
qPMS9: An Efficient Algorithm for
Quorum Planted Motif Search
Marius Nicolae & Sanguthevar Rajasekaran

Department of Computer Science and Engineering University of Connecticut, Storrs, CT, USA.

Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns
in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter
elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of
alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of
protease cleavage sites, identification of signal peptides, protein interactions, determination of protein
degradation elements, identification of protein trafficking elements, discovery of short functional motifs,
etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study
the (,, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two
integers , and d. It returns all sequences M of length , that occur in each input string, where each occurrence
differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif
appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers
significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA
(,, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.

T
he Planted Motif Search (PMS) problem, also known as the (l, d)-motif problem, has been introduced in Ref.
1 with the aim of detecting motifs and significant conserved regions in a set of DNA or protein sequences.
PMS receives as input n biological sequences and two integers , and d. It returns all possible biological

sequences M of length , such that M occurs in each of the input strings, and each occurrence differs from M in at
most d positions. Any such M is called a motif.

Buhler and Tompa2 have employed PMS algorithms to find known transcriptional regulatory elements
upstream of several eukaryotic genes. In particular, they have used orthologous sequences from different organ-
isms upstream of four different genes: preproinsulin, dihydrofolate reductase (DHFR), metallothioneins, and c-
fos. These sequences are known to contain binding sites for specific transcription factors. Their algorithm
successfully identified the experimentally determined transcription factor binding sites. They have also employed
their algorithm to solve the ribosome binding site problem for various prokaryotes. Eskin and Pevzner3 used PMS
algorithms to find composite regulatory patterns using their PMS algorithm called MITRA. They have employed
the upstream regions involved in purine metabolism from three Pyrococcus genomes. They have also tested their
algorithm on four sets of S.cerevisiae genes which are regulated by two transcription factors such that the
transcription factor binding sites occur near each other. Price, et al.4 have employed their PatternBranching
PMS technique to find motifs on a sample containing CRP binding sites in E.coli, upstream regions of many
organisms of the eukaryotic genes: preproinsulin, DHFR, metallothionein, & c-fos, and a sample of yeast pro-
moter regions.

A problem that is very similar to (,, d) motif search is the Closest Substring problem. The Closest Substring
problem is essentially the PMS problem where the aim is to find the smallest d for which there exists at least one
motif. These two problems have applications in PCR primer design, genetic probe design, discovering potential
drug targets, antisense drug design, finding unbiased consensus of a protein family, creating diagnostic probes
and motif finding (see e.g.5). Therefore, the development of efficient algorithms for solving the PMS problem
constitute an active interest in biology and bioinformatics.

In a practical scenario, instances of the motif may not appear in all of the input strings. This has led to the
introduction of a more general formulation of the problem, called quorum PMS (qPMS). In qPMS we are
interested in motifs that appear in at least q percent of the n input strings. Therefore, the PMS problem is the
same as qPMS when q 5 100%.

The Closest Substring problem is NP-Hard5. The Closest Substring problem can be solved by a linear number
of calls to PMS. Therefore, there is a polynomial time reduction from Closest Substring to PMS, which means that
the PMS problem is also NP-Hard. Because of this, all known exact algorithms have an exponential runtime in the

OPEN

SUBJECT AREAS:

COMPUTATIONAL
BIOLOGY AND

BIOINFORMATICS

GENOME INFORMATICS

COMPUTER SCIENCE

Received
2 September 2014

Accepted
10 December 2014

Published
15 January 2015

Correspondence and
requests for materials

should be addressed to
M.N. (marius.

nicolae@uconn.edu)

SCIENTIFIC REPORTS | 5 : 7813 | DOI: 10.1038/srep07813 1

https://code.google.com/p/qpms9
mailto:marius.nicolae@uconn.edu
mailto:marius.nicolae@uconn.edu

Figure 1 | This pseudocode generates tuples of ,-mers that can potentially have common neighbors, for the PMS problem.

Figure 2 | This pseudocode generates tuples of ,-mers that can potentially have common neighbors, for the qPMS problem.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7813 | DOI: 10.1038/srep07813 2

worst case. Thus, it is important to develop efficient algorithms in
practice. The practical performance of PMS algorithms is typically
evaluated on datasets generated as follows (see refs 1, 6): 20 DNA/
protein strings of length 600 are generated according to the inde-
pendent identically distributed (i.i.d.) model. Similarly, a random
motif (,-mer) M is generated and ‘‘planted’’ at a random location
in each input string (or in q% of the input strings for qPMS). Every
planted instance of the motif is mutated in exactly d positions.

Definition 1. An (,, d) instance is defined to be a challenging
instance if d is the largest integer for which the expected number of
motifs of length , that would occur in the input by random chance does
not exceed a constant (500 in this paper, same as in Ref. 7).

Intuitively the more we increase d, the more we increase the search
space. However, if we increase d too much, we find many motifs just
by random chance (spurious motifs). According to the above defini-
tion, the challenging instances for PMS are (13, 4), (15, 5), (17, 6),
(19, 7), (21, 8), (23, 9), (25, 10), (26, 11), (28, 12), (30, 13), etc.

Note that in this paper we only address exact algorithms, which
find all the existing motifs. Most of the exact PMS algorithms use a
combination of two fundamental techniques. One is a sample driven
technique and the other is a pattern driven technique. In the sample
driven stage, the algorithm selects a tuple of ,-mers coming from

distinct input strings. In the pattern driven stage, the algorithm gen-
erates the common d-neighborhood of the ,-mers in the tuple. Each
such ,-mer becomes a motif candidate. The size of the tuple is usually
fixed to a value such as 1 (see e.g.6,8,9), 2 (see e.g.10), 3 (see e.g.11–14) or n
(see e.g.1,15). In contrast, PMS87 and qPMS9 (this paper) utilize a
variable tuple size, which adapts to the problem instance under
consideration.

There are many PMS algorithms in the literature. In a previous
paper7 we have introduced the PMS8 algorithm. In the same paper
we have performed a comparison between PMS8 and all the exact
algorithms we could find in the literature of the previous five years.
We have shown that PMS8 outperforms these algorithms. Ever since
the publishing of PMS8, one other exact qPMS algorithm has been
published, called TraverStringRef11. Therefore, in this paper we com-
pare qPMS9 with PMS8 and TraverStringRef.

The TraverStringRef algorithm11 is an algorithm for the qPMS
problem, based on the earlier qPMS714 algorithm. qPMS714 can solve,
for example, the challenging DNA instance (23,9) whereas
TraverStringRef11 can solve (25,10), in a reasonable amount of time
(no more than two days using commodity processors). In the case of
the PMS problem, the PMS8 algorithm7 can solve the DNA instances
(25,10), on a single core machine, and (26,11) on a multi-core
machine. We have used PMS8 as the basis for the new qPMS9 algo-
rithm. The qPMS9 algorithm extends PMS8 in several ways. First,
qPMS9 introduces a search procedure which significantly increases
performance by allowing for better pruning of the search space.
Second, qPMS9 adds support for solving the qPMS problem, which
was lacking in PMS8. We compare qPMS9 with PMS87 and
TraverStringRef11 on several DNA and protein instances.

Methods
We start by defining the PMS and qPMS problems more formally. A string of length ,
is called an ,-mer. Given two ,-mers u and v, the number of positions where the two
,-mers differ is called their Hamming distance and is denoted as Hd(u, v). For any
string T, we denote the substring of T starting at position i and ending at position j by
T[i..j].

Table 1 | Maximum value of d such that the expected number of
spurious motifs in random datasets does not exceed 500, for , up
to 50 and q between 50% and 100%, on DNA data

max d

L q 5 50% q 5 75% q 5 100%

13 3 3 4
14 3 4 4
15 4 4 5
16 4 5 5
17 4 5 6
18 5 6 6
19 5 6 7
20 6 7 7
21 6 7 8
22 7 8 8
23 7 8 9
24 8 9 9
25 8 9 10
26 9 10 11
27 9 10 11
28 10 11 12
29 10 11 12
30 11 12 13
31 11 12 13
32 12 13 14
33 12 13 14
34 13 14 15
35 13 15 16
36 14 15 16
37 14 16 17
38 15 16 17
39 15 17 18
40 16 17 18
41 16 18 19
42 17 18 20
43 17 19 20
44 18 19 21
45 18 20 21
46 19 21 22
47 19 21 22
48 20 22 23
49 20 22 24
50 21 23 24

Table 2 | Maximum value of d such that the expected number of
spurious motifs in random datasets does not exceed 500, for , up
to 30 and q between 50% and 100%, on protein data

max d

L q 5 50% q 5 75% q 5 100%

9 4 4 5
10 4 5 5
11 5 6 6
12 6 6 7
13 6 7 8
14 7 8 8
15 8 9 9
16 9 9 10
17 9 10 11
18 10 11 11
19 11 12 12
20 11 12 13
21 12 13 14
22 13 14 15
23 14 15 15
24 14 15 16
25 15 16 17
26 16 17 18
27 16 18 19
28 17 18 19
29 18 19 20
30 19 20 21

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7813 | DOI: 10.1038/srep07813 3

Definition 2. The PMS problem: Given n sequences s1, s2, …, sn, over an alphabet S,
and two integers , and d, identify all ,-mers M, M g Sl, such that ;i, 1 # i # n, ’ji,
1 # ji # jsij 2 l 1 1, such that Hd(M, si[ji..ji 1 l 2 1]) # d.

Definition 3. The qPMS problem: same as the PMS problem, however the motif
appears in at least q% of the strings, instead of all of them. PMS is a special case of qPMS
for which q 5 100%.

Another useful notion is that of a d-neighborhood. Given a tuple of ,-mers T 5 (t1,
t2, …, ts), the common d-neighborhood of T includes all the ,-mers r such that Hd(r,
ti) # d, m1 # i # s.

We now define the consensus ,-mer and the consensus total distance for a tuple of
,-mers. The consensus ,-mer for a tuple of ,-mers T 5 (t1, …, tk) is an ,-mer u where
u[i] is the most common character among (t1[i], t2[i], …, tk[i]) for each 1 # i # ,. If p
is the consensus ,-mer for T then the consensus total distance of T is defined as
Cd Tð Þ~

X
u[T

Hd u,pð Þ. While the consensus string is generally not a motif, the

consensus total distance provides a lower bound on the total distance between any
motif and a tuple of ,-mers.

qPMS9. As indicated previously, most of the motif search algorithms combine a
sample driven approach with a pattern driven approach. In the sample driven part,
tuples of ,-mers (t1, t2, …, tk) are generated, where ti is an ,-mer in Si. Then, in the
pattern driven part, for each tuple, its common d-neighborhood is generated. Every ,-
mer in the neighborhood is a candidate motif. In PMS87 and qPMS9, the tuple size k is
variable. By default, a good value for k is estimated automatically based on the input
parameters (see Ref. 7 for details), or k can be user specified.

Tuple Generation. In the sample driven part of PMS8, tuples T 5 (t1, t2, …, tk), where
ti is an ,-mer from string si, ;i 5 1..k, are generated based on the following principles.
First, if T has a common d-neighborhood, then every subset of T has a common d-
neighborhood. Second, for a motif to exist, there has to be at least one ,-mer u in each
of the remaining strings sk 1 1, sk 1 2, …, sn such that T < {u} has a common d-
neighborhood. We call such ,-mers u ‘‘alive’’ with respect to tuple T. As we add ,-
mers to T we update the alive ,-mers and reorder the strings in increasing order of the
number of alive ,-mers. This reordering reduces the running time because it leads to
generating fewer tuples overall.

In qPMS9 we change the criteria by which the strings are reordered, as follows. Let
T be the current tuple of ,-mers and let u be an alive ,-mer with respect to T. If we add
u to T, then the consensus total distance of T increases. We compute this additional
distance Cd(T<{u}) 2 Cd(T). For each of the remaining strings, we compute the
minimum additional distance for any alive ,-mer in that string. Then we sort the
strings decreasingly by the minimum additional distance. Therefore, we give priority
to the string with the largest minimum additional distance. If two strings have the

same minimum additional distance, we give priority to the string with fewer alive ,-
mers. The intuition is that larger additional distance could indicate more ‘‘diversity’’
among the ,-mers in the tuple, which means smaller common d-neighborhoods. The
pseudocode for generating tuples T is given in Figure 1. We invoke the algorithm as
GenTuples({}, k, R) where the matrix R contains all the ,-mers in all the input strings,
grouped as one row per string.

Neighborhood Generation. For every tuple T, obtained as described in the previous
section, we generate the common d-neighbors of the ,-mers in the tuple. In qPMS9,
the neighbor generation uses the same process as in PMS87. For the sake of
completeness, we briefly review the process.

Given a tuple T 5 (t1, t2, …, tk) of ,-mers, we want to generate all ,-mers M such
that Hd(ti, M) # d, ;i 5 1..k. We traverse the tree of all possible ,-mers. A node at
depth r, which represents an r-mer, is not explored deeper if certain pruning con-
ditions are met. Necessary and sufficient conditions for 2 and 3 ,-mers to have a
common neighbor are given in Ref. 7. The same paper gives necessary conditions for
more than 3 ,-mers to have a common neighbor. The interested reader is referred to
the PMS8 paper7 for a more in depth description of neighborhood generation.

Adding Quorum Support. We extend the algorithm to solve the qPMS problem. In
the qPMS problem, when we generate tuples, we may ‘‘skip’’ some of the strings
entirely. This translates to the implementation as follows: in the PMS version we
successively try every alive ,-mer in a given string by adding it to the tuple T and
recursively calling the algorithm for the remaining strings. For the qPMS version we
have an additional step where, if the value of q permits, we skip the current string and
try ,-mers from the next string. At all times we keep track of how many strings we
have skipped. The pseudocode for this algorithm is given in Figure 2. We invoke the

algorithm as QGenerateTuples(n 2 Q 1 1, {}, 0, k, R) where Q~t
qn
100

s and R contains

all the ,-mers in all the strings.

Parallel Algorithm. In PMS87 the search space is split into m 5 js1j 2 , 1 1
independent subproblems P1, P2, …, Pm, where Pi explores the d-neighborhood of ,-
mer s1[i..i 1 , 2 1]. In the parallel implementation, processor 0 acts as both a master
and a worker, the other processors are workers. Each worker requests a subproblem
from the master, solves it, then repeats until all subproblems have been solved.
Communication between processors is done using the Message Passing Interface
(MPI).

In qPMS9, we extend the previous idea to the q version. We split the problem into
subproblems P1,1, P1,2, …, P1, s1j j{‘z1, P2,1, P2,2, …, P2, s2j j{‘z1, …, Pr,1, Pr,2, …,

Pr, srj j{‘z1 where r 5 n 2 Q 1 1 and Q~t
qn
100

s. Problem Pi,j explores the d-neigh-

borhood of the j-th ,-lmer in string si and searches for ,-mers M such that there are
Q 2 1 instances of M in strings si11, …, sn. Notice that Q is fixed, therefore sub-
problems Pi,j get progressively easier as i increases.

Test Data Generation. As mentioned in the introduction, PMS algorithms are
typically tested on datasets generated as follows. 20 strings of length 600 each are
generated from the i.i.d. We choose an ,-mer M as a motif and plant modified
versions of it in q% of the n strings. Each planted instance is modified in d random
positions.

It is useful to estimate how many ‘‘spurious’’ motifs (motifs expected by random
chance) will be found in a random sample. For that, we make the following obser-
vations. The probability that a random ,-mer u is within distance at most d from
another ,-mer v is

p ‘,d,Sð Þ~
Pd

i~0
‘
i

� �
Sj j{1ð Þi

S‘
ð1Þ

The probability that an ,-mer is within distance d from any of the ,-mers in a string
S of length m is:

Table 4 | Runtimes for protein data when q 5 100%. The time is
given in hours (h), minutes (m) or seconds (s), averaged over 5
datasets. TL means that the program runs for more than 24 h

(,, d) TraverStringRef PMS8 qPMS9

(10,5) 2.6 m 42 s 37 s
(11,6) 1.67 h 11 m 6.1 m
(13,7) 58.2 m 2.6 m 19 s
(14,8) TL 1.03 h 29.6 m
(15,8) 28.5 m 1.2 m 1.1 m
(17,9) 16.6 m 45 s 43 s
(19,10) 5.9 m 32 s 32 s
(19,11) TL 1.23 h 30.1 m
(22,12) 3.73 h 1.2 m 1.1 m
(24,13) 1.84 h 48 s 47 s
(26,14) 30.7 m 31 s 32 s
(26,15) TL 1.19 h 12.5 m

Table 5 | Runtimes for DNA data when q 5 50%. The time is given
in hours (h), minutes (m) or seconds (s), averaged over 5 datasets

Instance TraverStringRef qPMS9

(20,6) 3 m 1.5 m
(22,7) 12.9 m 6.3 m
(23,7) 2.6 m 48 s
(24,8) 56 m 26.3 m
(25,8) 9.9 m 3.1 m
(26,9) 4.31 h 1.55 h
(27,9) 39.9 m 10.6 m
(28,10) 20.86 h 5.15 h
(29,10) 2.89 h 34.5 m

Table 3 | Runtimes for DNA data when q 5 100%. The time is
given in hours (h), minutes (m) or seconds (s), averaged over 5
datasets

(,, d) TraverStringRef PMS8 qPMS9

(13,4) 14 s 7 s 6 s
(15,5) 55 s 48 s 34 s
(17,6) 3.5 m 5.2 m 2.7 m
(19,7) 14.5 m 26.6 m 13.4 m
(21,8) 59.8 m 1.64 h 45.4 m
(23,9) 4.08 h 5.48 h 2.26 h
(25,10) 17.55 h 15.45 h 6.3 h

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7813 | DOI: 10.1038/srep07813 4

P m,‘,d,Sð Þ~1{ 1{p ‘,d,Sð Þð Þm{‘z1 ð2Þ

The probability that an ,-mer is within distance d from at least q out of n strings of
length m each is:

Q q,n,m,‘,d,Sð Þ~
Xn

i~q

n
i

� �
P m,‘,d,Sð Þi 1{P m,‘,d,Sð Þð Þn{i ð3Þ

Therefore, the expected number of motifs for a given qPMS instance is: jSj,Q(q, n,
m, ,, S). Based on these formulas, we compute for every , the largest value of d such
that the number of spurious motifs does not exceed 500. These values are presented in
table 1 for DNA and table 2 for protein.

Results
In this section we analyze the running times of PMS87,
TraverStringRef11 and qPMS9, on several synthetic DNA and protein

Table 6 | Runtimes for protein data when q 5 50%. The time is
given in hours (h), minutes (m) or seconds (s), averaged over 5
datasets. TL means that the program runs for more than 24 h

Instance TraverStringRef qPMS9

(9,4) 11.3 m 3.7 m
(11,5) 14 m 4.1 m
(12,6) 6.22 h 57.5 m
(13,6) 17.4 m 4.9 m
(14,7) 5.09 h 41.3 m
(15,8) TL 4.62 h
(17,9) TL 1.79 h
(18,9) 2.71 h 33.1 m
(20,10) 2.33 h 33.3 m
(21,11) TL 50.9 m

Figure 3 | qPMS9 runtimes on DNA datasets for multiple combinations of , and d where q 5 100%. The runtimes are averages over 5 random datasets.

The times are given in hours (h) minutes (m) or seconds (s). Grey cells indicate instances that are expected to have more than 500 motifs by

random chance (spurious motifs). Blue cells indicate that the program used 48 cores whereas white cells indicate single core execution. Instances in orange

could not be solved efficiently.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7813 | DOI: 10.1038/srep07813 5

instances. For every instance of the problem we generated 5 datasets
as described in the Methods section. For q 5 100% we compare all
three algorithms, for q 5 50% we compare only the algorithms that
solve the quorum PMS problem: TraverStringRef and qPMS9. All
programs were executed on the Hornet cluster at the University of
Connecticut, which is a highend, 104-node, 1408-core High
Performance Computing cluster. For our experiments we used
Intel Xeon X5650 Westmere cores. Most results refer to single core
execution, unless specified otherwise.

In table 3 we compare the three algorithm on DNA data when q 5

100%. In table 4 we show a similar comparison on protein data.
In table 5 we compare TraverStringRef and qPMS9 on DNA data

when q 5 50%. In table 6 we compare TraverStringRef and qPMS9
on protein data when q 5 50%.

In Figure 3 we present the running time of qPMS9 on DNA data-
sets for all combinations of , and d with , up to 50 and d up to 25,
with q 5 100%. In Figure 4 we present the running time of qPMS9 on
protein datasets for all combinations of , and d with , up to 30 and d
up to 21, with q 5 100%.

Discussion
We have presented qPMS9, an efficient algorithm for Quorum
Planted Motif Search. The algorithm is based on the PMS8 algo-
rithm7. qPMS9 includes a new procedure for exploring the search
space and adds support for the quorum version of PMS. We com-
pared qPMS9 with two state of the art algorithms and showed that
qPMS9 is very competitive. qPMS9 is the first algorithm to solve the
challenging DNA instances (28, 12) and (30, 13). qPMS9 can also

efficiently solve instances with larger , and d such as (50, 21) for
DNA data or (30, 18) for protein data.

For future work, one of our reviewers kindly pointed out that our
approach of filtering ,-mers for Hamming Distances could benefit
for the work in Ref. 16.

1. Pevzner, P. A. & Sze, S.-H. Combinatorial approaches to finding subtle signals in
dna sequences. In Proceedings of the Eighth International Conference on Intelligent
Systems for Molecular Biology, La Jolla / San Diego, CA, USA, vol. 8, 269–278
(AAAI Press 2000).

2. Buhler, J. & Tompa, M. Finding motifs using random projections. J. Comp. Biol. 9,
225–242 (2002).

3. Eskin, E. & Pevzner, P. A. Finding composite regulatory patterns in dna sequences.
Bioinformatics 18, 354–363 (2002).

4. Price, A., Ramabhadran, S. & Pevzner, P. A. Finding subtle motifs by branching
from sample strings. Bioinformatics 19, 149–155 (2003).

5. Kevin Lanctot, J., Li, M., Ma, B., Wang, S. & Zhang, L. Distinguishing string
selection problems. Inform. Comput. 185, 41–55 (2003).

6. Davila, J., Balla, S. & Rajasekaran, S. Fast and practical algorithms for
planted (l, d) motif search. IEEE/ACM Trans. Comput. Biol. Bioinf. 4, 544–552
(2007).

7. Nicolae, M. & Rajasekaran, S. Efficient sequential and parallel algorithms for
planted motif search. BMC Bioinformatics 15, 34 (2014).

8. Rajasekaran, S., Balla, S. & Huang, C.-H. Exact algorithms for planted motif
problems. J. Comp. Biol. 12, 1117–1128 (2005).

9. Rajasekaran, S. & Dinh, H. A speedup technique for (l, d)-motif finding
algorithms. BMC Res Notes 4, 54 (2011).

10. Yu, Q., Huo, H., Zhang, Y. & Guo, H. Pairmotif: A new pattern-driven algorithm
for planted (l, d) dna motif search. PLoS ONE 7, e48442 (2012).

11. Tanaka, S. Improved exact enumerative algorithms for the planted
(l, d)-motif search problem. IEEE/ACM Trans. Comput. Biol. Bioinf. 11, 361–374
(2014).

Figure 4 | qPMS9 runtimes on protein datasets for multiple combinations of , and d where q 5 100%. The runtimes are averages over 5 random

datasets. The times are given in hours (h) minutes (m) or seconds (s). Grey cells indicate instances that are expected to have more than 500 motifs

by random chance (spurious motifs). Blue cells indicate that the program used 48 cores whereas white cells indicate single core execution. Instances in

orange could not be solved efficiently.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7813 | DOI: 10.1038/srep07813 6

12. Dinh, H., Rajasekaran, S. & Kundeti, V. Pms5: an efficient exact algorithm for the
(l, d)-motif finding problem. BMC bioinformatics 12, 410 (2011).

13. Bandyopadhyay, S., Sahni, S. & Rajasekaran, S. Pms6: A fast algorithm for motif
discovery. In IEEE 2nd International Conference on Computational Advances in
Bio and Medical Sciences, ICCABS 2012, Las Vegas, NV, USA, February 23–25,
2012 1–6 (IEEE, 2012).

14. Dinh, H., Rajasekaran, S. & Davila, J. qpms7: A fast algorithm for finding (l, d)-
motifs in dna and protein sequences. PLoS ONE 7, e41425 (2012).

15. Roy, I. & Aluru, S. Finding motifs in biological sequences using the
micron automata processor. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, IPDPS 14, Washington, DC, USA 415–424
(IEEE, 2014).

16. Peterlongo, P., Pisanti, N., Boyer, F., do Lago, A. P. & Sagot, M.-F. Lossless filter for
multiple repetitions with hamming distance. JDA 6, 497–509 (2008).

Author contributions
M.N. and S.R. designed and analyzed the algorithms. M.N. implemented the algorithms and
carried out the empirical experiments. M.N. and S.R. analyzed the empirical results and
drafted the manuscript. All authors read and approved the final manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Nicolae, M. & Rajasekaran, S. qPMS9: An Efficient Algorithm for
Quorum Planted Motif Search. Sci. Rep. 5, 7813; DOI:10.1038/srep07813 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International
License. The images or other third party material in this article are included in the
article’s Creative Commons license, unless indicated otherwise in the credit line; if
the material is not included under the Creative Commons license, users will need
to obtain permission from the license holder in order to reproduce the material. To
view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 7813 | DOI: 10.1038/srep07813 7

http://creativecommons.org/licenses/by/4.0/

DOI: 10.1038/srep09544

CORRIGENDUM: qPMS9: An Efficient Algorithm for Quorum Planted Motif
Search

Marius Nicolae & Sanguthevar Rajasekaran

The Acknowledgements section in this Article was omitted. The Acknowledgements should read:

"This work has been supported in part by the following grants: NSF 0829916 and NIH R01-LM010101."

SUBJECT AREAS:
COMPUTATIONAL

BIOLOGY AND
BIOINFORMATICS

GENOME INFORMATICS

COMPUTER SCIENCE

SCIENTIFIC REPORTS:
5 : 7813

DOI: 10.1038/srep07813
(2015)

Published:
15 January 2015

Updated:
27 March 2015

SCIENTIFIC REPORTS | 5 : 9544 | DOI: 10.1038/srep09544 1

	qPMS9: An Efficient Algorithm for Quorum Planted Motif Search
	Introduction
	Methods
	qPMS9
	Tuple Generation
	Neighborhood Generation
	Adding Quorum Support
	Parallel Algorithm
	Test Data Generation

	Results
	Discussion
	References

