., bi−1, bi+1, ..., bn} is a pendant vertex. bi is called 
the center of the star. Note that positive and negative membership values of an edge in a star can not be zero 
simultaneously. 

Definition 2.5  A BFG ∆′ = (Γ′, C ′, D′) is called a bipolar fuzzy subgraph of a BFG ∆ = (Γ, C,D) if Γ′ ⊆ Γ,Λ′ ⊆ Λ 
such that µP

C(bi) = µP
C ′(bi), µ

N
C (bi) = µN

C ′(bi), ∀bi ∈ Γ′ and µP
D(bibj) = µP

D′(bibj), µ
N
D(bibj) = µN

D′(bibj), for every 
edge bibj of ∆′.27

Definition 2.6  The open neighborhood degree or degree of a vertex bi in a BFG ∆ = (Γ, C,D) is defined as 
d(bi) =

(
dP (bi), d

N(bi)
)

,

where dP (bi) =
∑

bj :bi ̸=bj ,bibj∈Λ µ
P
D(bibj) and dN(bi) =

∑
bj :bi ̸=bj ,bibj∈Λ µ

N
D(bibj).5

If d(bi) = (p1, p2) , ∀bi ∈ Γ,∆ is called (p1, p2)− regular.27

If µP
D(bibj) = min

{
µP
C(bi), µ

P
C(bj)

}
 and µN

D(bibj) = max
{
µN
C (bi), µ

N
C (bj)

}
, ∀bi, bj ∈ Γ, then ∆ is called a 

complete BFG.27

A BFG ∆ = (Γ, C,D) is called a strong BFG if µP
D(bibj) = min

{
µP
C(bi), µ

P
C(bj)

}
 and 

µN
D(bibj) = max

{
µN
C (bi), µ

N
C (bj)

}
, for every edge bibj in ∆.5

Definition 2.7  The closed neighborhood degree of a vertex bi ∈ Γ in a BFG ∆ is denoted by d[bi] =
(
dP [bi], d

N [bi]
)

 
and is defined as dP [bi] = dP (bi) + µP

C(bi), and dN [bi] = dN(bi) + µN
C (bi).5

If d[bi] = (p1, p2) ∀bi ∈ Γ, then ∆ is called (p1, p2)-totally regular.27

Definition 2.8  The degree of a vertex bi of a BFDG ∆̃ = (Γ, C, D⃗) is d (bi) =
(
dP (bi) , d

N (bi)
)

, where 
dP (bi) =

∑
j:i ̸=j

(
µP
D

(−→
bibj

)
+ µP

D

(−→
bjbi

))
 and dN (bi) = 

∑
j:i ̸=j

(
µN
D

(−→
bibj

)
+ µN

D

(−→
bjbi

))
.27

Definition 2.9  Let ∆1 = (Γ1, C1, D1) and ∆2 = (Γ2, C2, D2) be two BFGs of the graphs ∆∗
1 = (Γ1,Λ1) and 

∆∗
2 = (Γ2,Λ2), respectively. ∆1 and ∆2 are called isomorphic if there exists a bijective mapping ψ : Γ1 → Γ2

, s.t. µP
C1
(bi) = µP

C2
(ψ(bi)), µN

C1
(bi) = µN

C2
(ψ(bi)), ∀bi ∈ Γ1; and µP

D1
(bibj) = µP

D2
(ψ(bi)ψ(bj)), µ

N
D1
(bibj) 

= µN
D2
(ψ(bi)ψ(bj)), ∀bibj ∈ Λ1.27

Definition 2.10  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) such that |Γ| = n. The First Zagreb Index 
of the BFG ∆ is introduced as,

	 FZIBF (∆) = (FZIPBF (∆), FZINBF (∆))

where,

	

FZIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

{
µP
C(bi)d

P (bi) + µP
C(bj)d

P (bj)
}

and

FZINBF (∆) =
∑

bibj∈Λ:1≤i ̸=j≤n

{
µN
C (bi)d

N(bi) + µN
C (bj)d

N(bj)
}
.
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Definition 2.11  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) such that |Γ| = n. The Second Zagreb 
Index of the BFG ∆ is defined as,

	 SZIBF (∆) = (SZIPBF (∆), SZINBF (∆))

where,

	

SZIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C(bi)d

P (bi)
}{

µP
C(bj)d

P (bj)
}]

and

SZINBF (∆) =
∑

bibj∈Λ:1≤i ̸=j≤n

[{
µN
C (bi)d

N(bi)
}{

µN
C (bj)d

N(bj)
}]
.

Definition 2.12  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) such that |Γ| = n. The Hyper Zagreb 
Index of the BFG ∆ is given as,

	 HZIBF (∆) = (HZIPBF (∆), HZINBF (∆))

where,

	

HZIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C(bi)d

P (bi)
}
+
{
µP
C(bj)d

P (bj)
}]2 and

HZINBF (∆) =
∑

bibj∈Λ:1≤i ̸=j≤n

[{
µN
C (bi)d

N(bi)
}
+
{
µN
C (bj)d

N(bj)
}]2

.

Definition 2.13  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) such that |Γ| = n. The Sombor Index of 
the BFG ∆ is defined as,

	 SOBF (∆) = (SOP
BF (∆), SON

BF (∆))

where,

	

SOP
BF (∆) =

∑
bibj∈Λ:1≤i̸=j≤n

√[{
µP
C (bi) dP (bi)

}2
+
{
µP
C (bj) dP (bj)

}2 ] and

SON
BF (∆) =

∑
bibj∈Λ:1≤i̸=j≤n

√[{
µN
C (bi) dN (bi)

}2
+
{
µN
C (bj) dN (bj)

}2 ]
.

Definition 2.14  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) such that |Γ| = n. The Reciprocal Randic 
Index of the BFG ∆ is provided as,

	 RRIBF (∆) = (RRIPBF (∆), RRINBF (∆))

where,

	

RRIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

√{
µP
C (bi) dP (bi)

}{
µP
C (bj) dP (bj)

}
and

RRINBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

√{
µN
C (bi) dN (bi)

}{
µN
C (bj) dN (bj)

}
.

Let us consider a bipolar fuzzy undirected graph whose membership values for the vertices and the edges are 
shown in Table 1. The topological indices defined in Sect. "Preliminaries" are calculated for the graph and 
demonstrated in Fig. 2.

The notations used in this article are given in Table 2.

Forgotten index and its properties in bipolar fuzzy graphs
Here, we have introduced the Forgotten Index for BFGs and proved some theorems.

Forgotten index in bipolar fuzzy graphs
The Forgotten Index, or F-index, is a vital and significant topological index. The application area of the Forgotten 
Index in molecular chemistry and real-life scenarios is enormous. The concept of topological indices started with 
the introduction of the Wiener Index17 way back in 1947. The first degree-based topological indices (First and 
Second Zagreb Index) were introduced in 1972 by Gutman and Trinajstic18. Although being such a significant 
topological index, the Forgotten Index was unnoticed, overlooked, or forgotten by researchers for many years. 
That is why, while developing the Forgotten Index in 2015, Furtula and Gutman22 gave such a name to this 
topological index.
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Furtula and Gutman22 developed the Forgotten Index for crisp graphs in 2015 and compared it with the First 
Zagreb Index. Islam and Pal34 introduced the Forgotten Index for fuzzy graphs in 2021 and applied it to co-
authorship networks. In this subsection, we have defined the Forgotten Index for bipolar fuzzy graphs.

Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) such that |Γ| = n. The Forgotten Index (F-Index) of 
the BFG ∆ is introduced as,

	 FIBF (∆) = (FIPBF (∆), F INBF (∆))

where,

	

FIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{µP
C(bi)d

P (bi)}2 + {µP
C(bj)d

P (bj)}2] and

FINBF (∆) =
∑

bibj∈Λ:1≤i ̸=j≤n

[{µN
C (bi)d

N (bi)}2 + {µN
C (bj)d

N (bj)}2].

Theorems on bounds of the forgotten index in bipolar fuzzy graphs
The bounds of the Forgotten Index are very important aspects as they provide valuable insights regarding 
networks’ character. The bounds, i.e., the lowest and highest values of the Forgotten Index, indicate the capability 
of the concerned bipolar fuzzy graphs. In this subsection, some theorems regarding the bounds of the Forgotten 
Index in bipolar fuzzy graphs are proved.

Fig. 2.  A bipolar fuzzy graph and the topological indices defined on it.

 

Vertices Membership values of the vertices Edges Membership values of the edges

1 (0.2,−0.5) (1, 2) (0.1,−0.1)

2 (0.7,−0.2) (1, 3) (0.2,−0.4)

3 (0.4,−0.6) (1, 4) (0.1,−0.4)

4 (0.3,−0.6) (1, 5) (0.2,−0.1)

5 (0.8,−0.1) (2, 3) (0.3,−0.2)

(2, 4) (0.3,−0.1)

(2, 5) (0.6,−0.1)

(3, 4) (0.1,−0.4)

(3, 5) (0.2,−0.1)

(4, 5) (0.3,−0.1)

Table 1.  Membership values of the vertices and the edges of the undirected graph shown in Fig. 2.
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Theorem 1  Let ∆ = (Γ, C,D) be a BFG such that |Γ| = n, δ1 = min
{
dP (bi)

}
, δ2 = 

min
{
|dN (bi)

∣∣}, λ1 = max
{
dP (bi)

}
 and λ2 = max

{
|dN (bi) |

}
, ∀bi ∈ Γ. Then,

	 δ21σ1 ≤ FIPBF (∆) ≤ λ2
1σ1, and δ22σ2 ≤ FINBF (∆) ≤ λ2

2σ2,

where,

	

σ1 =
∑

bibj∈Λ:1≤i̸=j≤n

[{µP
C(bi)}2 + {µP

C(bj)}2], and

σ2 =
∑

bibj∈Λ:1≤i ̸=j≤n

[{µN
C (bi)}2 + {µN

C (bj)}2].

Proof  We have,

	
dP (bi) =

∑
bj :bi ̸=bj ,bibj∈Λ

µP
D(bibj) and dN(bi) =

∑
bj :bi ̸=bj ,bibj∈Λ

µN
D(bibj).

Again, δ1 = min
{
dP (bi)

}
, δ2 = min

{
| dN (bi) |

}
, λ1 = max

{
dP (bi)

}
, and λ2 = max

{∣∣dN (bi)
∣∣} , ∀bi ∈ Γ.

So,

	

δ1 ≤ dP (bi) ≤ λ1

⇒ δ1{µP
C(bi)} ≤ dP (bi)µ

P
C(bi) ≤ λ1{µP

C(bi)}
⇒ δ21{µP

C(bi)}2 ≤ {µP
C(bi)d

P (bi)}2 ≤ λ2
1{µP

C(bi)}2.

Similarly, δ21{µP
C(bj)}2 ≤ {µP

C(bj)d
P (bj)}2 ≤ λ2

1{µP
C(bj)}2.

Therefore,

Notations Meanings

∆∗ Graph

Γ Vertex set of the graph ∆∗

Λ Edge set of the graph ∆∗

|Γ| Number of elements in Γ

|Λ| Number of elements in Λ

n Number of vertices in ∆∗

m Number of edges in ∆∗

s.t. Such that

BFG Bipolar fuzzy graph

BFDG Bipolar fuzzy directed graph

d(bi) = (dP (bi), d
N(bi)) Degree or open neighborhood degree of the vertex bi

d∆(bi) = (dP∆(bi), d
N
∆(bi)) Degree of the vertex bi for the graph ∆

d[bi] = (dP [bi], d
N [bi]) Closed neighborhood degree of the vertex bi

FZIBF (∆) =
(
FZIPBF (∆), FZINBF (∆)

)
First Zagreb Index of the bipolar fuzzy graph ∆

SZIBF (∆) =
(
SZIPBF (∆), SZINBF (∆)

)
Second Zagreb Index of the bipolar fuzzy graph ∆

HZIBF (∆) =
(
HZIPBF (∆), HZINBF (∆)

)
Hyper Zagreb Index of the bipolar fuzzy graph ∆

SOBF (∆) =
(
SOP

BF (∆), SON
BF (∆)

)
Sombor Index of the bipolar fuzzy graph ∆

RRIBF (∆) =
(
RRIPBF (∆), RRINBF (∆)

)
Reciprocal Randic Index of the bipolar fuzzy graph ∆

FIBF (∆) =
(
FIPBF (∆), F INBF (∆)

)
Forgotten Index or F-index of the bipolar fuzzy graph ∆

Table 2.  Notations used in this article and their meanings.
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δ21{µP
C(bi)}2 + δ21{µP

C(bj)}2 ≤ {µP
C(bi)d

P (bi)}2 + {µP
C(bj)d

P (bj)}2

≤ λ2
1{µP

C(bi)}2 + λ2
1{µP

C(bj)}2

⇒ δ21[{µP
C(bi)}2 + {µP

C(bj)}2] ≤ {µP
C(bi)d

P (bi)}2 + {µP
C(bj)d

P (bj)}2

≤ λ2
1[{µP

C(bi)}2 + {µP
C(bj)}2]

⇒
∑

bibj∈Λ:1≤i̸=j≤n

δ21[{µP
C(bi)}2 + {µP

C(bj)}2]

≤
∑

bibj∈Λ:1≤i̸=j≤n

[{µP
C(bi)d

P (bi)}2 + {µP
C(bj)d

P (bj)}2]

≤
∑

bibj∈Λ:1≤i̸=j≤n

λ2
1[{µP

C(bi)}2 + {µP
C(bj)}2]

⇒ δ21σ1 ≤ FIPBF (∆) ≤ λ2
1σ1, where σ1 =

∑
bibj∈Λ:1≤i ̸=j≤n

[{µP
C(bi)}2 + {µP

C(bj)}2]

Again, we have

	

δ2 ≤ |dN (bi) | ≤ λ2

⇒ −λ2 ≤ dN (bi) ≤ −δ2

⇒ −δ2{µN
C (bi)} ≤ dN (bi)µ

N
C (bi) ≤ −λ2{µN

C (bi)} [∵ µN
C (bi) ≤ 0]

⇒ δ22{µN
C (bi)}2 ≤ {µN

C (bi)d
N (bi)}2 ≤ λ2

2{µN
C (bi)}2 [∵ each side is non-negative].

Similarly, δ22{µN
C (bj)}2 ≤ {µN

C (bj)d
N (bj)}2 ≤ λ2

2{µN
C (bj)}2.

Therefore,

	

δ22{µN
C (bi)}2 + δ22{µN

C (bj)}2 ≤ {µN
C (bi)d

N (bi)}2 + {µN
C (bj)d

N (bj)}2

≤ λ2
2{µN

C (bi)}2 + λ2
2{µN

C (bj)}2

⇒ δ22[{µN
C (bi)}2 + {µN

C (bj)}2] ≤ {µN
C (bi)d

N (bi)}2 + {µN
C (bj)d

N (bj)}2

≤ λ2
2[{µN

C (bi)}2 + {µN
C (bj)}2]

⇒
∑

bibj∈Λ:1≤i̸=j≤n

δ22[{µN
C (bi)}2 + {µN

C (bj)}2]

≤
∑

bibj∈Λ:1≤i̸=j≤n

[{µN
C (bi)d

N (bi)}2 + {µN
C (bj)d

N (bj)}2]

≤
∑

bibj∈Λ:1≤i̸=j≤n

λ2
2[{µN

C (bi)}2 + {µN
C (bj)}2]

⇒ δ22σ2 ≤ FINBF (∆) ≤ λ2
2σ2, where σ2 =

∑
bibj∈Λ:1≤i ̸=j≤n

[{µN
C (bi)}2 + {µN

C (bj)}2]

Therefore,

	 δ21σ1 ≤ FIPBF (∆) ≤ λ2
1σ1, and δ22σ2 ≤ FINBF (∆) ≤ λ2

2σ2,

where,

	

σ1 =
∑

bibj∈Λ:1≤i̸=j≤n

[{µP
C(bi)}2 + {µP

C(bj)}2], and

σ2 =
∑

bibj∈Λ:1≤i ̸=j≤n

[{µN
C (bi)}2 + {µN

C (bj)}2].

□

Theorem 2  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ). Then,

	 FIPBF (∆) ≤ 2m(n− 1)2, and FINBF (∆) ≤ 2m(n− 1)2,

where, m be the no. of edges, and n be the no. of vertices in ∆.

Proof  As, ∆ is a BFG, so, 0 ≤ µP
C(bi) ≤ 1, 0 ≤ µP

C(bj) ≤ 1,−1 ≤ µN
C (bi) ≤ 0, and − 1 ≤ µN

C (bj) ≤ 0, ∀bi, bj ∈ Γ.
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We also have, 0 ≤ µP
D(bibj) ≤ 1, and −1 ≤ µN

D(bibj) ≤ 0, ∀bibj ∈ Λ.
Again, the no. of vertices in ∆ is n. So, each vertex is adjacent to a maximum of (n− 1) vertices.
Now,

	

dP (bi) =
∑

bj :bi ̸=bj ,bibj∈Λ

µP
D(bibj) ≤ (n− 1), ∀bi ∈ Γ

=⇒ µP
C(bi)d

P (bi) ≤ (n− 1) [∵ µP
C(bi) ≤ 1]

=⇒ {µP
C(bi)d

P (bi)}2 ≤ (n− 1)2 [∵ both the sides are non-negative].

Similarly, {µP
C(bj)d

P (bj)}2 ≤ (n− 1)2.

So,

	

{µP
C(bi)d

P (bi)}2 + {µP
C(bj)d

P (bj)}2 ≤ (n− 1)2 + (n− 1)2

=⇒ {µP
C(bi)d

P (bi)}2 + {µP
C(bj)d

P (bj)}2 ≤ 2(n− 1)2

=⇒
∑

bibj∈Λ:1≤i̸=j≤n

[
{µP

C(bi)d
P (bi)}2 + {µP

C(bj)d
P (bj)}2

]
≤

∑
bibj∈Λ:1≤i̸=j≤n

2(n− 1)2.

=⇒ FIPBF (∆) ≤ 2m(n− 1)2.

Again,

	

dN(bi) =
∑

bj :bi ̸=bj ,bibj∈Λ

µN
D(bibj) ≥ −(n− 1), ∀bi ∈ Γ

=⇒ µN
C (bi)d

N(bi) ≤ (n− 1) [∵ µN
C (bi) ≥ −1]

=⇒ {µN
C (bi)d

N(bi)}2 ≤ (n− 1)2 [∵ both the sides are non-negative].

Similarly, {µN
C (bj)d

N(bj)}2 ≤ (n− 1)2.

So,

	

{µN
C (bi)d

N(bi)}2 + {µN
C (bj)d

N(bj)}2 ≤ (n− 1)2 + (n− 1)2

=⇒ {µN
C (bi)d

N(bi)}2 + {µN
C (bj)d

N(bj)}2 ≤ 2(n− 1)2

=⇒
∑

bibj∈Λ:1≤i̸=j≤n

[
{µN

C (bi)d
N(bi)}2 + {µN

C (bj)d
N(bj)}2

]
≤

∑
bibj∈Λ:1≤i̸=j≤n

2(n− 1)2.

=⇒ FINBF (∆) ≤ 2m(n− 1)2.

∴ FIPBF (∆) ≤ 2m(n− 1)2, and FINBF (∆) ≤ 2m(n− 1)2. □

Theorem 3  Let ∆ = (Γ, C,D) be a BFG having n vertices. Then,

	

FIPBF (∆) ≤ (n− 1)2Ψ1, and FINBF (∆) ≤ (n− 1)2Ψ2, where,

Ψ1 =
∑

bibj∈Λ:1≤i̸=j≤n

[{µP
C(bi)}4 + {µP

C(bj)}4], and

Ψ2 =
∑

bibj∈Λ:1≤i̸=j≤n

[{µN
C (bi)}4 + {µN

C (bj)}4].

Proof  Let, Γ = {b1, b2, ...., bn}. Clearly, each vertex of ∆ has atmost (n− 1) adjacent vertices.

Now,

	

dP (bi) =
∑

bj :bi ̸=bj ,bibj∈Λ

µP
D(bibj) ≤ (n− 1)µP

C(bi) and

dN(bi) =
∑

bj :bi ̸=bj ,bibj∈Λ

µN
D(bibj) ≥ (n− 1)µN

C (bi).

Now,
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FIPBF (∆)

=
∑

bibj∈Λ:1≤i̸=j≤n

[{µP
C(bi)d

P (bi)}2 + {µP
C(bj)d

P (bj)}2]

≤
∑

bibj∈Λ:1≤i̸=j≤n

[{µP
C(bi)(n− 1)µP

C(bi)}2 + {µP
C(bj)(n− 1)µP

C(bj)}2]

= (n− 1)2
∑

bibj∈Λ:1≤i ̸=j≤n

[{µP
C(bi)}4 + {µP

C(bj)}4].

∴ FIPBF (∆) ≤ (n− 1)2
∑

bibj∈Λ:1≤i̸=j≤n[{µP
C(bi)}4 + {µP

C(bj)}4].

Similarly,

	
FINBF (∆) ≤ (n− 1)2

∑
bibj∈Λ:1≤i ̸=j≤n

[{µN
C (bi)}4 + {µN

C (bj)}4].

Therefore,

	

FIPBF (∆) ≤ (n− 1)2Ψ1, and FINBF (∆) ≤ (n− 1)2Ψ2, where,

Ψ1 =
∑

bibj∈Λ:1≤i̸=j≤n

[{µP
C(bi)}4 + {µP

C(bj)}4], and

Ψ2 =
∑

bibj∈Λ:1≤i̸=j≤n

[{µN
C (bi)}4 + {µN

C (bj)}4].

□

Theorem 4  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) s.t. ∆ is a cycle and |Γ| = n. Then, FIPBF (∆) ≤ 8n 
and FINBF (∆) ≤ 8n.

Proof  Let, Γ = {b1, b2, b3, ...., bn}.

As ∆ is a cycle, so every vertex has exactly two adjacent vertices, and |Λ| = n.
Now,

	

dP (bi)

=
∑

bj :bi ̸=bj ,bibj∈Λ

µP
D(bibj)

≤ 2.1 [∵ µP
D(bibj) ≤ 1, ∀bibj ∈ Λ]

⇒ dP (bi) ≤ 2.

∴ dP (bi) ≤ 2, ∀bi ∈ Γ.

Similarly,

	

dN(bi)

=
∑

bj :bi ̸=bj ,bibj∈Λ

µN
D(bibj)

≥ 2.(−1) [∵ µN
D(bibj) ≥ (−1), ∀bibj ∈ Λ]

⇒ dN(bi) ≥ (−2).

∴ dN(bi) ≥ (−2), ∀bi ∈ Γ.

Again, as µN
C (bi) ≥ (−1) and dN(bi) ≥ (−2), so µN

C (bi)d
N(bi) ≤ 2, ∀bi ∈ Γ.

Now,

	

FIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

≤
∑

bibj∈Λ:1≤i̸=j≤n

[
{1.2}2 + {1.2}2

]

= 8n.
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∴ FIPBF (∆) ≤ 8n.

Similarly, we can prove that, FINBF (∆) ≤ 8n.

	 ∴ FIPBF (∆) ≤ 8n and FINBF (∆) ≤ 8n.

□

Theorem 5  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ), s.t. ∆ is a star, and |Γ| = n. Then, 
FIPBF (∆) ≤ (n− 1)(n2 − 2n + 2) and FINBF (∆) ≤ (n− 1)(n2 − 2n + 2).

Proof  Let, Γ = {b1, b2, b3, ...., bn} and b1 be the center of the star ∆.

As ∆ is a star, the center is adjacent to every other vertex, and every vertex except the center is a pendant 
vertex, and |Λ| = (n− 1).

Clearly, µP
C(bi) ≤ 1, ∀bi ∈ Γ, dP (b1) ≤ (n− 1), dP (bi) ≤ 1, ∀bi ∈ {b2, b3, ..., bn}; and µN

C (bi) ≥ −1, ∀bi ∈ Γ, 
dN(b1) ≥ −(n− 1), dN(bi) ≥ −1, ∀bi ∈ {b2, b3, ..., bn}. 

Now,

	

FIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

= [
{
µP
C (b1) d

P (b1)
}2

+
{
µP
C (b2) d

P (b2)
}2]

+

[
{
µP
C (b1) d

P (b1)
}2

+
{
µP
C (b3) d

P (b3)
}2]

+ ......+

[
{
µP
C (b1) d

P (b1)
}2

+
{
µP
C (bn) d

P (bn)
}2]

[(n− 1)terms]
≤ (n− 1)[{1.(n− 1)}2 + {1.1}2]
= (n− 1)(n2 − 2n + 2).

∴ FIPBF (∆) ≤ (n− 1)(n2 − 2n + 2).

Similarly, FINBF (∆) ≤ (n− 1)(n2 − 2n + 2).

	 ∴ FIPBF (∆) ≤ (n− 1)(n2 − 2n + 2) and FINBF (∆) ≤ (n− 1)(n2 − 2n + 2).

□

Theorems on the forgotten index in different types of bipolar fuzzy graphs
Over the years, researchers have developed various characteristics, like completeness, regularity, etc., of bipolar 
guzzy graphs. Poulik et al.27 have proved several theorems regarding Randic Index for different types of bipolar 
fuzzy graphs. In this subsection, we have discussed several theorems on the Forgotten Index for regular BFG, 
complete BFG, strong BFG, isomorphic BFG, etc.

Theorem 6  Let ∆ = (Γ, C,D) be a connected BFG consisting of n vertices, and ∆′ = (Γ′, C ′, D′) be a BFG ob-
tained by deleting a vertex from ∆. Then,

	 FIPBF (∆) ≥ FIPBF (∆
′) and FINBF (∆) ≥ FINBF (∆

′).

Proof  Let, Γ = {b1, b2, ....., bn} and Γ′ = {b1, b2, ....., bn−1}.

∴ Γ′ ⊂ Γ =⇒ ∆′ is a bipolar fuzzy subgraph of ∆.
Therefore, µP

C(bi) = µP
C ′(bi), µN

C (bi) = µN
C ′(bi), µP

D(bibj) = µP
D′(bibj),

and µN
D(bibj) = µN

D′(bibj), ∀bi ∈ Γ′ and ∀bibj ∈ Λ′, where Λ′ is the set of edges in ∆′.
Now,

	

dP (bi) =
∑

bj :bi ̸=bj ,bibj∈Λ

µP
D(bibj) and dN(bi) =

∑
bj :bi ̸=bj ,bibj∈Λ

µN
D(bibj);

d′P (bi) =
∑

bj :bi ̸=bj ,bibj∈Λ′

µP
D′(bibj) and d′N(bi) =

∑
bj :bi ̸=bj ,bibj∈Λ′

µN
D′(bibj).

So,
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∑
bibj∈Λ:1≤i̸=j≤n

[
{µP

C(bi)d
P (bi)}2 + {µP

C(bj)d
P (bj)}2

]

≥
∑

bibj∈Λ′:1≤i̸=j≤(n−1)

[
{µP

C(bi)d
P (bi)}2 + {µP

C(bj)d
P (bj)}2

]

=
∑

bibj∈Λ′:1≤i̸=j≤(n−1)

[
{µP

C ′(bi)d
′P (bi)}2 + {µP

C ′(bj)d
′P (bj)}2

]
and

∑
bibj∈Λ:1≤i̸=j≤n

[
{µN

C (bi)d
N(bi)}2 + {µN

C (bj)d
N(bj)}2

]

≥
∑

bibj∈Λ′:1≤i̸=j≤(n−1)

[
{µN

C (bi)d
N(bi)}2 + {µN

C (bj)d
N(bj)}2

]

=
∑

bibj∈Λ′:1≤i ̸=j≤(n−1)

[
{µN

C ′(bi)d
′N(bi)}2 + {µN

C ′(bj)d
′N(bj)}2

]
.

Therefore,

	 FIPBF (∆) ≥ FIPBF (∆
′) and FINBF (∆) ≥ FINBF (∆

′).

□

Theorem 7  Let ∆ = (Γ, C,D)  be a complete BFG, s.t. the function C is constant. Then,

	 FIBF (∆) = (n(n− 1)3v41, n(n− 1)3v42) = n(n− 1)3(v41, v
4
2),

where n is the no. of vertices in ∆, and v1 = µP
C(bi), v2 = µN

C (bi), bi ∈ Γ.

Proof  As C is constant, and v1 = µP
C(bi), v2 = µN

C (bi), bi ∈ Γ,

so, v1 = µP
C(bi), v2 = µN

C (bi), ∀bi ∈ Γ.
Since ∆ is a complete BFG, then,

	

µP
D(bibj) = min{µP

C(bi), µ
P
C(bj)} = v1, and

µN
D(bibj) = max{µN

C (bi), µ
N
C (bj)} = v2, ∀bi, bj ∈ Γ.

Again, as ∆ is complete, and the no. of vertices in ∆ is n, so, there are 
(
n
2

)
= n(n−1)

2  edges, and every vertex in ∆ 
has exactly (n− 1) adjacent vertices.

Therefore,

	

dP (bi) =
∑

bj :bi ̸=bj ,bibj∈Λ

µP
D(bibj) = (n− 1)v1, and

dN(bi) =
∑

bj :bi ̸=bj ,bibj∈Λ

µN
D(bibj) = (n− 1)v2.

Therefore,

	

FIPBF (∆)

=
∑

bibj∈Λ:1≤i̸=j≤n

[
{µP

C(bi)d
P (bi)}2 + {µP

C(bj)d
P (bj)}2

]

=
n(n− 1)

2

[
{v1(n− 1)v1}2 + {v1(n− 1)v1}2

]

= n(n− 1)3v41.

So, FIPBF (∆) = n(n− 1)3v41

Similarly, FINBF (∆) = n(n− 1)3v42.
Therefore,

	 FIBF (∆) = (n(n− 1)3v41, n(n− 1)3v42) = n(n− 1)3(v41, v
4
2).

□
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Theorem 8  Let ∆ = (Γ, C,D) be a regular and totally regular BFG s.t. |Γ| = n, and between all pairs of vertices, 
there is an edge. If d (bi) = (p1, p2); and 

(
µP
C (bi) , µ

N
C (bi)

)
= (u1, u2) , bi ∈ Γ, then

	 FIBF (∆) = n(n− 1)(u21p
2
1, u

2
2p

2
2).

Proof  As ∆ is regular, so p1 = dP (bi) , p2 = dN (bi) , ∀bi ∈ Γ. Again, ∆ is totally regular BFG, so dP [bi] = t1 
(say), and dN [bi] = t2 (say), ∀bi ∈ Γ.

We know that, dP [bi] = dP (bi) + µP
C (bi) ⇒ t1 = p1 + µP

C (bi) ⇒ µP
C (bi) = t1 − p1, and 

dN [bi] = dN (bi) + µN
C (bi) ⇒ t2 = p2 + µN

C (bi) ⇒ µN
C (bi) = t2 − p2 ∀bi ∈ Γ.

Hence, C is constant function, and u1 = µP
C (bi) and u2 = µN

C (bi), ∀bi ∈ Γ. As |Γ| = n, and there exists an 
edge between all pairs of vertices in ∆, so there are exactly 

(
n
2

)
= n(n−1)

2  edges in ∆.
Now,

	

FIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

=
n(n− 1)

2

[
{u1p1}2 + {u1p1}2

]
= n(n− 1)u21p

2
1

and

	

FINBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µN
C (bi) d

N (bi)
}2

+
{
µN
C (bj) d

N (bj)
}2]

=
n(n− 1)

2

[
{u2p2}2 + {u2p2}2

]
= n(n− 1)u22p

2
2.

So, FIBF (∆) =
(
FIPBF (∆), F INBF (∆)

)
= n(n− 1)

(
u21p

2
1, u

2
2p

2
2

)
. □

Theorem 9  Let, ∆̃ = (Γ, C, D⃗) be a BFDG, such that |Λ| = m, and C is constant. If d (bi) = (p1, p2) and (
µP
C (bi) , µ

N
C (bi)

)
= (u1, u2) , ∀bi ∈ Γ. Then

	 FIBF (∆̃) = 2m(u21p
2
1, u

2
2p

2
2).

Proof  Since, |Λ| = m  and C is constant, so the no. of undirected edges is m.

Now,

	

FIPBF (∆̃)

=
∑

bibj∈Λ:1≤i̸=j≤n

[{µP
C(bi)d

P (bi)}2 + {µP
C(bj)d

P (bj)}2]

=
∑

bibj∈Λ:1≤i̸=j≤n

[{u21p21} + {u21p21}]

= m[2u21p
2
1]

= 2mu21p
2
1.

Similarly, FINBF (∆̃) = 2mu22p
2
2.

Therefore,

	 FIBF (∆̃) = (2mu21p
2
1, 2mu22p

2
2) = 2m(u21p

2
1, u

2
2p

2
2).

□

Theorem 10  Let ∆ = (Γ, C,D) be a regular BFG of the graph ∆∗ = (Γ,Λ) s.t. ∆∗ is an odd cycle, and |Γ| = n. If 
Γ = {b1, b2, · · · , bn} s.t. 

(
µP
C (bi) , µ

N
C (bi)

)
= (v1i, v2i), and 

(
µP
D (bibj) , µ

N
D (bibj)

)
= (e1, e2), where bibj ∈ Λ and 

1 ≤ i ̸= j ≤ n. Then,

	 FIBF (∆) = 8(e21
[
v11

2 + v12
2 + v13

2 + ...... + v1n
2
]
, e22

[
v21

2 + v22
2 + v23

2 + ...... + v2n
2
]
).

Proof  We have, if ∆ = (Γ, C,D) be a BFG of an odd cycle ∆∗ = (Γ,Λ), then ∆ is regular if and only if D is 
constant12.

Here, ∆ = (Γ, C,D) is a regular BFG of the odd cycle ∆∗ = (Γ,Λ), so D =
(
µP
D, µ

N
D

)
 is a constant function. 

But, 
(
µP
D (bibj) , µ

N
D (bibj)

)
= (e1, e2), where bibj ∈ Λ; so 

(
µP
D (bibj) , µ

N
D (bibj)

)
= (e1, e2) , ∀bibj ∈ Λ. As ∆∗ is a 
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cycle, each vertex in ∆ has exactly two incident edges. Again, as ∆ is regular, all the vertices have equal degrees. 
∴ d (bi) =

(
dP (bi) , d

N (bi)
)
= (2e1, 2e2) , ∀bi ∈ Γ.

Again we have, ∆∗ is a cycle and |Γ| = n. So, ∆ has exactly n edges.
Therefore,

	

FIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

=
∑

bibj∈Λ:1≤i̸=j≤n

[
{v1i2e1}2 + {v1j2e1}2

]

= 4e21
∑

bibj∈Λ:1≤i̸=j≤n

[
v1i

2 + v1j
2
]

= 4e21
[
(v11

2 + v12
2) + (v12

2 + v13
2) + (v13

2 + v14
2) + ...... + (v1n

2 + v11
2)
]

= 8e21
[
v11

2 + v12
2 + v13

2 + ...... + v1n
2
]

and

	

FINBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µN
C (bi) d

N (bi)
}2

+
{
µN
C (bj) d

N (bj)
}2]

=
∑

bibj∈Λ:1≤i̸=j≤n

[
{v2i2e2}2 + {v2j2e2}2

]

= 4e22
∑

bibj∈Λ:1≤i̸=j≤n

[
v2i

2 + v2j
2
]

= 4e22
[
(v21

2 + v22
2) + (v22

2 + v23
2) + (v23

2 + v24
2) + ...... + (v2n

2 + v21
2)
]

= 8e22
[
v21

2 + v22
2 + v23

2 + ...... + v2n
2
]
.

So, FIBF (∆) = 8(e21
[
v11

2 + v12
2 + v13

2 + ...... + v1n
2
]
, e22

[
v21

2 + v22
2 + v23

2 + ...... + v2n
2
]
).

□

Theorem 11  Let ∆ = (Γ, C,D) be a strong BFG of the graph ∆∗ = (Γ,Λ) having n vertices, s.t. ∆∗ is a cycle. Then, 
FIBF (∆) = 8n

(
u41, u

4
2

)
, where (u1, u2) =

(
µP
C (bi) , µ

N
C (bi)

)
, ∀bi ∈ Γ.

Proof  Let, Γ = {b1, b2, b3, ...., bn}. Since, ∆ is a strong BFG, and (u1, u2) = (µP
C(bi), µ

N
C (bi)), ∀bi ∈ Γ, so, 

µP
D(bibj) = min{µP

C(bi), µ
P
C(bj)} = u1 and µN

D (bibj) = max
{
µN
C (bi) , µ

N
C (bj)

}
= u2, ∀bibj ∈ Λ. Every vertex 

has exactly two incident edges, as ∆∗ is a cycle. Then, dP (bi) = 2u1 and dN (bi) = 2u2, ∀bi ∈ Γ. Again, as |Γ| = n 
and ∆∗ is a cycle, so there are exactly n edges in ∆. Then,

	

FIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

=
∑

bibj∈Λ:1≤i̸=j≤n

[
(2u21)

2 + (2u21)
2
]

=
∑

bibj∈Λ:1≤i̸=j≤n

[
8u41]

= 8nu41

and

	

FINBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µN
C (bi) d

N (bi)
}2

+
{
µN
C (bj) d

N (bj)
}2]

=
∑

bibj∈Λ:1≤i̸=j≤n

[
(2u22)

2 + (2u22)
2
]

=
∑

bibj∈Λ:1≤i̸=j≤n

[
8u42]

= 8nu42.

Therefore,

	 FIBF (∆) = 8n
(
u41, u

4
2

)
, where (u1, u2) =

(
µP
C (bi) , µ

N
C (bi)

)
, ∀bi ∈ Γ.

□
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Theorem 12  Let, ∆1 = (Γ1, C1, D1) and ∆2 = (Γ2, C2, D2) are two isomorphic bipolar fuzzy graphs of the graphs 
∆∗

1(Γ1,Λ1) and ∆∗
2(Γ2,Λ2), respectively. Then, FIPBF (∆1) = FIPBF (∆2) and FINBF (∆1) = FINBF (∆2).

Proof  As, ∆1 and ∆2 are isomorphic, so ∃ a bijective mapping ψ : Γ1 → Γ2, s.t. µP
C1
(bi) = µP

C2
(ψ(bi)), 

µN
C1
(bi) = µN

C2
(ψ(bi)), ∀bi ∈ Γ1; and µP

D1
(bibj) = µP

D2
(ψ(bi)ψ(bj)), µ

N
D1
(bibj) = µN

D2
(ψ(bi)ψ(bj)), ∀bibj ∈ Λ1.

Now,

	

dP∆1
(bi) =

∑
bj :bi ̸=bj ,bibj∈Λ1

µP
D1
(bibj)

=
∑

bj :bi ̸=bj ,bibj∈Λ1

µP
D2
(ψ(bi)ψ(bj))

=
∑

ψ(bj):ψ(bi) ̸=ψ(bj),ψ(bi)ψ(bj)∈Λ2

µP
D2
(ψ(bi)ψ(bj))

= dP∆2
(ψ(bi)).

Therefore,

	

FIPBF (∆1)

=
∑

bibj∈Λ1:1≤i̸=j≤n

[{
µP
C1

(bi) d
P
∆1

(bi)
}2

+
{
µP
C1

(bj) d
P
∆1

(bj)
}2]

=
∑

bibj∈Λ1:1≤i̸=j≤n

[{
µP
C2

(ψ(bi)) d
P
∆2

(ψ(bi))
}2

+
{
µP
C2

(ψ(bj)) d
P
∆2

(ψ(bj))
}2]

=
∑

ψ(bi)ψ(bj)∈Λ2:1≤i̸=j≤n

[{
µP
C2

(ψ(bi)) d
P
∆2

(ψ(bi))
}2

+
{
µP
C2

(ψ(bj)) d
P
∆2

(ψ(bj))
}2]

= FIPBF (∆2).

So, FIPBF (∆1) = FIPBF (∆2).

Similarly, FINBF (∆1) = FINBF (∆2).

	 ∴ FIPBF (∆1) = FIPBF (∆2) and FINBF (∆1) = FINBF (∆2).

□

Theorems on relationships of the forgotten index with some other topological indices in 
bipolar fuzzy graphs
Several topological indices have been developed over the decades. The establishment of relationships among 
them is very important. By finding the relationships among different topological indices, one can describe the 
characteristics of one topological index with the help of another topological index, compare different topological 
indices and discuss their effectiveness, and apply one topological index in the application area of the other 
topological index and see how it behaves there. In this subsection, we have proved some theorems regarding the 
relationships of different topological indices with the Forgotten Index in BFGs.

Theorem 13  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) s.t. |Γ| = n, and |Λ| = m. Then,

	

1

m
{SOP

BF (∆)}2 ≤ FIPBF (∆) ≤ {SOP
BF (∆)}2, and

1

m
{SON

BF (∆)}2 ≤ FINBF (∆) ≤ {SON
BF (∆)}2.

Proof  We have,

	

FIPBF (∆) =
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

=
∑

bibj∈Λ:1≤i̸=j≤n

[√{
µP
C (bi) dP (bi)

}2
+
{
µP
C (bj) dP (bj)

}2

]2

≤

[ ∑
bibj∈Λ:1≤i̸=j≤n

√{
µP
C (bi) dP (bi)

}2
+
{
µP
C (bj) dP (bj)

}2

]2

= {SOP
BF (∆)}2.

∴ FIPBF (∆) ≤ {SOP
BF (∆)}2.
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Similarly, we can prove that, FINBF (∆) ≤ {SON
BF (∆)}2.

From the Cauchy-Schwartz inequality, we get

	

( ∑
bibj∈Λ:1≤i̸=j≤n

12

)( ∑
bibj∈Λ:1≤i̸=j≤n

{√[{
µP
C (bi) dP (bi)

}2
+
{
µP
C (bj) dP (bj)

}2]}2
)

≥

( ∑
bibj∈Λ:1≤i̸=j≤n

(
1
)(√[{

µP
C (bi) dP (bi)

}2
+
{
µP
C (bj) dP (bj)

}2 ])
)2

⇒ m

( ∑
bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

)

≥

( ∑
bibj∈Λ:1≤i̸=j≤n

√[{
µP
C (bi) dP (bi)

}2
+
{
µP
C (bj) dP (bj)

}2 ]
)2

⇒ mFIPBF (∆) ≥ {SOP
BF (∆)}2

⇒ FIPBF (∆) ≥ 1

m
{SOP

BF (∆)}2.

Similarly, it can be proved that, FINBF (∆) ≥ 1
m{SO

N
BF (∆)}2.

Therefore,

	

1

m
{SOP

BF (∆)}2 ≤ FIPBF (∆) ≤ {SOP
BF (∆)}2, and

1

m
{SON

BF (∆)}2 ≤ FINBF (∆) ≤ {SON
BF (∆)}2.

□

Theorem 14  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) s.t. |Γ| = n, and |Λ| = m. Then,

	

1

2m
{FZIPBF (∆)}2 ≤ FIPBF (∆) ≤ {FZIPBF (∆)}2, and

1

2m
{FZINBF (∆)}2 ≤ FINBF (∆) ≤ {FZINBF (∆)}2.

Proof  We have, 0 ≤ µP
C(bi) ≤ 1, 0 ≤ µP

C(bj) ≤ 1,−1 ≤ µN
C (bi) ≤ 0,−1 ≤ µN

C (bj) ≤ 0, ∀bi, bj ∈ Γ, and 
0 ≤ µP

D(bibj) ≤ 1, −1 ≤ µN
D(bibj) ≤ 0, ∀bibj ∈ Λ.

	
So, dP (bi) =

∑
bj :bi ̸=bj ,bibj∈Λ

µP
D(bibj) ≥ 0, and dN(bi) =

∑
bj :bi ̸=bj ,bibj∈Λ

µN
D(bibj) ≤ 0.

Therefore, µP
C(bi)d

P (bi) ≥ 0, µP
C(bj)d

P (bj) ≥ 0, µN
C (bi)d

N(bi) ≥ 0, and µN
C (bj)d

N(bj) ≥ 0.

Now, for any two non-negative real numbers f and r, we have. f 2 + r2 ≤ (f + r)2.
Putting f = µP

C(bi)d
P (bi) and r = µP

C(bj)d
P (bj), we get,

	

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

≤
[{
µP
C (bi) d

P (bi)
}
+
{
µP
C (bj) d

P (bj)
}]2

⇒
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

≤
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}
+
{
µP
C (bj) d

P (bj)
}]2

≤

[ ∑
bibj∈Λ:1≤i̸=j≤n

{
µP
C (bi) d

P (bi) + µP
C (bj) d

P (bj)
}]2

⇒ FIPBF (∆) ≤ {FZIPBF (∆)}2.

Similarly, we can prove that, FINBF (∆) ≤ {FZINBF (∆)}2.

Again, for any two non-negative real numbers h and t, we have, 
(h− t)2 ≥ 0 ⇒ h2 + t2 ≥ 2ht ⇒ 2(h2 + t2) ≥ (h + t)2 ⇒

√
2
√
h2 + t2 ≥ (h + t).

Putting h = µP
C(bi)d

P (bi) and t = µP
C(bj)d

P (bj), we get,
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√
2

√{
µP
C (bi) dP (bi)

}2
+
{
µP
C (bj) dP (bj)

}2

≥
{
µP
C (bi) d

P (bi) + µP
C (bj) d

P (bj)
}

⇒
√
2

∑
bibj∈Λ:1≤i̸=j≤n

√{
µP
C (bi) dP (bi)

}2
+
{
µP
C (bj) dP (bj)

}2

≥
∑

bibj∈Λ:1≤i̸=j≤n

{
µP
C (bi) d

P (bi) + µP
C (bj) d

P (bj)
}

⇒
√
2SOP

BF (∆) ≥ FZIPBF (∆)

⇒
√
2
√
m
√
FIPBF (∆) ≥

√
2SOP

BF (∆) ≥ FZIPBF (∆) [From theorem 13]

⇒
√
2
√
m
√
FIPBF (∆) ≥ FZIPBF (∆)

⇒ FIPBF (∆) ≥ 1

2m
{FZIPBF (∆)}2.

Similarly, it can be proved that, FINBF (∆) ≥ 1
2m{FZINBF (∆)}2.

Therefore,

	

1

2m
{FZIPBF (∆)}2 ≤ FIPBF (∆) ≤ {FZIPBF (∆)}2, and

1

2m
{FZINBF (∆)}2 ≤ FINBF (∆) ≤ {FZINBF (∆)}2.

□

Theorem 15  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) s.t. |Γ| = n. Then,

	 FIPBF (∆) ≥ 2SZIPBF (∆), and FINBF (∆) ≥ 2SZINBF (∆).

Proof  For any two non-negative real numbers s and t, by applying A.M. ≥ G.M. on s2 and t2, we get, 
s2+t2

2 ≥ st ⇒ s2 + t2 ≥ 2st.

Putting s = µP
C(bi)d

P (bi) and t = µP
C(bj)d

P (bj), we get,

	

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2] ≥ 2

[{
µP
C (bi) d

P (bi)
}{

µP
C (bj) d

P (bj)
}]

⇒
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

≥ 2
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}{

µP
C (bj) d

P (bj)
}]

⇒ FIPBF (∆) ≥ 2SZIPBF (∆).

Similarly, it can be proved that, FINBF (∆) ≥ 2SZINBF (∆).

	 ∴ FIPBF (∆) ≥ 2SZIPBF (∆), and FINBF (∆) ≥ 2SZINBF (∆).

□

Theorem 16  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) s.t. |Γ| = n. Then,

	 FIPBF (∆) ≤ HZIPBF (∆), and FINBF (∆) ≤ HZINBF (∆).

Proof  We have, 0 ≤ µP
C(bi) ≤ 1, 0 ≤ µP

C(bj) ≤ 1,−1 ≤ µN
C (bi) ≤ 0,−1 ≤ µN

C (bj) ≤ 0, ∀bi, bj ∈ Γ, and 
0 ≤ µP

D(bibj) ≤ 1, −1 ≤ µN
D(bibj) ≤ 0, ∀bibj ∈ Λ.

	
So, dP (bi) =

∑
bj :bi ̸=bj ,bibj∈Λ

µP
D(bibj) ≥ 0, and dN(bi) =

∑
bj :bi ̸=bj ,bibj∈Λ

µN
D(bibj) ≤ 0.

Therefore, µP
C(bi)d

P (bi) ≥ 0, µP
C(bj)d

P (bj) ≥ 0, µN
C (bi)d

N(bi) ≥ 0, and µN
C (bj)d

N(bj) ≥ 0.

Now, for any two non-negative real numbers s and t, we have s2 + t2 ≤ (s + t)2.
Putting s = µP

C(bi)d
P (bi) and t = µP

C(bj)d
P (bj), we get,
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[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2] ≤ [{

µP
C (bi) d

P (bi)
}
+
{
µP
C (bj) d

P (bj)
}]2

⇒
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}2

+
{
µP
C (bj) d

P (bj)
}2]

≤
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}
+
{
µP
C (bj) d

P (bj)
}]2

⇒ FIPBF (∆) ≤ HZIPBF (∆).

Similarly, FINBF (∆) ≤ HZINBF (∆).

	 ∴ FIPBF (∆) ≤ HZIPBF (∆), and FINBF (∆) ≤ HZINBF (∆).

□

Theorem 17  Let ∆ = (Γ, C,D) be a BFG of the graph ∆∗ = (Γ,Λ) s.t. |Γ| = n, and |Λ| = m. Then,

	
FIPBF (∆) ≥ 2

m
{RRIPBF (∆)}2, and FINBF (∆) ≥ 2

m
{RRINBF (∆)}2.

Proof  We have, 0 ≤ µP
C(bi) ≤ 1, 0 ≤ µP

C(bj) ≤ 1,−1 ≤ µN
C (bi) ≤ 0,−1 ≤ µN

C (bj) ≤ 0, ∀bi, bj ∈ Γ, and 
0 ≤ µP

D(bibj) ≤ 1, −1 ≤ µN
D(bibj) ≤ 0, ∀bibj ∈ Λ.

	
So, dP (bi) =

∑
bj :bi ̸=bj ,bibj∈Λ

µP
D(bibj) ≥ 0, and dN(bi) =

∑
bj :bi ̸=bj ,bibj∈Λ

µN
D(bibj) ≤ 0.

Therefore, µP
C(bi)d

P (bi) ≥ 0, µP
C(bj)d

P (bj) ≥ 0, µN
C (bi)d

N(bi) ≥ 0, and µN
C (bj)d

N(bj) ≥ 0.

Now, for any two non-negative real numbers s and t, applying A.M. ≥ G.M., we get, s+t
2 ≥

√
st.

Putting s = µP
C(bi)d

P (bi) and t = µP
C(bj)d

P (bj), we get,

	

[{
µP
C (bi) d

P (bi)
}
+
{
µP
C (bj) d

P (bj)
}]

≥ 2
√{

µP
C (bi) dP (bi)

}{
µP
C (bj) dP (bj)

}

⇒
∑

bibj∈Λ:1≤i̸=j≤n

[{
µP
C (bi) d

P (bi)
}
+
{
µP
C (bj) d

P (bj)
}]

≥ 2
∑

bibj∈Λ:1≤i̸=j≤n

√{
µP
C (bi) dP (bi)

}{
µP
C (bj) dP (bj)

}

⇒ FZIPBF (∆) ≥ 2RRIPBF (∆)

⇒
√
2m

√
FIPBF (∆) ≥ FZIPBF (∆) ≥ 2RRIPBF (∆) [From theorem 14]

⇒
√
2m

√
FIPBF (∆) ≥ 2RRIPBF (∆)

⇒ FIPBF (∆) ≥ 2

m
{RRIPBF (∆)}2.

Similarly, we can prove that, FINBF (∆) ≥ 2
m{RRINBF (∆)}2.

	
∴ FIPBF (∆) ≥ 2

m
{RRIPBF (∆)}2, and FINBF (∆) ≥ 2

m
{RRINBF (∆)}2.

□
The relationships of the Forgotten Index with some other topological indices in a BFG ∆ are shown in Table 3.

Applications
Here, we have discussed a couple of real-life applications of the Forgotten Index for bipolar fuzzy graphs. This 
section is divided into two subsections. We have applied the Forgotten Index to matrimonial websites and 
gene regulatory networks in the Subsections "Application of the forgotten index in matrimonial websites" and 
"Application of the forgotten index in gene regulatory networks", respectively.

Application of the forgotten index in matrimonial websites
Matrimonial websites offer numerous benefits for individuals seeking life partners. Firstly, they provide a 
vast pool of potential matches, allowing users to connect with individuals they might not have encountered 
otherwise. These platforms also offer advanced search filters, enabling users to specify their preferences based 
on factors such as religion, ethnicity, education, and profession, thereby increasing the likelihood of finding 
compatible partners. Additionally, matrimonial websites facilitate communication and interaction between 
interested parties through messaging features, virtual chats, and video calls, fostering a comfortable and 
convenient environment for getting to know each other. Furthermore, these platforms often employ stringent 
security measures to ensure the safety and privacy of users’ personal information. Overall, matrimonial websites 
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streamline the process of finding a life partner, offering a convenient and effective solution for individuals 
seeking meaningful relationships.

When a person opens an account on a matrimonial website, they are asked to fill out a form where all the 
details about that person, like country, language, religion, hobby, education, occupation, etc., are asked; apart 
from that, the preferred details about the potential life partner that the person is looking for are also asked. 
Matrimonial websites suggest profiles that match the given criteria based on the preferences given by that person 
about the potential life partner.

For our convenience and better understanding, we assume there are profiles of ten women on a matrimonial 
website. Now let us consider a man, Sumit, who is looking for a compatible partner and opens an account on 
that matrimonial website. Here, the matchings and mismatchings of Sumit and these ten women are represented 
through a bipolar fuzzy graph having ten vertices representing those women, where the positive and negative 
membership degrees of the vertices represent, respectively, the matching and mismatching factors of a particular 
woman with Sumit. One thing to keep in mind is that while determining the membership values, every factor 
should not be treated equally. Factors like country, religion, language, occupation, etc., should be given more 
weight, and factors like hobbies, favorite sports, etc., should be given less weight. Similarly, the positive and 
negative degrees of membership of the edges represent the common matching and mismatching factors of two 
adjacent vertices. Let the names of those ten women be Sujata, Afsana, Puja, Mina, Deepti, Nafisa, Ranjita, 
Victoria, Bithika, and Ipsita, and these women are depicted through the vertices S, A, P, M, D, N, R, V, B and I, 
respectively. The bipolar fuzzy graph ∆, as mentioned above, is demonstrated in Fig. 3.

Positive and negative degrees of membership in a BFG have the opposite sign. Thus, although the positive 
and negative portions of the Forgotten Index have the same sign, their effects are opposite. Therefore, we must 
calculate the difference among the positive and negative portions of the Forgotten Indices of the vertex deleted 
bipolar fuzzy subgraphs of the BFG ∆, as shown in Fig. 3.

The positive and negative parts of the Forgotten Indices of the vertex deleted bipolar fuzzy subgraphs of the 
BFG given in Fig. 3 are calculated and are shown in Table 4.

From Table 4, it is clear that 
FIPBF (∆− V )− FINBF (∆− V ) > FIPBF (∆−N)− FINBF (∆−N) > FIPBF (∆− A)− FINBF (∆− A) >
FIPBF (∆−D)− FINBF (∆−D) > FIPBF (∆− S)− FINBF (∆− S) > FIPBF (∆− B)− FINBF (∆− B) >
FIPBF (∆−R)− FINBF (∆−R) > FIPBF (∆−M)− FINBF (∆−M) > FIPBF (∆− P )− FINBF (∆− P ) >
FIPBF (∆− I)− FINBF (∆− I), and FIPBF (∆− V )− FINBF (∆− V ) is the highest and 
FIPBF (∆− I)− FINBF (∆− I) is the lowest. So, when we consider the bipolar fuzzy graph given in Fig. 3, 
the order of compatibility is I > P > M > R > B > S > D > A > N > V , and I(Ipsita) and V(Victoria), 
respectively, have the highest and the least compatibility with Sumit.

Thus, using the Forgotten Index, matrimonial websites can suggest compatibility preferences to the persons 
seeking life partners so that they can contact each other and start a conversation.

Application of the forgotten index in gene regulatory networks
Gene Regulatory Networks (GRNs) describe the interactions between genes and their regulatory elements. 
These networks are crucial for understanding cellular processes and can be modeled mathematically to predict 
gene behavior under various conditions. These networks are usually represented through directed networks, 
where the direction between transcription factors and target nodes is indicated through directed edges. Some 
edges representing regulatory interactions can be bidirectional. Here, we assume that each gene can be in one 
of two states: active (on) or inactive (off); regulatory interactions can be either activating or inhibiting, and the 
state of a gene is influenced by the states of its regulators. In a gene regulatory network, genes (Γ) and regulatory 
interactions (Λ) are represented by the nodes and the edges, respectively, of the network. A gene regulatory 
network can be represented by a bipolar fuzzy graph. Here, for simplicity and convenience, we have considered 
an undirected network. Such a network is demonstrated by a BFG ∆1 in Fig. 4. The membership values of the 
vertices and the edges of the gene regulatory network, demonstrated in Fig. 4, are provided in Table 5.

Relationships of the forgotten index with Relationships

Sombor Index
1
m{SO

P
BF (∆)}2 ≤ FIPBF (∆) ≤ {SOP

BF (∆)}2,
and
1
m{SO

N
BF (∆)}2 ≤ FINBF (∆) ≤ {SON

BF (∆)}2.

First Zagreb Index
1
2m{FZIPBF (∆)}2 ≤ FIPBF (∆) ≤ {FZIPBF (∆)}2,
and
1
2m{FZINBF (∆)}2 ≤ FINBF (∆) ≤ {FZINBF (∆)}2.

Second Zagreb Index
FIPBF (∆) ≥ 2SZIPBF (∆),
and
FINBF (∆) ≥ 2SZINBF (∆).

Hyper Zagreb Index
FIPBF (∆) ≤ HZIPBF (∆),
and
FINBF (∆) ≤ HZINBF (∆).

Reciprocal Randic Index
FIPBF (∆) ≥ 2

m{RRIPBF (∆)}2,
and
FINBF (∆) ≥ 2

m{RRINBF (∆)}2.

Table 3.  The relationships of the forgotten index with some other topological indices.

 

Scientific Reports |        (2024) 14:28264 19| https://doi.org/10.1038/s41598-024-79295-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


In a gene regulatory network, the positive membership degree of a vertex indicates the extent to which a 
gene is actively involved in promoting a biological process, while the negative membership degree reflects the 
extent to which the gene inhibits or suppresses that process. The positive membership degree of an edge indicates 
the strength of an activating interaction between two genes, while the negative membership degree reflects the 
strength of an inhibitory interaction between them. The Forgotten Index for the graph ∆1 is calculated and 
is given by FBF (∆1) = (FP

BF (∆1), F
N
BF (∆1)) = (24.9294, 00.1837). The Forgotten Index’s positive and negative 

values indicate the network’s positive and negative regulatory influences. In a gene regulatory network, if the value 
of the positive part of the Forgotten Index is greater than the negative part, it implies increased gene activity and 
activation of gene expression, which can lead to cell growth, response to stimuli, etc. If the negative part of the 
Forgotten Index is more than the positive, it implies lesser gene activity preventing growth, response to external 
signals, etc. If the positive and negative part values are equal, it means stable gene activity. It is crucial for normal 
cellular functions and responses. We have calculated the difference between the network’s positive and negative 
values of the F-index. The higher the value, the more prominent the positive or activating regulatory influence 
is than the negative or inhibiting influence in the network. Clearly, FP

BF (∆1)− FN
BF (∆1) = 24.7457, which is 

significantly greater than 0. So, the overall positive or activating regulatory influences of ∆1 are significantly 
more prominent than the negative or inhibiting regulatory influences.

Now, we are to find out the genes that have the most influence on characterizing the networks’s higher 
positive or activating nature. We have calculated the Forgotten Index for all the vertex-deleted subgraphs of ∆1

, and computed the differences between the positive and negative parts of the Forgotten Indices. The values are 
provided in Table 6.

Bipolar fuzzy subgraphs FIPBF FINBF FIPBF − FINBF

∆− V 13.20 3.21 9.99

∆−N 12.66 3.28 9.38

∆− P 10.64 2.85 7.79

∆−D 12.10 3.21 8.89

∆−M 11.49 3.62 7.87

∆−R 11.35 3.41 7.94

∆− I 06.48 2.89 3.59

∆− B 11.55 3.55 8.00

∆− S 11.83 3.55 8.28

∆− A 12.62 3.31 9.31

Table 4.  Positive and negative parts of the Forgotten Indices of the vertex deleted bipolar fuzzy subgraphs and 
their differences.

 

Fig. 3.  A BFG∆ representing the ten women in a matrimonial website.
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From Table 6, it is clear that 
FIPBF (∆1 − Γ20)− FINBF (∆1 − Γ20) > FIPBF (∆1 − Γ19)− FINBF (∆1 − Γ19) > FIPBF (∆1 − Γ5)−
FINBF (∆1 − Γ5) > FIPBF (∆1 − Γ14)− FINBF (∆1 − Γ14) > FIPBF (∆1 − Γ4)− FINBF (∆1 − Γ4) >
FIPBF (∆1 − Γ7)− FINBF (∆1 − Γ7) > FIPBF (∆1 − Γ2)− FINBF (∆1 − Γ2) > FIPBF (∆1 − Γ1)−
FINBF (∆1 − Γ1) > FIPBF (∆1 − Γ3)− FINBF (∆1 − Γ3) > FIPBF (∆1 − Γ10)− FINBF (∆1 − Γ10) >
FIPBF (∆1 − Γ8)− FINBF (∆1 − Γ8) > FIPBF (∆1 − Γ18)− FINBF (∆1 − Γ18) > FIPBF (∆1 − Γ15)−
FINBF (∆1 − Γ15) > FIPBF (∆1 − Γ9)− FINBF (∆1 − Γ9) > FIPBF (∆1 − Γ13)− FINBF (∆1 − Γ13) >
FIPBF (∆1 − Γ11)− FINBF (∆1 − Γ11) > FIPBF (∆1 − Γ12)− FINBF (∆1 − Γ12) > FIPBF (∆1 − Γ6)−
FINBF (∆1 − Γ6) > FIPBF (∆1 − Γ17)− FINBF (∆1 − Γ17) > FIPBF (∆1 − Γ16)− FINBF (∆1 − Γ16)
, and FIPBF (∆1 − Γ20)− FINBF (∆1 − Γ20) is the highest and FIPBF (∆1 − Γ16)− FINBF (∆1 − Γ16) 
is the lowest. So, when we consider the bipolar fuzzy graph given in Fig. 4, the order 
of influence of genes is Γ16 > Γ17 > Γ6 > Γ12 > Γ11 > Γ13 > Γ9 > Γ15 > Γ18 > Γ8 >
Γ10 > Γ3 > Γ1 > Γ2 > Γ7 > Γ4 > Γ14 > Γ5 > Γ19 > Γ20, and Γ16 and Γ20 have the highest and the least 
influence, respectively, in characterizing the positive or activating nature of the gene regulatory network ∆1, 
given in Fig. 4.

Thus, using the Forgotten Index, we can find out the activating or inhabiting nature of a gene regulatory 
network and compare the overall influence of a gene in characterizing the nature of the network.

Conclusion and future works
In this research article, we have developed the Forgotten Index for bipolar fuzzy graphs. We have proved several 
theorems on the F-index in bipolar fuzzy graphs. Then, we discussed the application of the Forgotten Index to 
matrimonial websites and gene regulatory networks. If the nature of a network’s vertices and edges is not self-
contradictory, then bipolar fuzzy graphs cannot represent those networks. Data collection in a bipolar fuzzy 
environment is challenging. As we have already seen that topological indices have a vast real-life application 
area, we would like to apply the Forgotten Index to stock markets to find more secure stocks or mutual funds 
and different lottery platforms to assess the most trustworthy lottery companies. We would also like to introduce 
the Forgotten Index for m-polar fuzzy graphs and discuss its properties. In the future, we would also like to use 
other topological indices introduced in this article for applications in real-life scenarios.

Fig. 4.  A gene regulatory network consisting of twenty genes.
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Bipolar fuzzy subgraphs FIPBF FINBF FIPBF − FINBF

∆1 − Γ1 22.8169 00.1797 22.6372

∆1 − Γ2 22.8253 00.1765 22.6488

∆1 − Γ3 22.6519 00.1745 22.4774

∆1 − Γ4 22.8643 00.1649 22.6994

∆1 − Γ5 23.1433 00.1401 23.0032

∆1 − Γ6 21.3109 00.1164 21.1945

∆1 − Γ7 22.8556 00.1797 22.6759

∆1 − Γ8 22.4781 00.1777 22.3004

∆1 − Γ9 22.3050 00.1680 22.1370

∆1 − Γ10 22.4738 00.1495 22.3243

∆1 − Γ11 21.8520 00.1657 21.6863

∆1 − Γ12 21.4677 00.1777 21.2900

∆1 − Γ13 22.1450 00.1617 21.9833

∆1 − Γ14 23.0477 00.1477 22.9000

∆1 − Γ15 22.3704 00.1617 22.2087

∆1 − Γ16 21.0069 00.1789 20.8280

∆1 − Γ17 21.0794 00.1744 20.9050

∆1 − Γ18 22.4018 00.1635 22.2383

∆1 − Γ19 23.3538 00.1683 23.1855

∆1 − Γ20 24.2794 00.1800 24.0994

Table 6.  Positive and negative parts of the Forgotten Indices of the vertex deleted bipolar fuzzy subgraphs of 
the graph ∆1 and their differences.

 

Gene regulatory network ∆1

Vertex Vertex membership values Edge Edge membership values

Γ1 (0.8,−0.1) (Γ1,Γ2) (0.5,−0.1)

Γ2 (0.6,−0.2) (Γ2,Γ3) (0.6,−0.1)

Γ3 (0.7,−0.3) (Γ3,Γ4) (0.5,−0.1)

Γ4 (0.9,−0.1) (Γ4,Γ5) (0.4,−0.1)

Γ5 (0.5,−0.4) (Γ5,Γ6) (0.4,−0.2)

Γ6 (0.6,−0.3) (Γ1,Γ7) (0.5,−0.1)

Γ7 (0.7,−0.2) (Γ7,Γ8) (0.4,−0.1)

Γ8 (0.8,−0.1) (Γ8,Γ9) (0.6,−0.1)

Γ9 (0.8,−0.2) (Γ9,Γ10) (0.5,−0.2)

Γ10 (0.6,−0.3) (Γ10,Γ6) (0.6,−0.1)

Γ11 (0.7,−0.2) (Γ6,Γ11) (0.5,−0.1)

Γ12 (0.8,−0.1) (Γ11,Γ12) (0.6,−0.1)

Γ13 (0.7,−0.2) (Γ12,Γ13) (0.7,−0.1)

Γ14 (0.6,−0.3) (Γ13,Γ14) (0.5,−0.2)

Γ15 (0.7,−0.2) (Γ14,Γ15) (0.4,−0.2)

Γ16 (0.8,−0.1) (Γ15,Γ16) (0.7,−0.1)

Γ17 (0.9,−0.1) (Γ16,Γ17) (0.6,−0.1)

Γ18 (0.6,−0.3) (Γ17,Γ18) (0.6,−0.1)

Γ19 (0.7,−0.2) (Γ18,Γ19) (0.5,−0.2)

Γ20 (0.8,−0.1) (Γ19,Γ20) (0.5,−0.1)

Table 5.  Membership values of the vertices and the edges of the graph ∆1.
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