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Translating clinical trial results into personalized
recommendations by considering multiple outcomes

and subjective views

Noa Dagan'?3, Chandra J. Cohen-Stavi', Meytal Avgil Tsadok', Morton Leibowitz', Moshe Hoshen', Tomas Karpati @', Amichay Akriv’,
llan Gofer', Harel Gilutz', Eduardo Podjarny®, Eitan Bachmat'? and Ran D. Balicer'”

Currently, clinicians rely mostly on population-level treatment effects from RCTs, usually considering the treatment's benefits. This
study proposes a process, focused on practical usability, for translating RCT data into personalized treatment recommendations that
weighs benefits against harms and integrates subjective perceptions of relative severity. Intensive blood pressure treatment (IBPT)
was selected as the test case to demonstrate the suggested process, which was divided into three phases: (1) Prediction models
were developed using the Systolic Blood-Pressure Intervention Trial (SPRINT) data for benefits and adverse events of IBPT. The

models were externally validated using retrospective Clalit Health Services (CHS) data; (2) Predicted risk reductions and increases
from these models were used to create a yes/no IBPT recommendation by calculating a severity-weighted benefit-to-harm ratio; (3)
Analysis outputs were summarized in a decision support tool. Based on the individual benefit-to-harm ratios, 62 and 84% of the
SPRINT and CHS populations, respectively, would theoretically be recommended IBPT. The original SPRINT trial results of significant
decrease in cardiovascular outcomes following IBPT persisted only in the group that received a “yes-treatment” recommendation
by the suggested process, while the rate of serious adverse events was slightly higher in the "no-treatment" recommendation

group. This process can be used to translate RCT data into individualized recommendations by identifying patients for whom the
treatment’s benefits outweigh the harms, while considering subjective views of perceived severity of the different outcomes. The
proposed approach emphasizes clinical practicality by mimicking physicians’ clinical decision-making process and integrating all

recommendation outputs into a usable decision support tool.
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INTRODUCTION

Most decision support tools or risk calculators that physicians use
to translate empirical trial evidence into useful clinical information
for individual patients do not consider adverse events, nor do they
allow for the integration of subjective input. While evidence-based
medicine is well established with the integration of clinical trial
research into medical knowledge and guidelines, there s
increasing acknowledgement of the shortcomings of these data
for individualized treatment decisions." Empirical evidence is still
mostly reported by clinical trials and meta-analyses as population-
based hazard-ratios and numbers-needed-to-treat (NNT),>* even
though these group averages can change when considering
individual patient characteristics and different baseline risks.”~”
Additionally, it is not clear how to best engage patients and
integrate their preferences into clinical decisions, particularly
given that subjective preferences can be at odds with evidence-
based medicine.'*®

Risk models have been developed to calculate patients’
individual risks in a variety of medical fields, but most models
are focused on a specific outcome®'® or a composite of several
outcomes,”'"'2 which are often not reflective of the multiple
separate effects of many interventions. Many risk prediction
models do not account for the trade-offs between potential

benefits and harms (adverse events),’® and the few that do take
harms into account have used a single negative treatment
consequence or an overall estimation of negative effects. %'
Furthermore, patient engagement and preferences are largely not
actively incorporated into this weighing of benefits and harms.'”

The uptake of decision support systems and risk calculators in
clinical practice is also limited since not enough focus is placed on
presenting them in a transparent and clinically-usable format that
physicians can use and trust.'® The presentation of clinically useful
outputs from analytically rigorous prediction models is critical for
both physician appraisal and in the ability to engage in
conversation with patients.'®™'® The potential exists to enhance
physician-patient treatment dialog through clinical decision
support tools,” and is something that is desired by physicians.'®

In this study, we present an approach focused on practical
usability that translates clinical trial results into individualized
treatment recommendations by considering both personalized
benefits and harms, and integrating them with subjective
perceptions of relative severity. We also aimed to design a
clinically-relevant decision support tool concept that presents
individualized risk estimates, which includes a built-in ability to
enter patient or physician preferences, and presents the final
treatment recommendation. The suggested process is
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demonstrated using data from a clinical trial that examined
intensive systolic blood pressure treatment.

RESULTS

Study population

The SPRINT population included 9360 individuals and the CHS
population consisted of 88,374 individuals. A total of 1.2% of the
SPRINT participants and 1.4% of the CHS members had one or
more missing predictor values that were imputed. The baseline
characteristics of the SPRINT and CHS populations are detailed in
Table 1. The clinical trial SPRINT population and the routine
practice CHS population differed in their composition, with a
larger proportion of younger adults (67.9+9.4 vs. 71.7 £ 10.7) and
males (64.4 vs. 52.8%) in the SPRINT population. The CHS
population included a small proportion of black race individuals
(mostly Ethiopian) and had a higher rate of prevalent cardiovas-
cular disease at baseline (Table 1).

Development and external validation of risk prediction models
The models included an average of 6.8 predictor variables. Further
details on the variables included in each prediction model and
their coefficients are in the supplemental material (Supplementary
Table 1). The discrimination and overall calibration of the
prediction models in the SPRINT population are presented in
Supplementary Table 2 for both final and out-of-sample models,
which yielded similar performance. The AUC of the final eight
models for the SPRINT population ranged between 67.8 and
77.5%. The observed-to-predicted ratios of models ranged from
0.45 to 1.17 for cardiovascular outcomes and from 1.07 to 1.47 for
adverse events (Supplementary Table 2). The cardiovascular death
model demonstrated a tendency to over-predict the risk, while the
hypotension model tended toward under estimating the risk.
Calibration plots (Supplementary Fig. 1) and observed-to-
predicted ratios by deciles (Supplementary Table 3a, b) are
presented in the supplement. The AUC measures in the external
validation of the CHS population were similar to the SPRINT AUC’s
(Supplementary Table 2) and had an increasing number of events
across deciles (Supplementary Table 3a, b), indicating consistent
discrimination ability in an external population. Most models in
the CHS population presented observed-to-predicted ratios close
to one, indicating relatively good calibration (Supplementary
Table 2). The average observed-to-predicted ratio of the
hypotension model was around 0.5, while the stroke and acute
kidney injury models presented average observed-to-predicted
ratios of 1.5-1.6.

Treatment recommendation development and testing

The severity weights that were assigned to the different outcomes
were relatively consistent between the ranking physicians, with a
maximum standard deviation of 1.56 (Supplementary Table 4).
After applying the average severity weights, a total of 62.1 and
84.3% of the SPRINT and CHS populations, respectively, were
assigned a recommendation for intensive treatment (Supplemen-
tary Table 5). The distributions of the benefit-harm ratios and
treatment recommendations for both populations are presented
in Fig. 1.

The group that received a recommendation for intensive
treatment was relatively older (69.7 £9.1 vs. 64.9+9.2 years in
the SPRINT population and 72.5+ 10.5 vs. 67.2 + 10.8 years in the
CHS population) and consisted of a higher percent of males (73.8
vs. 49.1% in the SPRINT population, and 55.6 vs. 37.6% in the CHS
population) than the non-intensive treatment recommendation
group (Supplementary Table 5). Additionally, the intensive
treatment recommendation group had more cardiovascular
disease at baseline (27.9 vs. 7.2% in the SPRINT population, and
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Table 1. Study populations by the covariates used in the models

SPRINT population

CHS population

Sex

Female, n (%)
Male, n (%)
Missing, n (%)
Black race

No, n (%)

Yes, n (%)
Missing, n (%)
BMI®, kg/m?
Mean + SD
Missing, n (%)

Never, n (%)

Former, n (%)
Current, n (%)
Missing, n (%)

No, n (%)
Yes, n (%)
Missing, n (%)

Mean = SD
Missing, n (%)

0-1, n (%)
2-3, n (%)

>4, n (%)
Missing, n (%)

Mean + SD
Missing, n (%)

Mean +SD
Missing, n (%)
HDL, mg/dL
Mean + SD
Missing, n (%)

Smoking category

Clinical/subclinical CVD

Systolic B, mmHg

BP medication types

eGFR, mL/min/1.73 m?

Total cholesterol, mg/dL

3,331 (35.6%)
6,029 (64.4%)
0 (0.0%)

6,414 (68.5%)
2,946 (31.5%)
0 (0.0%)

299+58
77 (0.8%)

4,122 (44.0%)
3,973 (42.4%)
1,239 (13.2%)
26 (0.3%)

7,483 (79.9%)
1,877 (20.1%)
0 (0.0%)

139.7+£15.6
0 (0.0%)

3,635 (38.8%)
5,211 (55.7%)
514 (5.5%)

0 (0.0%)

71.7£20.6
37 (0.4%)

190.1£41.2
38 (0.4%)

529+ 145
38 (0.4%)

Characteristics® N =9360 N = 88,374
Age, years

Mean £ SD 679+94 71.7£10.7
Missing, n (%) 0 (0.0%) 0 (0.0%)

41,713 (47.2%)
46,661 (52.8%)
0 (0.0%)

87,456 (99.0%)
918 (1.0%)
0 (0.0%)

28.4+5.0
260 (0.3%)

56,790 (64.3%)
17,472 (19.8%)
13,166 (14.9%)
946 (1.1%)

58,526 (66.2%)
29,848 (33.8%)
0 (0.0%)

139.9+10.0
0 (0.0%)

42,576 (48.2%)
41,842 (47.3%)
3,956 (4.5%)

0 (0.0%)

78.2+21.1
127 (0.1%)

188.0+383
134 (0.2%)

504+134
146 (0.2%)

SPRINT systolic blood pressure intervention trial, CHS Clalit Health Services,
SD standard deviation, BMI body mass index, kg/m? CVD cardiovascular
disease, BP blood pressure, eGFR estimated glomerular filtration rate, mL/
min/1.73 m?, HDL high-density lipoprotein
*Variables were taken from the baseline characteristics of the SPRINT
population and from the available EHR information prior to January 1st,
2013 for the CHS population

PBody mass index was measured as the weight in kilograms divided by the
square of the height in meters

38.2 vs. 9.9% in the CHS population) and relatively higher
estimated glomerular filtration rate
21.8 mL/min/1.73 m? in the SPRINT population, and 80.6+ 19.4
vs. 65.7 £ 25.1 in the CHS population).

(76.9+18.0 vs.

633+
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Fig. 1 Distributions of the benefit-harm ratios. a Histogram of benefit-harm ratio distribution among the SPRINT population. b Histogram of
benefit-harm ratio distribution among the CHS population. SPRINT, Systolic Blood Pressure Intervention Trial; CHS, Clalit Health Services

The sensitivity analysis of the severity weights by different
physicians demonstrated that most physicians yielded rates of
‘yes’ recommendations in the range of 50-70% (Supplementary
Table 6a). One physician gave relatively low severity weights to
the adverse events, resulting in ‘yes’ treatment recommendation
for 89.9% of the SPRINT population, while another physician
gave relatively high weights to the adverse events, resulting in a
‘ves’ recommendation for 39.8% of SPRINT patients. The
additional sensitivity analysis on agreement in the resulting
treatment recommendation across different sets of severity
weightings showed complete agreement on the treatment
recommendation for about 50% of the patients (Supplementary
Table 6b).

Scripps Research Translational Institute

When evaluating the effects of intensive blood pressure
lowering in each recommendation group, the SPRINT's results of
a significant decrease in the composite primary cardiovascular
outcome and all-cause mortality were only repeated in the
intensive treatment recommendation group (hazard ratios of 0.68
and 0.65, respectively; P < 0.001) (Table 2). The intensive treatment
was found to increase the rate of the serious adverse events’
composite outcome by 45 and 41% in the non-intensive and
intensive treatment recommendation groups, respectively. The
two recommendation groups had similar systolic blood pressure
measurements during follow-up, with the intensive treatment
assigned patients from the trial within each recommendation
group reaching their systolic target (121-122 mmHg). These

npj Digital Medicine (2019) 81

np)j



N. Dagan et al.

np)

dn-mojjoy Bunp juedidiied yoes Jo sluBWSINSESW 331U Ise| BY) Buisn,

25uapidul Al1eak se pajuasald ale saW0dIN0 JO sanjep,
JeAIS1UI 9OUSPYUOD | ‘ainssaid poojq 4g ‘|etl UonuaAIdUIL aunssaid poojq d1j01sAS IN/HIS

€2100°0 260000 100000 > onjend
(zg'1-91°1) S¥'L (e¢L1i-s1'1) L (so'1-tTl) Tl (ID %S6) oney
[4 %4 8L €0'C SAISUDIUI-UOU [Ny
Jeak J1ad ‘awodino
8€'€ 65T 68'C SAISUSIUI [BNIDY 91s0dW0D JUDAS ISIIAPE SNOLIDS
¥£5%9°0 S0L000 GS€00°0 onjen-d
(LE'1-99°0) T6'0 (¥8'0-05°0) S9°0 (16'0-090) ¥£°0 (ID %¢56) oney
7Ll 991 oL SAISUIUI-UOU |en1dy
So'L 10°L €0'L SAISUSIUI [BeNIDY 1eak 1ad ‘Ayljeriow asned-||y
69/%9°0 220000 760000 onjend
(9T°1-690) €60 (¥8°0-95°0) 89'0 (68'0-%79°0) S£°0 (ID %S6) oney
SS9l 09C 6LC SAISUSIUI-UOU [en}DY
Jeak 4ad ‘awodino
St'L 8/°L 5oL SAISURIUI [eNDY Jejnosenolpied aysodwod Arewd
vLSEL 66'7EL 8T'GEL SAISUDIUI-UOU [en)dy
sg'LeL 89°0¢CL Lozt SAISUDUI [en1DY BHww ‘qdd 31|01sAS uesy
¥8L1 668'C €89y SAISUIUI-UOU [eNIDY
19/1 916'C 119V SAISUSIUI [BN1DY u ‘syuedipied jo JaquinN
dnoub uonepuswwodal dnoub uonepuswwodas uone|ndod
1USW1LI} SAISUSIUI-UON 1USW1eaI] DAISUDIU| 1NIYdS [e1ol uoleziwopuel |NIYdS

eUollepuswiwiodal juswilesall ayl OC_Hmﬁ__mS 104 dnoib uolepuswiwodal yses Ulylm sswodino | NIHdS @Y} JO uoilenjeA g s|qel

Scripps Research Translational Institute

npj Digital Medicine (2019) 81



1-PREDICT HTN individualized Predictive Risk Evaluation & Decision Integration Clinical Tool for Hypertension

INTENSIVE VS. NON-INTENSIVE HYPERTENSION TREATMENT

np)

N. Dagan et al.

Clalit Research Institute
.~ Real people. Real data. Real change.

ENTER PATIENT'S DATA

Age 80 Black Race  No Cardio-vascular disease (clinical or subclinical) | Yes

Sex  Male Smoking Status  Former Smoker eGFR (mL/min/1.73m’) 101

Weight ( Kg ) 177 Systolic blood pressure (mmHg) 171 Total cholesterol ( mg/dL ) 147

Height ( M ) 177 Blood pressure lowering medications (number) = 2 High density cholesterol (HDL) ( mg/dL ) 53

RESULTS RECOMMENDATION
Severity  Cardiovascular improvement due Severity  Adverse events due to intensive

rank to intensive treatment* rank treatment* Treat BP Intensively

Acute Myocardial Infarction (iINNT=78)

79 * 7.3% 65 *

Acute Decompensated Heart Failure (iNNT=11)

+

Stroke (iNNT=143)

s I
Cardio-Vascular Death (iNNT=22)

100 * 10.8% -4.5% 72 *F

* For a time period of 3 years
m |nitial risk

Individual Absolute risk reduction (iARR)

I-PREDICT HTN individualized Predictive Risk Evaluation & Decision Integration Clinical Tool for Hypertension

INTENSIVE VS. NON-INTENSIVE HYPERTENSION TREATMENT

ENTER PATIENT'S DATA

Serious Hypotension (iNNH=133)
Serious Syncope (iINNH=91)
Serious Electrolyte Abnormality (iNNH=104)

Serious Acute Renal Failure (iNNH=81)

= Individual Absolute risk increase (iARI)

Systolic blood-pressure target:
=120 mmHg

Benefits outweigh harms by x 4.8

Recommendation is based on:
sum(severity weighted iARRs)
sum(severity weighted iARIs)

Current severity rankings = suggested average
ranks by several physicians. You can change the
ranks and update the recommendation:

UPDATE RECOMMENDATION!
new severity ranks

‘
‘
‘
:
o EI
‘
‘
‘

INNT/H: individual Number Needed to Treat/Harm

Clalit Research Institute
Real people. Real data. Real change.

Age 62 BlackRace Yes Cardio-vascular disease (clinical or subclinical) = No
Sex Female Smoking Status  Current Smoker eGFR (mL/min/1.73m’) 53
Weight ( Kg ) 69 Systolic blood pressure (mmHg) 145 Total cholesterol ( mg/dL v ) | 274
‘ ULATE RISK
Height ( M ) 163 Blood pressure lowering medications (number) 0 High density cholesterol (HDL) ( mg/dL ' ) 69
RESULTS RECOMMENDATION
Severity  Cardiovascular improvement due Severity  Adverse events due to intensive
rank to intensive treatment* rank treatment* Do Not Treat BP Intensively

Acute Myocardial Infarction (iNNT=149)

Acute Decompensated Heart Failure (iNNT=172)
1.9%
Stroke (iINNT=779)

Cardio-Vascular Death (iNNT=219)

* For a time period of 3 years
m Initial risk

+

79 * *

3.8% 6.5

+

79 * +

6.9 _

68

85 *

+

100 * 72 *

Individual Absolute risk reduction (iARR)

Fig. 2 Intensive treatment decision support tool interface. a Example

Serious Hypotension (iINNH=86)

Serious Syncope (INNH=184)

s
Serious Electrolyte Abnormality (iNNH=118)

‘

= Individual Absolute risk increase (iARI)

Systolic blood-pressure target:
=140 mmHg

Harms outweigh benefits by x 2.3

Recommendation is based on:
sumseverity weighted iARRs)
sum(severity weighted iARIs)

Current severity rankings = suggested average
ranks by several physicians. You can change the

UPDATE RECOMMEN|
with new severity ranks

ON‘

iNNT/H: individual Number Needed to Treat/Harm

of a patient who would receive a recommendation for intensive

treatment. b Example of a patient who would receive a recommendation for non-intensive treatment. Legend: Blue represents initial risk,
green represents iARR, and pink represents iARI. eGFR, estimated glomerular filtration rate; kg, kilograms; m, meters; iNNT, individual number

needed to treat; iNNH, individual number needed to harm

results were consistent when evaluated using the out-of-sample
models (Supplementary Table 7).

Clinical decision support tool interface

The tool’s interface is presented in Fig. 2. The first section, used for
entering patients’ characteristics, would be filled automatically
when the tool is implemented within an EHR system. The second
section presents the individualized baseline risk for each of the

Scripps Research Translational Institute

cardiovascular outcomes and adverse events (based on the
competing-risk models), along with the absolute decrease or
increase in risk (iARR/iARI) due to intensive blood pressure
lowering (based on the cause-specific models). This section also
presents the severity weights that were used for the calculation of
the final treatment recommendation. These weights can be
adjusted by physicians, with or without their patients’ input, since
judgements concerning the severity of outcomes may differ
among clinicians and patients. The third section presents the final
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treatment recommendation, with the extent to which the
indicated recommendation outweighed the alternative recom-
mendation (@ number representing the strength of the recom-
mendation as a proxy of the benefit-harm ratio to one).

DISCUSSION

This study presents an approach and clinical decision support tool
concept that helps to address the challenge of determining
individual treatment recommendations from trial evidence.
Whereas previous studies have dealt separately with various
aspects of this challenge, the current study developed a
comprehensive practice-focused analytic process that formalized
and quantified what physicians do intuitively in treatment
decision-making—consider potential benefits, harms, and sub-
jective preferences. In addition, this study suggests a way to
reflect these outputs transparently via a clinical decision
support tool.

Increased attention has shifted the focus of treatment decision-
making toward individualizing decisions,?® because many clinical
trials, including the SPRINT study, conclude that treatment is
significantly better than the alternative for the average trial
patient; but this does not account for benefit-harm trade-offs for
individual patients.

We demonstrate that in the SPRINT test case, the recommenda-
tion for intensive treatment may not be beneficial for all trial
participants, but potentially only for 62% of them. It seems that
the proposed process can distinguish those patients for whom the
benefits of intensive blood pressure treatment outweighed
potential harms from those for whom the harms outweighed
the benefit (and for which benefits did not reach statistical
significance). Furthermore, the individuals who would be recom-
mended intensive treatment based on the proposed decision
support tool would typically benefit more and suffer fewer
negative consequences than the overall average reported in the
SPRINT results.

Similar to the current study, prior research has accounted for
benefit harm trade-offs of intensive blood pressure treatment.'?'
However, previous studies developing individualized prediction
models for cardiovascular events have predominantly used a
single or composite outcome or relied on population-level
estimates to evaluate harms while estimating individualized
benefits.''*?" Most of these studies conclude with a formalized
prediction model as the final output, and almost none of them
address the way in which clinicians will understand and use the
analytic outputs in practice. There are decision support tools to
demonstrate the effects of cardiovascular risk factors, which have
created attractive interfaces to illustrate both the baseline risk and
treatment effects, but they only focus on single or composite
outcomes, and do not consider the adverse events.'%?>72* One of
the stated reasons for this is that the weight of adverse events
may be subjective.'® Our proposed interface has overcome this
challenge by formalizing the combination of objective measures
of risk with subjective views of severity.

Our decision to develop risk prediction models for eight
separate outcomes that could be ranked for severity (rather than
composite outcomes) was guided by the need to identify building
blocks of patient-specific information that can be easily assimi-
lated by clinicians and explained to patients. In contrast to using a
net benefit method, in which the physician needs to determine an
exchange rate between the positive and negative outcomes,?” the
outcome specific severity rankings in our approach may be more
intuitive and easily communicated to patients. We found that
physicians had difficulty in assigning a severity score to a
composite of different outcomes, while separating the outcomes
allowed for consideration of each outcome separately. The
development of models both for multiple individual positive
and negative consequences helped to overcome the limitation of
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the net benefit method that can only account for a single positive
and a single negative outcome. This approach allows for the
integration of subjective perception of risk into the recommenda-
tion even when the composite of either the positive or negative
outcomes include events of very different nature. The multiple
risks could then be weighed on both sides of the scale, thereby
allowing physicians to reach a final yes/no treatment decision that
is aligned with “primum non nocere”.

The discrimination ability of the models in the external
validation CHS population was comparable to that of the models
developed and trained on the clinical trial population, as well as
similar to the performance of the individual risk models developed
in previous research.'” There were some discrepancies in the
calibration results within the CHS population, with some over-
estimation of risk and some underestimation of risk, potentially
due to an inability to identify all events within the CHS EHR data.
The similar discriminatory performance across the two study
populations suggests that these models are transferrable between
populations, albeit, with the need to recalibrate when applied to
new populations.® The proposed process and tool in the current
study yielded a recommendation for intensive blood pressure
lowering in 62% of the SPRINT population, compared to 84% in
the CHS population. This difference was expected since the first
population represented individuals selected for a clinical trial,
while the second represents a more general population.

When translating across populations and contexts, there are
also considerable variations in perspectives of the importance of
potential benefits and risks.2” The sensitivity analysis conducted to
examine the impact of varying sets of physicians’ severity weights,
showed that physicians with different views can affect the final
recommendation result. Yet, for 50% of the patient population,
there was consensus regarding the recommendation despite the
variance in the severity weightings. For the rest of the patients,
whose benefit-harm ratios were closer to one and less inclined to
one direction, individual preferences (physician or patient) may be
a more prominent factor in the final treatment decision. This
illustrates that the tool offers support to decision-making rather
than replacing human clinical judgment, through balancing the
integration of empirically derived individualized evidence with
built-in flexibility for shared decision making in clinical practice.

A valid methodology for reaching an individualized, evidence-
based treatment decision, however, is not enough to assure
implementation in clinical practice. The transformation of theory
to practice depends on the usability and alignment of analytic
outputs with clinicians’ perceptions and preferences.'®'” Accord-
ingly, the tool’s interface has been designed to integrate both
graphical illustrations and numerical representation of the
individualized baseline risks and estimated treatment effects,
along with a final treatment recommendation and its strength (i.e.,
the magnitude of the benefit-to-harm ratio). Two different
measures of risk were included because they have been found
to be understandable and interpretable for patients.>?® Physicians
can, therefore, determine whether specific outcomes or adverse
event risks, or the final recommendation (using the suggested
severity ranks or adapting them) are most informative for the
treatment decision. Beyond just providing a risk score or a yes/no
treatment recommendation, it is beneficial to include outputs
such as the strength of the benefit-harm ratio, which is particularly
important among patients for whom the treatment decision does
not clearly incline to one direction (i.e, who have a benefit-harm
ratio close to 1).

This study had notable limitations to consider. First, the timeline
of the SPRINT trial allowed an evaluation of the absolute risks for a
relatively short time period of three years. A longer follow-up
period of five or ten years would be preferable for the iARR/iARI
results, but likely would not have changed the final treatment
recommendation (since the benefit-harm ratio is not expected to
change dramatically over time). Second, the limited sample size of
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the SPRINT trial posed a challenge in stabilizing the coefficients of
the prediction models thus needing to train the model using
multiple bootstraps.

Importantly, truly individualized treatment effects are not
ascertainable due to the lack of the ability to determine the
counterfactual and to observe all relevant factors.*® As in other
studies, the individualized estimates in the current study are
limited to approximations of conditional average effects for
patients similar to the individual patient. Related to data
measurement limitations, in the translation of clinical trial data
to individualized EHR-based risk for an external population, there
can be discrepancies between the variable measurements used in
the trials and the variable measurements found in an existing EHR
database. The potential for these differences in measurements
emphasizes the importance of comparing the performance of the
developed models in the clinical trial and the external popula-
tions, which in the current study yielded relatively consistent
performance. Furthermore, although we externally validated the
prediction models, we were not able to validate the SPRINT results
or the final treatment recommendation in the CHS population
because the real-world context does not confer randomization to
treatment. Nonetheless, since the risk models were externally
validated, and their outputs translate directly to the treatment
recommendation, the recommendation is likely to be valid in the
CHS population. Finally, we have not yet evaluated the tool in a
clinical setting, but we have demonstrated feasibility and the
potential benefits.

Following an approach such as the one proposed in this study
would allow for the translation of clinical trial data into an
individualized clinical decision support tool that could potentially
be replicated for many types of individualized dichotomous
clinical decisions (e.g., medication initiation, surgical procedures,
and diagnostic procedures). EHR systems provide a suitable
setting for the implementation of this kind of tool, presenting
physicians with an instant summary of the relevant clinical trials
tailored to the characteristics of their patients. The tool can be
automatically presented in the EHR only for patients who meet the
inclusion criteria of the relevant trial. Rather than being an added
burden to the patient visit, such a tool has the potential to
facilitate the physician’s treatment decision-making and patient
engagement by computing what is missing in practice: estimated
individualized benefits and harms based on clinical trial evidence,
that can be integrated with subjective perception of severity and
combined into a single recommendation.

METHODS
Setting

In order to demonstrate the suggested process of translating clinical trial
results into individualized treatment recommendations, we used data that
was made available from the Systolic Blood Pressure Intervention Trial
(SPRINT)*° randomized clinical trial, whose methods and results have been
previously described.3'3? This trial compared intensive management of
systolic blood pressure targeting <120 mmHg with standard management
targeting < 140 mmHg in patients with hypertension and high cardiovas-
cular risk and no diabetes. The trial was stopped early because the average
rate of cardiovascular events and all-cause mortality were significantly
lower with intensive treatment.

Electronic health record (EHR) data from Clalit Health Services (CHS)
members were used for external validation of analytic outputs which were
developed using the SPRINT population as part of this study. CHS is an
integrated payer/provider health care organization that provides primary,
specialty, and inpatient healthcare to over half of the population in Israel
(close to 4.5 million people), where there is universal healthcare coverage.
All relevant patient data were extracted from the central data warehouse
collating this information from inpatient, outpatient, laboratory, pharmacy,
and other clinical settings in CHS.

This study was conducted, in part, using SPRINT-POP Research Materials
obtained from the National Heart Lung and Blood Institute (NHLBI) Biologic
Specimen and Data Repository Information Coordinating Centre, and does
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not necessarily reflect the opinions or views of the SPRINT-POP or the
NHLBI. The study received approval from the Institutional Review Board
Committee (IRBC) of Meir Hospital of CHS. Participants from the SPRINT
gave written informed consent as part of the clinical trial. For the
retrospective analysis using CHS data, the IRBC approval included an
exemption regarding obtaining written informed consent.

Study design

The study was divided into three phases: (1) develop models of
individualized risk estimations for multiple positive and negative out-
comes; (2) translate these predictions into a single treatment recommen-
dation; and (3) integrate them into a clinically-relevant tool concept to
support practicing physicians' decision making. In the first phase, eight
prediction models of benefits and harms related to intensive blood
pressure lowering were developed based on SPRINT data, which was
collected between 2010 and 2015 (median follow-up period of 3.26 years)
with baseline characteristics defined at the study entry date for each
participant. These models were externally validated for their ability to
predict outcomes in a 3-year period (between 2013 and 2015) in the CHS
population, with baseline characteristics as of the index date, defined as
January 1, 2013. The risk estimates from the eight models were weighted
and consolidated into an intensive vs. non-intensive treatment recom-
mendation, which was tested against the SPRINT randomization. Finally, a
clinical decision support tool was designed to incorporate the analytic
outputs while also accounting for the practicing physician’s needs during a
patient visit.

Study population

The SPRINT population used for this study has been described else-
where.3'?? For the prediction models’ external validation, CHS members
who met the same inclusion and exclusion criteria as in the SPRINT study
were included. The CHS cohort of patients had a diagnosis of hypertension
and two elevated blood pressure measurements as of the index date. The
SPRINT's inclusion and exclusion criteria that could be assessed from the
EHR data were applied (Supplementary Table 8).

Development and external validation of risk prediction models

Using the data from the SPRINT population, four prediction models were
developed for cardiovascular outcomes (treatment's benefits) that are
commonly considered to be associated with high blood pressure:
myocardial infarction, stroke, acute decompensated heart failure, and
cardiovascular death. Additionally, four prediction models were developed
for adverse events (treatment's harms) that were reported by the SPRINT
study to occur more with intensive blood pressure treatment: hypotension,
syncope, electrolyte abnormality, and acute kidney injury. For both
outcomes and adverse events, only non-composite outcomes were
selected.

The specific type of prediction algorithm used to model any benefit or
harm, as well as methods of variable selection and the approach of
addressing missing data, can vary by the specific implementation. In this
demonstration, all models were developed using Cox-proportional hazard
multivariate regression. Due to the size limitation of the data set in this
case, predictors for each model were selected based on backwards
selection, from a list of 11 baseline patient characteristics (Supplementary
Table 1), which are likely to be available in clinical practice and are widely
accepted as clinically-related to at least one of the outcomes.® Missing
predictor values were imputed using multiple imputation functions by Van
Buuren et al.* to create 5 imputed data sets.>* Further details regarding
aspects of the multiple imputation and variable selection methods are
described in the supplement (Supplementary Description 1).

The classic approach to randomly split the population into training and
test sets was not feasible, as some of the outcomes were rare and their
random distribution between sets greatly affected the models’ coefficients.
To overcome this, we fitted each model using 1250 bootstraps (250 from
each imputed data set) on the entire SPRINT population, drawn randomly
with replacement.® The coefficients from each bootstrap were averaged
to create stable coefficients for the final eight models, and their variance
was calculated using Rubin’s rules for variance estimation in multiple
imputed data sets. 3%’

Each model training in each bootstrap was evaluated twice: first using a
simple Cox regression (cause-specific) in order to obtain coefficients that
represent the true nature of the treatment effect on each outcome;*® and
second using a weighted Cox by the Fine-Gray method for competing risks
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in order to receive a valid estimation of the baseline risk (considering death
from any cause as the competing event for each outcome).>® In addition,
to assure lack of overfitting, we calculated a set of out-of-sample models
for each SPRINT participant (for both the cause-specific and competing risk
models), using the average coefficients of all bootstraps in which he or she
did not participate (about one third of the bootstraps).*°

The models' performance in predicting the baseline risk within the
SPRINT population was evaluated for discrimination by examining area
under the receiver-operator-characteristic curves (AUC) and for calibration.
The performance was evaluated using the competing risk coefficients of
the final models and out-of-sample models.?® The AUCs and their variances
were calculated using 1,250 bootstraps (with 250 from each imputed data
set). To create complete independence between stages, these were newly
created bootstraps, not those used for the model fitting stage. Calibration
was assessed by comparing average predicted risks with observed
percentages of events, stratified by deciles of risk.?® This analysis was
done separately in each imputed data set and then averaged.

External validation for the performance®’ of seven of the prediction
models in predicting the baseline risk were conducted in the CHS
population (data on cause of death was not available, and therefore, the
cardiovascular death model was not validated). Details on variable
definitions from the CHS EHR data are described in Supplementary
Table 9. Three-year risks for outcomes and adverse events were calculated
retrospectively as of the index date and compared to the actual event
occurrence until the end of 2015 (when the SPRINT results were
published). Missing values for one or more of the predictors in the CHS
population were imputed using multiple imputation in the same manner
that was used for the SPRINT population.

Treatment recommendation development and testing

The translation of the risk estimates to a treatment recommendation was
intended to mimic the clinical decision-making process undertaken by
physicians, considering both the potential magnitude of the estimated
benefits and harms, as well as their relative weight in terms of severity. The
magnitude of predicted benefits of intensive blood pressure lowering was
assessed by entering each patient’s individual characteristics into the
cause-specific cardiovascular outcome models and calculating three-year
individual absolute-risk-reduction (iARR) measures. On-treatment risk
(intensive treatment variable set to yes) was subtracted from off-
treatment risk for each specified outcome (intensive treatment variable
set to no).* This process was repeated for each adverse event by
subtracting the off-treatment risk from the on-treatment risk, thus creating
four individual-absolute-risk-increase (iARI) measures.

The severity of each cardiovascular outcome and serious adverse event
was considered on a scale ranging from 0-10, through a blinded
independent evaluation by 12 physicians with various relevant clinical
backgrounds: general physicians, family physicians, internal medicine
experts, cardiologists, nephrologists, and public health experts (two of
each). The physicians were asked to assign a severity weight to each of the
eight model outcomes and read the SPRINT definition of serious adverse
events prior to their evaluation.?’ The severity weights by each physician
were averaged to create a final severity weight (SW) for each outcome.

To determine the treatment recommendation for the individual patient,
a benefit-harm ratio was calculated by dividing the sum of weighted
benefits (positive effects' iARR) by the sum of the weighted harms (adverse
events' iARI): (ZSW;iARR)/(ZSWiARl). A ratio >1 indicated that the
benefits outweighed the harms, thus favoring intensive treatment.

To assess the impact of the severity weights on the overall distribution
of the final treatment recommendation, sensitivity analyses were
conducted using the sets of severity weights from each of the 12
individual physicians separately. As a further test of the effect of the
severity weightings on the treatment recommendation, the proportion of
patients for whom there was agreement in the resulting recommendation
across the 12 physicians’ severity weights was examined.

The treatment recommendation was tested using the SPRINT's
randomization to evaluate the intensive treatment effect within each
recommendation group (yes/no intensive treatment). We evaluated the
treatment’s effect on the annual incidence of all-cause mortality, the
SPRINT's primary composite cardiovascular outcome, and a composite of
the four serious adverse events. These outcomes were chosen to allow
comparison to the original SPRINT results. To overcome the limitation of
testing the recommendation in the same population in which the models
were developed, this evaluation was performed using predictions of both
the final and out-of-sample models. The analysis was carried out only on
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the first imputed data set (since each participant had to have one final
recommendation). The treatment recommendation could not be externally
validated, since the CHS population was not randomized to the two
treatment groups.

Clinical decision support tool interface

A clinical decision support tool was designed aiming to achieve practical
utility and transparency of the analytic process that led to the final
recommendation. Particular attention was given to the visual presentation
and the type of measurements presented. Given different physicians’
preferences for measures of risk estimation, iARRs and iARIs were
incorporated, as well as, individual-number-needed-to-treat (iNNT) for
each cardiovascular outcome and individual-number-needed-to-harm
(iNNH) for each adverse event. The tool's interface was developed in
iterations through receiving feedback from practicing clinicians of different
specialties until a consensus was reached on willingness to implement the
tool in their practice.

Statistical analysis

All analyses were conducted using R, CRAN version 3.5.2. P-values < 0.05
were considered significant (two-sided tests were used). Specific analyses
for each step of the process have been outlined in the respective
sections above.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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