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I. Introducticn

This paper evaluates the out of sample performance of some univariate
models for exchange rate wolatility, using bilateral weekly data for the dollar
versus che currencies of Canada, France, Germany, Japan and the United Kingdom,
1973-1989, and the corresponding pair of Eurodeposits, 1981-1989. The models
considered include homoskedastic, GARCH, and nonparametric ones, as well as
autoregressions in both the absolute value and square of exchange rate changes.
The metric we use to compare the models is a utility based one: how much would
an invescor with a mean-variance utility function, wheo uses the estimates of omne
of these models co divide her wealth between a pair of Eurodeposits, be willing
to pay to use one model rather than another?

Recent research on conditional wvolatility has established that for many
financial wvariables, including exchangs rates, squared changes that are large
tend to be followed by squared changes that are also large (Bollerslev et al.
(1990)). This empirical fact has stimulated a variety of formal statistical
models. Since the relative merits of many of these models are as yet not well
established, there is a need for systematic evaluation and comparison.

Some previous authors have compared the out of sample performance of
univariate models applied to stock price data. Using a mean squared error
criterion, Pagan and Schwert (1990), found that GARCH and ARMA models are
preferred to nonparametric and Markov switching ones, Akgiray (1989) that GARCH
dominates naive and ARMA models. Using a criterion based on performance in a
simulated market, Engle et al. (1990) also found GARCH preferable to naive and
ARMA models. Finally, Friedman and Kuctner (1988) compared multivariate GARCH
and AR models, using stock and bond data. Among other statistics, they examined

mean squared errors, but did not seem to find strong grounds for preferring one



model to another.

One inessential sense in which the present paper differs from any of these
is in its use of exchange rate data, which we study largely because such data
apparently have yet to be used in a systematic comparison of wvolatility models.
More importantly, we also depart from earlier work in how we measure
performance. An appropriate measure of performance depends on the use to which
one puts the estimates of volatility, and our measure is probably not the best
one if one wants to, say, study the links between observable macro variables and
volatilicy (e.g., Schwert (1989a)). But insofar as models for volatility are
motivated by reference to investment by risk averse utility maximizers--as,
indeed, they often are (e.g., Engle and Bollerslev (1986), Friedman and Kuttner
(1988))--a utility based measure seems quite appropriate.?!

Our measure is based on the following presumption: at a given point in
time, one estimate of a conditional variance is better than another if
investment decisions based on it lead to higher (population) expected utility.
Similarly, an estimator or model of a conditional variance is preferred if, on
average, over many time periods, it leads to higher expected utility. We show
that under the assumption that utility is either (a)exponential, and asset
recurns are jointly normal, or (b)quadratic, such a utility based criterion is
fundamentally different from statistical ones based on mean squared and mean
absolute error: the utility criterion is asymmetric, with underestimates of the
population conditional variance-covariance matrix leading to lower expected
utility than equivalent overestimates.

To illustrate the use of our measure empirically, we assume that an
investor divides her wealth between two assets, weekly or quarterly Eurodeposits

denominated in (1l)dellars and (2)the currency of ome other country (Canada,



France, Germany, Japan, or the United Kingdom). We consider an investor who
knows the population conditional variance of exchange rate changes, but is
forced to make a wealth allocation using not the population value but one of a
set of estimates. Different estimates will lead to different wealth allocations
and, therefore, different levels of expected utility. We envision the investor
using estimates from each of our models to produce a sequence of hypothetical
wealth allocations over a number of successive periods, and ask the following
which model’s implied allocations produce the highest expected utility, on
average, and how much would such an investor pay for the right to allocate
wealth according to that model rather than another?

For quadratic utility, we show that one can estimate the average expected
utilicy produced using a given volatility model, even when cone does not have our
hypothetical investor's knowledge of the time series of population conditicnal
variances. 1f, for a given level of beginning of period wealth, one model
produces higher expected utility, on average, than does another, then the becter
model will produce equal average utility with a lower beginning level. We
interpret the difference in beginning wealth as the average per period fee that
our hypothetical investor would be willing to pay to use the higher rather than
lower utility model.

Although there was some variation across data sets, we find that GARCH
models tend to do best. Depending on the dataset, an investor would typically
be willing to pay about .05 to 2 percent, or 5 to 200 basis points of her
wealth, annually, to switch to GARCH from another model. <Confidence intervals
around these point estimates, however, tend to be large. The t-statisctics
indicate that the fee is statistically significantly different from zero at

conventional levels only about one fourth of the time; F-tests of the null that



4
all six models yleld the same utility are significant a little less than half
the time. Under an out of sample mean squared error criterion, however, the
statistical significance of differences across models is even less pronounced.

One wav to gauge the aconomic significance of the utility based figures is
to interpret them as a transactions fee that a professional money manager could
charge an investor capable of estimating, say, homoskedastic but not GARCH
models of a2xchange rate risk. As such, the 5 to 200 range seems to bracket what
Wall Street mutual funds charge for their services (Ippolito (1989), New York
Times, May 14, 1991, page Fl4), which seems to us a substantial figure.

While the immediate motivation for our research is the relatively recent
literature on conditional volatility, our results are relevant for evaluation of
any models for second moments of asset returns. Eun and Resnick (1984), for
example, use a mean squared error criterion in evaluating models for
correlations across share prices, motivating their study with reference to
mean-variance portfolio analysis. An implication of this paper is that such a
criterion is probably not the best.

Before turning to the body of the paper, two introductory cautions seem
advisable, to set the reader's expectations straight. First, while we have
tried to make a sensible choice of models to study, we do not claim to be
comprehensive, and some readers may feel that we have unwisely excluded some
important models. For such readers we emphasize that we consider one of our
contributions to be the technique used to produce the rankings of the models.
Second, we abstract from a number of potentially important complications
involved in real world investments. We ignore, for example, default risk,
transactions costs such as bid-asked spreads, and issues about the timing of

settlement of transactions, including that our exchange and interest rate
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series, which we obtal om zwo different sources, are sampled at slightly
differsnt ctimes ‘of the same day), we also acknowledge that the very simple

portfolios that we consider are not well diversified. Our aim is simply to get

a rough idea of the magnitude of the potential benefits of better volatility

models, not zo guancify these benefits to many decimal places.

Section I briefly ouctlines the motivation for our utiliey based measure
rather than a scandard scatistical one, in a more general framework than is
required for our empirical work. Section 1I1 describes how we apply our measufe
to exchange rate data, Section IV our data and models, Section V our empirical
results. Section YI concludes. An Appendix contains some technical details,

and an additional appendix available from the authors upon request contains some

results omitted from the paper to save space.

171, Urilitv Versus Statistical Measures of Estimator Quality

A basic message of our paper is that when comparing estimators of
conditional variances, rankings from a utility based criterion might differ from
those from a sctacistical mean squared or mean absolute error criterionm, because
of a certain asymmerry in utility evaluation of estimators. A general statement
is given in the proposition below.

We begin, however, with a simple numerical example. This example does not
illusctrate the asymmetry, but it does point out that utility and statistical
measures may be dramatically different, and thus motivates our desire to
estimate a utility based measure. Suppose one has an exponential utilicy
funcrion, U(W..;) =~ -exp(-6W. ), where §>0 and W, is period t+l wealth.

Suppose that there are three assets, one riskless. Let p = (py,p;)' and H

denote the mean and covariance matrix of the (2x1) vector of excess returns, f=



6
(f1,£2)" the (2x1) vector of fractions of period t wealth put in the two risky
assets. As is well known, maximization of expected utility leads to f =
(1/8W)H 'y, where W is period t wealth. Suppose further that H is the identicy
matrix, and uy=p,>0. Then the optimal fraction satisfies £y=f,=(u/6W)=(u,/8W).
Assume that an investment decision must be made using the true x and one of
two noisy estimates of H,

2 -1 1 0

-

|
Hy =
|

| “ | |

| Hp = | |
-1 2] |0 1.001)]
Which is the better estimate of the true H (which equals the identity matrix)? By
common statistical measures such as the average of the squared differences between
the nonredundant elements of H and the ﬁi’s, ﬁz is "closer” to H and therefore is
better. But a routine calculation indicates that ﬁl leads to exactly the optimal
(expected utility maximizing) fraction. The basic presumption of this paper is
that ﬁl is therefore a preferable estimate.

This numerical example obviously is special. We now state a proposition that
illustrates that, in a very general sense, utility and standard statistical
criteria are different. Let W,,, be wealth in period t+l. Assume: (1)The utility
function is either (a)exponential, U(W;) = -exp(-0W,4y), 6>0, and asset returns
are normally distributed, or (b)quadratic, U(W,.) = Wepr - -59W%,;, >0, and asset
returns have finite means and variances. (2)There are k=1 risky assets, with
positive definite variance-covariance matrix H. There may or may not be a (k+l)st
riskless asset. If not, k=2; if so, expected returns on the risky assets are
greater than those on the riskless asset. (3)There are no constraints on short
sales; the fraction of wealth put in a given asset may be less than zero or

greater than one. (4)The population conditional mean of returns is used in making

investment decisions.



Assumptions (1)-(3) are used to get a convenient closed form solution.
Assumption (4) is used to focus on the effects of errors in estimation of H. Note
that this assumpticn rules out a comparison of various parameterizations of GARCH-
M models, for example.

Suppose we wish to compare two estimates of H, ﬁl and ﬁz. Let EUjpey, i=1,2,
denote expected utility that results when model I is used to make an investment
decision, where the true variance covariance matrix H is used in computing
expected utility. Our basic result is that there is an asymmetry in the utility
loss from estimation error, with estimates of H that are too large being preferred
to those that are too small.

Proposition: Suppose that ﬁx-H+V, ﬁan-V, where V is a positive semidefinite
symmetric and ﬁz is a positive definite matrix. Then E,U).,,2E. Uy 4y equality holds
if and only if use of I*A{l and of ﬁz result in the allocation implied by use of the

population variance-covariance matrix H.

Algebra to derive the proposition is in the additional appendix available on
request.

To illustrate the proposition, consider Figure 1, which plots expected
utility as a function of Em:, the estimate of H, when H is a scalar and utility is
quadratic with parameters matching those in our empirical work. By assumption,
highest expecred utility occurs when ﬁmt-H-(.OlS)z-.OOOZZS. Expected utilicy
declines the farther away is gmt from h,.?2 What is to be noted is that, in
contrast to the usual mean squared or mean absolute error criterion, this
objective function s asymmetric around h,, penalizing estimates that are too small
more sharply than those that are too large. As we shall see, this asymmetry plays

a role in the empirical results.



117, Escimation of Average Utility
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is helpful to begin by defining some notation. Let

difference of weekly exchange rate (dollars per unit of (la)
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o
]
-
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]

foreign currency);

h, , = varg{e.,;) = E.ef,; = (population) variance of ey, (1b)
conditional on information generated by past e,, s=t;

ﬁmLJ = firced conditional variance of ey,;, according to model m (le)
(e.g., model m is GARCH(1l,1), or homoskedastic), estimated using
data on past e, S=T;

b, ® by s, B = gy (1d)

N = endpoint of first sample used in estimation; (le)

T = endpoint of last sample used in estimation. (1f)

Note that in (1b) the conditional variance is equated with the raw (as
opposed to central) conditional second moment of e,. This is in accord with Meese
and Rogoff (1983), Diebold and Nason (1990), Meese and Rose (1991) and the
findings summarized below that the conditional first moment of e; is zero. For
concreteness in interpreting (1b) and (lc), it may help to note that in the tables
below we report results for weekly and quarterly horizons for investment
decisions, which require estimates of h,; (weekly) and hy 4, hy 3, .... , and b g3
(quarterly). To do so for, say, weekly horizons, we obtain for each model T-N+1
ficced values ﬁmb, t=N,...,T, for models m=1,...,M, where the number of models M in
the tables below is 6. Note, finally, our dating convention: what we denote h,
corresponds to what is often called hy; or oy, (e.g., Engle (1982)).

We specialize the general enviromment described in the previous section to



one in which urility is quadratic. We assume a two country world with two assets,
one sold domestically, che other sold abroad. To focus on the question at hand,
we assume that apart from the conditional variance of exchange rate changes, all
relevant moments of the return distribution are known.

Let the utility function and wealth constraint be

utility in period t+l = W, - .5v¥W%,,, 2)

(Rig*e) + (L-E)Ren],

where W.,; and vy arsz, as in the pravious section, wealth and taste for risk, f, is
the fraction of wealth put in the foreign asset (possibly negative, possibly
greater than one), Rf,, is the gross return on the foreign asset in terms of
foreign currency and R.,; is the zross return on the domestic asset,

For zach peried, use each model, one by one, to choose the fraction of wealth
that maximizes expected utility, taking each model’'s point estimate for the
conditional variance as the correct expectation. Given the assumption that the
mean return on the asset is known, in a given period the optimal fraction will
vary across competing models only insofar as the estimates of the conditional
variance vary. Let fj, be the fraction that results when model m is used (the
axact formula is given in equation (A-1) in the appendix), Vg = W [fo (Risi+ers;) +
(1-f4.)Repq) and Uy, the resulting wealth and utilivy. If f,, depends only on
information known at time t--as it will in an out of sample study such as ours--it

is straightforward to show that mathematically expected utility may be written

EUnerr = Eo[Waeer = - 57Waest] 3)

= Wy (eerdauhy, hg) 1,
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where E, is mathematical expectacions, ¢, and d, are certain variables that depend
on y and R.,;-R],; but not on h,, and u(h:,ﬁmn) is a certain function that is linear
in h,. Explicit formulas are given in the Appendix. Figure 1, which was already
discussed in the preceding section, plots u(h:,gm‘) as a function of ﬁml, for h, =
(.015)2 (approximately the sample variance of e, in our data).

We cannot use (3) directly to determine which model yields the highest
mathematically expected utility, since the whole problem is that we do not know
the population (mathematical) expectation hy. But since u(ht,ﬁﬂc) is linear in hg,
we can get an estimate that is right on average by replacing h, with the ex-post
realized value e?,,. We therefore compute average utility for a given model by
replacing h, with the ex-post realized value e, and averaging the result for

t=N,...,T, with W, held fixed at a constant level W:

(T-N+1) 185 W cordou(ede, ho) ] = Ug. ()

In a large sample, this will be close to the average of the conditional
mathematical expectation, (T-N+1)7!'ZIE.U,,,. Of course the asymmetry in Figure 1
now revolves around e?,, rather than h,.

Average utility depends on taste for risk. Consider fixing the coefficient
of relative risk aversion (CRRA), which for quadratic utility is yW/(1-4W). 1In
this case, the variables ¢, and d; in (3) do not depend on W and expected utility
is linearly homogeneous in wealth: double wealth (holding the CRRA constant) and
expected utilicy doubles. (Of course, by fixing relative risk aversion rather
than vy, we are implicitly interpreting quadratic utility as an approximation to a
nonquadratic utility function, with the approximating choice of y dependent on

wealth.)
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By definition, the optimal model requires less wealth to yleld any specified
level of average utility than does any ziven suboptimal model. We interpret the
difference in required wealth as the average per period fee that the investor
would be willing to pay to switch from a suboptimal to the optimal model. For a
given suboptimal model, we report the ratio of this fee to an initial level of
wealth (the exact level is arbitrary, since the linear homogeneity noted in the
previous paragraph means that ratio is independent of the initial lewvel). For
convenience of interpretation, we express this in annual basis points. Example:
Suppose that with a horizon of one week, an optimal GARCH model with initial
wealth of $9999 yields the same average utility as does a suboptimal homoskedascic
model with initial wealth of $10,000, Then we report an annualized fee of 32
weeks/year x [($10,000-$9999)/$10,000)] x 100 x 100 = 52, where the first 160
converts to percentage and the second to basis points.

The appendix shows that if, say, model 1 is the optimal model, model m an

arbitrary suboptimal model, this fee may be computed as

(52/3) x 10000(1-(Up/Up)], (s)

where j is the horizon, j=1 or 13.

How does variation in risk aversion affect this fee? 1In the general
framework of the previous section, the effects are ambiguous. But when there is a
risk free asset, as in our empirical work, it can be shown that the expected
utility benefits of a better model are lower for more risk averse investors: if,
say, EUje1-EUper >0 (i.e., model 1 is better than model m), then
3(EUype;-EUgesr) /8 (CRRA)<O. The intuition is that greater risk aversion leads to

larger fractions of wealth in the safe asset and less variation in expected
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outcomes across models. A likely empirical implication is that for a given time
series of returns and volatility estimates, the higher is the CRRA yW/(1-4W), the

lower will be the estimated value of (5).3

IV. Data and Models
a. _Data

Our exchange rates are measured as dollars per unit of foreign currency,
between the U.S. and Canada, France, Germany, Japan and the United Kingdom.* The
data are Wednesday, New York noon bid rates, as published in The Federal Reserve
Bulletip.

The returns Ry, and Ry,; are Eurodeposit rates. For one week maturities, the
data are from the London market. Wednesday closing rates (which we believe are at
neon New York time, apart from variation induced by daylight savings), average of
bid and asked, were available for France, Germany, Japan, the United Kingdom and
the U.S. (but not Canada). These were kindly supplied by Karen Lewis; the

ultimate source is The london Financial Times. We cleaned up some obvious

recording errors before using these data (details available on request). For one
quarter maturicies, the data are generally from the Zurich markect, occasionally
(when Zurich data were not available) from the London market. Wednesday bid
rates, 10:00AM Swiss time (4:00AM New York time, again apart from variation
induced by daylight savings) were available for all six countries. The source is
the Bank of International Settlements. For both exchange and interest rate data,
when Wednesday was a holiday we used Thursday data; when Thursday was a holiday as
well we used Tuesday data.

After an initial observation was lost due to differencing the exchange rate

data, the exchange rate sample for each country included the 863 observations from
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March 14, 1973, to September 20, 1989. Plots and summary statistics on the
exchange rates are presented in West and Cho (1992). To conserve space, we limi:
ourselves here to a brief summary of the familiar pattern: exchange rate changes
appear to have zero unconditional means, be serially uncorrelated, have zero
skewness and very fat tails; the squares of exchange rate changes appear to be
highly serially correlated.

We arbitrarily began our out of sample exercise at the midpoint of the
exchange rate data, and the first sample for which we fir any volatility models
included the 432 observations from March 14, 1973 to June 17, 1981 (N=432 in the
notation of equation (le)); accordingly, the first interest rate observations that
we used were those for June 17, 1981. As we added additional observations, we
rolled the sample, fixing the sample size at 432, and dropping what had been the
initial observation as each additional observation was added on. The final week
used in estimation was April 5, 1989 (T=839 in equation (1lf)), which means that
our final sample spanned the 432 observations from December 17, 1980 to April 5,
1989 and the number of forecasts, as well as the size of our sample of interest
rate observations, was 408. An earlier version of this paper tried not only 1l and
13 week but 4 and 24 week horizons as well, and this accounts for our withholding
the final 24 (instead of 12) weeks of data (i.e., accounts for T=839 instead of
T=851 in (3-1f)). Results for 4 and 24 weeks are not reported since they are
similar to those for 1 and 13 weeks.

Table 1 contains some basic statistics on the foreign - U.S. differential.
For ease of interpretation, these are expressed at annualized rates; the
corresponding weekly or quarterly rates were used in the empirical work. The
standard errors here and in subsequent tables were computed by (l)applying the

asymptotic theory in Hansen (1982) to the moment conditions used to produce the
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estimates, and (2)using the Newey and West (1987) technique to estimate a certain
spectral density that this theory requires.

According to Table 1, the differentials have broadly similar patterns. Lines
(7) and (9) indicate that they tended to stay within a band about 3 percentage
points wide; line (11), which in columns (1) to (5) gives the number of weeks in
which the foreign rate is higher than the U.S. rate, reveals that the differential
rarely changed sign during cthe sample period. With the exception of the French
weekly rate, there 1s considerable serial correlation in the interest rate
differentials (lines (2) and (3)); nonetheless, computation of a statistic not
reportad in the Table, T(;l-l) (where T=408 is the sample size and ;1 is the first
order autocorrelation reported in row (2)), rejects the null of a unit root at the
five percent level in all four weekly differentials and in the Canadian and French
quarterly differentials as well.

For some brief periods in the early part of the sample, French interest rates
were rather high, at times extraordinarily so.3 These temporary spikes account for
the large standard deviation (lime (2)) and the relatively little serial
correlation in French differential (limes (3), (4)). Apart from France, the other
interest rate differentials followed more stable patterns.

In computing our urility based measure, we treat each currency in isolation,
and produce nine sets of estimates, four for weekly and five for quarterly rates.
Under our assumptions, a U.S. resident will invest a positive amount in a bond
dencminated in foreign currency only if the expected return on the bond
denominated in foreign curreney is higher than that on the dollar bond; since we
also assume that the expected change in exchange rates is zero, this happens only
if the foreign nominal return is higher. The converse is true for a foreign

resident dividing her portfolio between bonds denominated in her own and in U.S.
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currency.
It is evident from linme {11} of Table 1 that there would be little grounds

for comparing - estimates for German and Japanese exchange rates if our

hypothetical investor were a U.S. resident: since weekly and quarterly
Deutschemark rates, and quarzerly yen rates, were lower than dollar rates for
every single week in the sample, a U.S. resident dividing her wealth between
deutschemark or yen bonds on the one hand and dollar bonds on the other would
never put any money in the former. We would have a similar though less dramatic
problem for Canadian and French data if the investor were a resident of one of
those two countries. So that our utility based measure could use all 408
estimates of conditional variances, for each model and exchange rate, we elected
to make the hypothetical investor in a given week a U.S. resident if the U.S.
interest rate {s lower, a foreign resident if the foreign interest rate is lower.
For a given exchange rate, the fee that an investor would pay to switch to the
best model is then interpretad as the sum of the fees paid by investors in the two
countries.
B. Models and Estimation Techniques

Column (1) of Table 2 lists the models we estimated, column (3) the acronyms
used in some subsequent tables. Column (2) gives the formula for the one period
ahead conditional variance, except for the nouparametric estimator for which the
formula for the arbitrary j period ahead forecast is given. Since all the other
models are linear, multiperiod forecasts can be obtained by the usual recursive
prediction formulas.

The homoskedastic model (line (1)) simply set the conditional variance at all
horizons equal to the sample mean of lagged el's.

Two GARCH models were used (lines (2) and (3)). Both were estimated by
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maximum likelihood assuming conditional normality, using analytical derivatives,
with presample values of h and 2? set to sample means. Lee and Hansen (1991) and
Lumsdaine (1989) show that the conditional normality assumption is not necessary
for the consistency and asymptotic normality of the estimators. We chose
GARCH(1,1) and IGARCH from a larger set of possible GARCH models after some
preliminary in- and out of sample analysis suggested that these were the best
GARCH models.

We also studied two autoregressive models, both of which were estimated by
OLS. One autoregression used e% (line (4)). It is included because GARCH models
imply ARMA processes for e (see Bollerslev (1986)): OLS estimation of such
autoregressions therefore might perform comparably to more complicated GARCH
estimation (although under the GARCH null, such OLS estimation is asymptocically
inefficient). (In practice, this model occasionally produced negative point
estimates of the conditional variance, in which case we used the homoskedastic
estimate.) As in Schwert (1989%a, 1989b), the other autoregression used |e,[ (line
(4)). Schwert suggests the factor of (x/2) because the variance of a zero mean
normally distributed random variable is (#/2) times the square of the expected
value of its absolute value. For both autoregressions, the lag length of 12 was
chosen because for all countries in sample results indicated that such a lag
length was more than sufficient to produce a Q-statistic that implied white noise
residuals,

Finally, we also tried a nonparametric estimator (line (6)). It can be
interpreted as working off the basic definition E(e?,jle,) =~ vediiElel,; e, )del,;,
where f(el,;le,) is the density of ef,; conditional on e,. See Pagan and Ullah
(1990a,1990b) for an excellent exposition. As in Pagan and Schwert (1990) we used

a Gaussian kermel, defined in column (2), with the bandwidth b = a(N-j)"¥%, & the
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sample standard deviation of e,, t~l,...,N-j. We did not try any other kearmel.
did a little experimentation with some alternative fixed bandwidths and
information sets, comparing out of sample mean squared srrors, but found that

these yielded similar results.

V. Empirical Results

For our utility based measure, we report in detail results with a CRRA of omne
(i.e., W/(1-yW)=1, in the notation of section III); below, we summarize results
with a CRRA of 10. Table 3 has estimates and asymptotic standard errors of (5),
with Eurodeposits of one week maturity in panel A, one quarter maturicy in panel
B.

One's eyes are drawn to the "0.000" entries for GARCH(1,l), which appear for
five of the nine rows. IGARCH yielded the highest average utility in two ocher
data sets (Germany, both horizons), and was second to GARCH(l,1l) in four others.
The nonparametric model was best for France (weekly) and Canada (quarterly), but
otherwise did not perform very impressively. The remaining three models generally
did poorly. Note that the fine performance of the GARCH models as a class is not
an artifact of the presence of two such models: had we not estimated IGARCH
models, GARCH(1l,1) would have been best in 6 rather than 5 datasets; had we not
estimated GARCH{1,1) models, IGARCH would have been best in 6 rather than 2
datasets.

The statistical significance of differences across models is weak, however.
Only five of the twenty entries in Table 3A, and seven of the twenty five entries
in Table 3B are significantly different from zero at the ten percent level (two-
tailed test). As indicated in the last column of each panel, the nine tests for

the equality of urility levels across all models is rejected at the five percent
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level once and at the ten but not five percent level twice.

The economic significance of differences across models appears to be more
pronounced. In the weekly data in Table 3A, the four non-GARCH models had three
digit estimates more often than not, indicating that an investor would be willing
to give up mere than 100 basis points of her wealth, annually, to switch from
using one of these models to the optimal one. At the longer horizon, performance
is more similar across models: the median figure in panel B is 45, in panel A is
187. This is consistent with the well known fact that conditional
heteroskedasticity in exchange rates tends to die out rapidly (Diebold (1588)).

One way to gauge these figures is to interpret them as a fee that a
professional money manager could charge an investor not capable of estimating
GARCH models. As such, these figures seem to be above what Wall Street mutual
funds typically charge for their services (Ippolito (1989), New York Times, May
14, 1991, page F14), which suggest to us that they are substantial.

Table 4 summarizes some experiments we performed to see whether these results
are sensitive to the sample used and to the choice of relative risk aversion. 1In
Table 4, specification A is the one used in Table 3, and is repeated for
convenience. Specification B recalculated the entries in Table 3 using each of
the two halves of the sample rather than the whole sample, specification C
recalculated using each of the four quarters of the sample. Specification D
recalculated using the whole sample, and a higher assumed level of risk aversion.

As one can see in column 2 of panel B, GARCH models tended to perform best in
all these additional experiments. Columns 3 and &4 indicate that statistical
significance of differences between models about as strong as was suggested by
Table 3. Column 1 indicates that the estimates of the wealth one would sacrifice

to use the best model are a little lower in the later parts of the sample, and
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that increased risk aversion (specification D), which, as we noted above, will
lead to a narrowing of differences across models, happens to do so rather sharplv.
We therefore slightly amend our summary of results, to state that our estimates
imply that an investor would be willing to give up 5 to 200 basis points of her
wealch, annually, to switch to GARCH from another model; even the lower bound of
this range strikes us as substantial.

How do these results compare with those of the usual mean squared error
criterion? Table 5 presents rankings by this criterion, for a one week horizon.
(The mean squared errors underlying the rankings are available on request.) While
in each country either GARCH(1l,1l) or IGARCH has the lowest mean squared error, the
GARCH(1,1) model overall does mnot perform as well as it did by the utility based
criterion (see the entries for France and Germany). Moreover, the x*(5) statistics
in the next to last column suggest that there is little to recommend one model
over amother, in the sense that for no country can one reject the null that all
six mean squared errors are the same at conventional significance levels. Even
more striking is that there is precious little evidence that whichever GARCH model
had the lowest mean squared error is substantially better than the homoskedastic
model. The last column indicates that one cannot reject the null that the mean
squared error for the homoskedastic model is the same as the best GARCH model at
anything close to conventional significance levels. We conclude that the mean
squared error criterion also favors GARCH as a class, but not as sharply as does
our utility based criterion.

We close this section with a closer look at a particular period, which
suggests that it is the asymmetry in our utility based criterion that accounts for
the differences between mean squared error and utility rankings. A comparison of

Tables 3 and 5 indicated to us that a detailed examination of French data might be
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revealing in this connection, because for such data CARCH(1l,1) does poorly by the
mean squared error, well by the utility based criterion. Consider the 12 weeks
from August 14, 1985 to November 6, 1985. The length of this interval was chesen
because the relevant figures could be graphed clearly; the dating of this interval
was chosen because it is centered around the Plaza Accord, which was announced on
September 22, 1985, and which caused the largest weekly change in the dollar/franc
exchange rate in our sample (7.7 percent).

Figure 2A plots the annualized interest rate differential, which we present
simply to reassure the reader that the estimates of our utility based measure that
we are about to present are not based on unusual interest rates. Figure 2B plots
the absolute value of the exchange rate together with the square root of the
corresponding conditional variance for the GARCH(1l,1), IGARCH, and homoskedastic
model. Only three models, and square roots rather than squares, were plotted to
make the figure more legible. Figure 2C plots the evolution over time of
estimates of the wealth an investor would sacrifice to use GARCH(1l,l); the first
estimate, for 8/14/85, 1s based on one observation, the final estimate, for
11/6/85, is based on 13.

In the first three weeks of this period, Figure 2B suggests that GARCH(1,l)
did a poorer job of fitting the realized square of the exchange rate than did the
other two models, and Figure 2C bears out this impression. During the next four
weeks, from 9/3 to 9/25, it is hard to tell from Figure 2B which models are
tracking the exchange rate best. But Figure 2C indicates that by 9/25, the
GARCH(1,1) model delivered the highest average utility, a ranking that was
maintained until the end of the 13 week period that is graphed. In comparing
Figures 2B and 2C, what is particularly striking is (1)the degeneration of t%e

homoskedastic relative to the GARCH(1l,1) model during the week ending 9/25 (the
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week of the Plaza accord), and (2)the continued domination of GARCH(1,1) afrer
9/25 despite its substantial overestimates of the conditional variance.® This
illustrates the asymmetry of the utility based criterion: it may be seen in Figure
2B that the homoskedastic model underestimated only slightly relative to the
GARCH(1,1) model for the week ending 9/25, and that the GARCH(1l,1l) model
overestimated dramatically relative to the homoskedastic model in some subsequent
weeks. But the underestimate has a much stronger effect on utility than do the
overestimates.

Figure 2B suggests to the eye that the GARCH(1,l) model does poorly by a mean
squared error criterion. This impression is borne out by a formal calculation.
Table 6 contains wealth sacrifices and rankings by mean squared errors for all six
models, for this 13 week period. GARCH(1,1) was the best by the utility based

criterion, worst by the mean squared error criterion.

VI. Conclusions

We conclude with some suggestions for future research. An obvious
possibility is to see if other models, such as those surveyed in Bollerslev et al.
(1990), dominate GARCH. Another is to apply our analysis to a portfolio of assets
that is bectter diversified, such as one that includes equities. A third is to
permit flexible use of a variety of models by allowing for weighted combinations
of fitted conditional means and variances and/or implied fracrions, possibly with
time varying weights. Finally, it would be very desirable to compare volatility
models in an environment of dynamic rather than static utility maximization.
Footnotes
1. For a model of the conditional mean of stock returns, McCulloch and Rossi

(1991) also use a utility approach, and Breen et al. (1989) aim, as do we, to
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estimate how much an investor would pay to use a model.
2. This scalar result does not generalize in an obvious way to higher dimensions.
Tf H is a matrix, it is possible to have ﬁl > ﬁz > H (where for matrices A and B,
A>B means A-B ls positive definite) with EU; ., > EUz.,.
3. It is not absolutely certain that in any given sample increased risk aversion
will lead to a lower fee; a sufficient condition is Uy, -Uy, >0 for all t.
4. We also obtained Italian data. But in sample statistics suggest a nonzero
unconditional mean. We dropped Italy rather than fit means as well as variances.
5. On at least one occasion, the high rate preceded an EMS realigmment that
depreciated the franc: the interest rate differential of 306 percent (Table la,
column 2, line 10; corresponding weekly rate is about 2.7 percent), occurred on
March 16, 1983, and the following week there was a realignment that depreciated
the franc against the Deutschemark by about 8 percent (Edison and Kaminsky
(1991)). This suggests that our assumption the change in exchange rates is never
predictable is a little extreme, at least in the first part of the sample; in the
empirical work we therefore make sure that our results hold when we exclude the
earlier parts of the sample.
6. Here, we are identifying the square of the exchange rate with the population
conditional variance, although these in fact differ by a zero mean expectational
error; note that the fact that the sample contains only 13 observations means that
this expectational error may contribute substantially to our estimates of average

utility.
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Appendix

Average utilicy is estimated as follows. For a one period (ome week)
horizon, use models m=1,...,M to solve

MaxX (rme; [ EeUper:=E, (Wgeer- . 57Wa.41) [model m used to compute E.el)

$.C. Warer = Welfnc(River) + (L-foe)Renls

Assume that the interest rate differential is uncorrelated with the change
in exchange rates, E.(Rl,;-Rusy)ers; = 0. Let gey = Riy-Reyr > 0, W=¥,, and assume
1-9WR¢+; > O (otherwise the investor can reach satiation with certaincy).

Elementary calculus yields

(AL) £gp = [fonr (1-9WRey) /(1) 111/ (62 #00e) T,
- Elgees = (o + deulhy,bige) 1V,
Sy = (Reey- -57WRE)

4, = ('YW)—lﬂ*%fl(l"YWRul)z:

ity Bpy) = [ (ulythge) ™5 (a2 hine) Pk the) ]

Let §=4W/(1l-9W) be the coefficient of relative risk aversion. Substitute the
ex-post realized exchange rate square e?,; for its conditional expectation h, and

average over many time periods to get average utility,

(A2) Ty = [c + wlW,
e o= (T-N+1)7'8le,,

U, = (T'N'*]-)Alzz-ﬁdnu(e%rl-hmr.)-

Suppose that model 1 turns out to be the best. Let m be an arbitrary

suboptimal model. We see from (A2) that when model 1 with wealth W-AW yields
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average utility equivalent to model m with wealth W, AW satisfies
(Z+;l)(W-QW) - (;v;ﬂ)wA The corresponding fraction of wealth is AW/W =
[(E+&l)-<é+ﬁm)}/<é+il; = [l~(ﬁm/ﬁl)}. As Lndicated in equation (3-3), we express
this ratic in basis points.

For a 13 week horizon: in (A2) replace el,; with (e, + ... + e.)2, ﬁm:

A A
with hg. y + ... + hy :3. The implicit timing assumption is that investors are
using weekly data to make investment decisiens every quarter (every thirteen
weeks). One thirteenth are invescing the first week in the quarter, ... , one
thirteenth the last week of the quarter. The figure for average utility that we

compute is the average of average utility for each of the thirteen groups of

invescors.



Additional Appendix

West, Edison and Cho, "A Utility Based Comparison of Some Models of
Exchange Rate Volatility"

This not-for-publication appendix contains results omitted from the body
of the paper to save space. Following are:

-

Plots of annualized interest rate differentials

]
[

Proof of proposition
ITI. Notes on one week interest rate data.

I7. Details of the results underlying summary of utility based results for
alternative specifications.

el

7. Details of the results underlying summary of mean squared error results.

Much additional information on the exchange rate data and on the
estimates of the models is in West and Cho (1992) and the additional appendix
zo West and Cho {1992).
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I1. Proof of Proposition

Assume exponential utility, with all assets are risky. The proof for
quadratic utilicy is similar. For either utility function, the proof when there
is a riskless asset follows as a special case. To simplify notation, all time
subscripts are dropped.

Let the gross return ou asset i be Ry, i=l,...,k. Let H=[H;;] be the
corresponding (kxk) full rank variance covariance matrix, assumed known for the
moment. Let r;=R;-By be the return in excess of the return on asset i for i=k-1,
r=(Try,...,Tx-1) , p=Er and OQ=E(r-p)(r-p)’'=QHQ’', where the (k-1)xk matrix Q has 1
in row i, column i, for i<k-1, -1 in all rows in column k, and 0 elsewhere. Let
» be the (k-1)xl vector of covariances of r with R,, w=QHq, where the kxl vector
q has 1 in the k’th row and zero’'s elsewhere. Let f; be the fraction put in
asset i, i=1,...,k-1, with 1-f;-...-f,_, the fraction in asset k. The problem is
to maximize E{-exp{-dW(f'r+R.)]) = -exp[-WE(E' T+Ry) +.50%Wsvar(f'r+R,)] =
-exp(-6WE' u-6WER, +.50%W2(£ Of+2f wtHy )] = -c.exp[-4WE'p +.58%W2 (£ Qf+2f'w) ],
c=exp (- §WER,+. 562W2H,, }>0; the first equality follows since returns are normally
distributed. Then f = Q7 (u/8W)-w].

Now let I‘:I be an estimate of the variance covariance matrix, % =

0 (u/aW) 0], G=QQ’, w=QRq. Expected utility, then, is

(AL) -c.expl-WE'u + .56%2(E'nt+28 w)]

m ec.expl.S(u- W) O (- AW0) - (u- W) O (- AWw) ] .

A ~
Let V be positive semidefinite, Hj=H+V, H,=H-V. We wish to show that (Al)

aAA A A A A A ~
is larger when O=(;=QH;Q’~(0+QVQ’, w=wtQVg=w+v than when 0=0,=QH,Q', w—w-QVq=w-v.
Let QY2 be a square root of 0, 0=0'/20%2', Then ﬁl = QM2(1+a7Y2QuQraTi/2 a2

8, = QY2(I-a"VQugratt?yal/2r . since 0°M2QUQUaTl?’ is symmetric and positive

semidefinite, it can be written as PAP', where PP'=I and A=diag(},,...,%.;) is
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the diagonal matrix of its eigenvalues. For future reference, note that it may
be shown that since V is positive semidefinite, Q is of rank k-1 and ﬁz;H—V
positive definite, O0=i;<l.
Let a;' be the lx(k-1) i’'th row of P'0Q7Y2. Since 61 = QUZP(I+A)P' QY2 | we

have

(A2)  E(U,. |H=H+Vs=H,) =
c.expi.5(p-5We) AT (u- W) - (p-6W0) Q7N (u-8Ww) ] =

-c.expi .S [p- W (wtv) 1O P(I+A) 2P Q7Y 2 [ - W (wtv) ]

(- 9W(wrv) | O Y2 B(I+A) 1P Y2 (- 0Ww) ) =
sc.exp { LSTEIH([p-aW(wtv) ] 7a /(142))2 -
TR [p- W (otv) ] ag ) [(p-0Ww) 'a, ] /(1+2;) )
Similarly
(a3)  E(U,, |B=H-VsH,) =
—c.exp { LSEEI([p-8W(w-v)]'ay/(1-2))2 -
BEH [p-9W(w-v) ] "ay ) [(p-0Ww) 'a ] /(1-3y) ).

Thus,

(A4)  E(Ug,, |H=H+V) 2 E(Upyy |B=H-V) <=—>
LSTEIH - % (wrv) ] T a /(142 )02 -
TR (- 0V ertv) ] ag) [(p-0Ww) P2 ]/ (143;)) + ST (u-0Vw) 'a;)?
= LSTRI[p- W (w-v) ] Ta/(1-2))2 -
T (- W w-v) ] Tag ) [(p-9Ww) Ta, ] /(1-2;) + SESH (u-0Ww)’a,]?
<==> SZELL [p-0W(w+v)]'ay/(142y) - (p-0Ww)'a; )2 <

CSEEZY [p-W(w-v) ] tag/(1-1y) - (p-0Ww)'ag 2.

It is easily verified that since 0<i;<1, the inequality holds for each i and

thus for the sum as well.
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That equality holds in the proposicion if and only if the two astimaces
yield the optimal fraction follows since it may be shown that
(A3)  E(Up,y |H=H4V) = E(Up.,|H=H-V) <==>

FUv = -QUQ O N (p-0Ww) <=>

(O QUQ’ ) TH[(p/8W) ~0-v] = Q7 [(u/0W) -w] = (Q-QUQ") [ (p/6W) ~wtv],
where the three expressions on the last line are the vectors of fractions chosen
if Q-H+V, f=H and A=H-V. The second line follows from the first by noting that
the first line requires that the i‘th term on the left hand side of the final
expression in (A4) be the same as the i’th on the right hand side for all i,
writing these k-1 equalities in matrix form and manipulating the resulting
expression; the third line in (AS) follows from the second by straightforward

algebraic manipulation.
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III. Notes on osre week interast rate data.

The raw data had borh bid and asked rates. Some observations had bid higher >

asked. We checked all of these against microfiche copies of The London Financial

Times, and corrected five errors. Wwe then rounded off both bid and asked =o wo
digits, and then, as nocted in the rexc, we averaged the two.
We had no one week interest rates for France the entire week of

10/8/84-10/12/84. So for 10/10/84, we simply used the quarterly rate.

IV. Details of the results underlving summarv of utilitv based results for

alternative specifications.

The format of the following tables is the same as that of Table III, except that
there are no parentheses around asymptotic standard errors. Except when otherwise

note, the CRRA is set to 1.

WEEKLY HORIZON

6/17/81 - 5/8/85

homo (1,1 ig e2AR |e|AR nonp X2 (5)

FR 1751.137 182.757 312.280 491.861 109.895 0.000 2.594

1940.082 532.339 790.502 882,192 342 .864 0.762

GE 39.477 85.531 0.000 580.862 299.194 142.211 10.950

45,437 75.656 343.289 143.503 90.396 0.052

Ja 83.348 0.000 72.101 69.655 294,727 300.874 3.614

340.482 73.101 357.724 177.966 412.574 0.087

UK 314.885 0.000 83.908 357.181 413.877 825.967 4.720

186.219 69.683 235.567 297.481 700.345 0.451
5/15/85 - 4/5/89

homo (1,1 ig e2AR le|AR nonp x*(5)

FR 0.529 Q0.000 2.206 24,010 132,444 25.299 3.13¢4

15.756 4.481 29.869 130.203 19.699 0.679

GE 45.519 8.567 0.000 57.188 118.587 471.335 5.515

43.197 7.674 36.058 63.504 449.778 0.356

Ja 0.000 8.701 16.965 64.720 51.907  1083.573 5.143

11.967 16.233 50.794 33.777 865.387 0.399

UK $8.051 3.528 0.000 471.013 58.881 141.971 5.642

61.974 10.272 390.191 35.912 78.621 0.343



GE

JA

UK

TK

JA

UK

GE

JA

3526.
3834,

71.
78.

569.

297.

158.
130.

190.
112.

507
633

homo

17.
27.

.552
.063

163
959

.003
.008

.681
.989

(1,1

383.
1059.

147.
149,

0.

410
816

479
410

000

.000

(1,1

10.

23.5

461.
632.

.276

725

643
970

.000

(1,1)

31

.269
488

.569
.918

.302
.022

L1173
9.998

(1.1)

12

12.

.224
.532

.562
.401

102

.888

.000
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6/17/81 - 5/25/83

g
637.188
1578.587

0.000

22.601

23.391

148.392
131.015

6/1/83 - 5/8/85

ig
10.991
10.9%09

0.000
583.178
787.473

19.399
40.753

5/15/85 - /22787

ig
7.905
33.997
0.000
33.942
33.049

0.000

4/29/87 - 4/5/89

ilg

0.000
0.000
0.000

3.119
8.405

e2AR |e|AR
1008.032 227.282
1754.576 678.977
966.968 295.125
684.046 192.316
595.079 560.294
426.326 315.797
347 .664 279.983
305.930 247.311
e2AR |e|AR
0.000 15.379
13.150

184,595 303.265
92.183 189.164
5.841 490.556
77.652 625.298
366.701 547.822
321.381 515.428
e24R je|AR
48,309 265.692
56.015 258.062
108.861 217.659
62.307 110.320
25.335 53.423
16.607 30.358
880.053 113.118
766.484 71.327
e2AR le|AR
3.204 2.686
1.680 1.722
5.540 16.563
23.418 16.981
104.092 50.3%5
98.492 61.114
64.941 7.743
36.643 16.290

CRRA=10

6/17/8L - 4/5/89,

nonp

0.
194,
185.

1063.
493.

102,
62,

000

531

282

167
083

352
896

nonp

26.

89.

1549.
1401.

L449

723

869

.601

.000

860
215

nonp

51.
48.

925.
889,

425.
415

275
139.

034
855

882
853

173

.898

.791

564

nonp

17
26.

1741.
1674,

11.
16

.057
LAh4

.011

462

686
298

220

.302

X

*(5)
.083
.687

.983
418

.557
.019

.173
.102

2(5)
.162
.526

.727

0.039

X

X

.752
.000

.348
.646

2(5)
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.938
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0.000
4.881
§.700

10.468
6.869

95.152
58.775

(1,1
13.880
70.346
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.502
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nonp
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.702
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.015

x*(5)
2.987
0.702

10.891
0.054

10.218
0.069

7.481
0.187

x*(5)
5.256
0.385

9.935
0.077

2.000
0.849

12.191
0.032

5.525
0.355

x*(5)
14.345
0.014

3.889
0.565

6.076
0.299
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0.01e

6.781
0.237

x2(5)
5.179
0.394

10.102
0.072
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0.511

27.746

92.614
66.874

170.393
115.364

309.118
182.443

homo
0.000

35.797

30.426

116.217
48.885

0.000
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0.000 138.180

145.794

0.000 107.461

125.391

23.224 0.000
28.324

6/1/83 - 5/8/85

ig eZaR

309.504 24.217

165.964 13.261

0.000 0.159

23.033

0.000 48.980

31.688

0.000 95.446

93.043

16.425 115.411

11.009 83.212

5/15/85 - 4/22/87

1g

3514.
2594,

9.
14,

Q.

162.

103.

370
255.

eZAR
622 85.613
820 52.230
209 22.201
178 22.341
000 54.170

24.567
087 4.192
114 6.764
.854 53.432
008 64.723

4/29/87 - 4/5/89

g
349.

211.

0

141,
74.

e2AR
608 17.500
127 16.780
.000 1.367

1.529
106 17.259
200 9.635

.000 12.711

171.258
162.620

180.031
193.741

0.235
7.582

lelaR
63.159
S1.463

27.081
39.796

49.592
24.360

36.410
52.857

98.294
72.285

le|aR
290.788
220.644

35.994
33.727

86.260
37.858

46.193
21.484

86.664
91.644

|e]AR
24,516
37.278

0.487
1.150

26.502

95.421

136.816
172.304

496.731
284.949

9.653
20.328

nonp
4,473
4,343

06.726
20.764

63.760
46.895

144 410
105.316

287.477
179.287

nonp
20.972
22.083

52.280
34.049

110.142
40.494

16.017
11.841

23.540
13.496

0.964

7.837
5.290

2
.721
.172
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.011
.010

[oe)

X2
L745
.057

(5)

.920
.003

.025
.051
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.000

(%)

.996
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.396
.136

.135
.010

.184
.048

(5)

711
.592

.394
.004
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0.012 11.423 17.113 53.548 15.27¢ 0.031
UK 0.000 40.035 110.924 27.205 44,318 5.436 6.437
19.888 53.822 13.369 22.511 3.065 0.266

6/17/81 - 4/5/89 GRRA=10

homo (1,1) ig e2AR lelaR nonp x3(5)

CA 0.000 1.095 19.259 0.524 1.735 0.046 9.155
0.665 14.177 0.315 1.293 0.140 0.103

FR 2.552 0.000 0.139 1.964 2.747 2.617 7.828
1.613 0.282 1.212 1.461 1.543 0.166

GE 0.410 0.036 0.000 0.350 0.744 0.634 6.203
0.845 0.493 0.747 0.811 0.865 0.287

JA 3.132 0.000 0.471 0.755 1.437 2.826 12.137
1.303 0.664 0.605 0.928 1.457 0.033

UK 0.502 0.051 1.492 0.000 0.164 0.510 5.028
0.820 0.505 1.253 0.205 0.780 0.412

V. Details of the results underlying summarv of ean squared error resulrs.

Root mean squared errors, one week horizon, apart from a scale factor of 10%*-4;

HOMO (1,1) 1G JE|(12) E2(12) NONP
FRANCE 5.166 5.352 5.160 5.273 5.200 5.201
GERMANY 4,703 4.783 4.685 4,923, 4,767 4.724
JAPAN 4,381 4.323 4.343 4.410 4.387 4.442

U.K. 5.745 5.632 5.562 6.020 5.725 6.537
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Figure II
fi,..| and Wealth Sacrifice for France, Weekly

A. Interest Rate Differential (percent)
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Table 1

Summary Statistics om Annualized Interest Rate Differentials

A. Weekly
(2) (3 (4) (5) (6)
France Germany Japan U.xX. U.s.
(1¥Mean 3.76 -3.59 -3.61 1.65 9.32
(1.21) (0.22) (0.43) (0.43) (0.52)
(2)Standard Deviation 17.94 1.32 2.47 2.53 2.89
(7.90) (0.14) (0.39) (0.27) (0.45)
(3)p- 0.50 0.90 0.95 0.94 0.96
(0.08) (0.036) (0.02) (0.03) (0.02)
(&) pq 0.07 0.86 0.92 0.89 0.94
(0.03) (0.04) (0.02) (0.04) (0.03)
(5)correlation with 0.08 -0.70 -0.91 -0.76 1.00
U.S. rate (2.78) (0.32) (0.58) (0.45)
(6)¥inimum -2.51 -7.56 -12.87 -7.37 5.75
(7hQL 0.63 -4.13 -4.50 -0.06 7.12
(8)Median 1.63 -3.44 -3.00 1.94 8.63
(3)Q3 2.75 -2.75 -2.06 3.57 9.88
(10)Maximum 306.00 -0.63 0.30 6.25 19.63
(11)No. of obs >0 341 0 7 300 408
B. Quarterly
(€8] 2 (3) (4 (5) (6)
Canada France Germany  Japan U.K. u.s.
(1)Mean 1.19 2.87 -3.75 -3.82 1.50 9.57
(0.18) (0.54) (0.23) (0.43) (0.43) (0.55)
(2)standard deviation 0.99 3.53 1.27 2.38 2.42 2.98
(0.10) (0.863) (0.15) (0.38) (0.22) (0.45)
(3)py 0.95 0.89 0.97 0.98 0.98 0.98
(0.02) (0.02) (0.01) (0.0L) (0.0L) (0.01)
(&4)p, 0.90 0.77 0.93 0.96 0.95 0.97
(0.03) (0.04) (0.02) (0.03) (0.02) (0.02)
(5)correlation with -0.11 0.21 -0.77 -0.93 -0.79 1.00
U.S. rate (0.14) (0.25) 0.32) (0.35) (0.40)
(6)Minimum -1.06 -1.69 -7.06 -12.13 -5.62 5.63
(7at 0.56 0.75 -4.31 -4.75 -0.43 7.44
(8)Median 1.25 1.82 -3.56 -3.19 1.75 8.94
(3)Q3 1.75 4.00 -3.00 -2.25 3.50 10.31
(10)Maximum 4.19 25.75 -1.12 0.00 5.37 19.38
(11)No. of obs >0 344 346 0 0 281 408
Notes:

1. The sample includes 408 observations from 6/17/81l to 4/5/89; both quarterly and
weekly rates are sampled weekly. Non-U.S. interest rates are expressed as an excess
over the U.S. rate. Data are described in the text.

2. In rows (3) and (4), sl and p2 are the first and second autocorrelation
coefficients.

3. Asymptotic standard errors in parentheses.



Homoskedastic Model

(1

Model

1. Homoskedastic

GARCH Models

2

3.

Autoregressive models

. GARCH(1,1)

IGARCH(1,1)

4, AR(12) in e?

3.

Nonparametric Model

AR(12) in Jey|

6.

Gaussian kernel

Table 2
Models

(2)

Formula for h,

hy

h,

1
Eilepn] = w + Sio; e,y

© + ae? + gh,,

ae? + (l1-a)h,,

12 2
w + Zijogetogyg

(7"/2)(Et|eg+1|)2;

ht,,j - E(e%ﬁ leg);

N-j 2
= Et-ith,jem’j )

Ven,5 = Cen,y / Zicgy .
Cen,; = expl-.5(ey-e.)2/b2],

b= bandwidth defined in text

b,

J

(3

Acronym

homo

(1,1)

ig

e2AR

le]AR

nonp




homo
Country
France 862.6
(973.0)
Germany 42.5
(31.5)
Japan 37.3
(171.7)
U.X 2047
(102.9)
homo
Country
Canada 1.7
(9.0)
France 181.3
(116.0)
Germany 29.4
(46.6)
Japan 120.17
(71.9)
U.X. 33.0
(71.3)
Notes:

(1,1)

78.7
(267.0)

47.1
(38.7)
0.0

0.0

(1,0

Table 3

A. Weekly Horizon

Model

ig e2AR
144.5 245.2
(394.8) (441.7)
0.0 319,17
(177.1)

40.2 62.6
(39.1) (181.8)
40.2 412.37
(30.9) (229.1)

le[AR
108.5
(187.4)

208.9™
(76.5)

169.0"
(90.3)

234.6
(153.2)

B. Quarterly Horizom

56.8"" 1031.3

(28.8)
0.0
4.9

(25.1)

0.0

0.0

Model
ig e2AR
28.9
(736.8) (11.1)
8.4 148.5
(20.9) (95.1)
0.0 29.7
(46.4)
25.2 40.8
(34.8) (34.6)
81.8" 0.1
(46.8) (29.3)

fejaR
9.4
(62.2)

210.4"
(120.4)

48.5
(48.9)

75.1
(51.4)

8.5
(22.8)

nonp

306.7
(230.7)

687.7
(473.3)

482.2
(366.0)

nonp

180.2"
(102.6)

447
(52.7)

153.6"
(80.4)

32.5
(68.7)

Wealch Sacrifice for Right to Highest Utility Model

x2(3)
3.174
[0.673]

12.246™
[0.032]

9.912"
[0.078]

8.517
[0.130]

x> ()
9.480"
[0.091])

7.893
[0.162)

5.128
[0.400]

7.838
{0.165]

5.643
{0.343]

1. An investor is assumed to divide her wealth between Eurodeposits in dollars and
those in the currency of the indicated country, 6/17/81-4/5/89.

estimates of (5), the wealth that the investor would give up to W
yielded the highest average utility (the model with the
annual basis points.
acronyms for the models.
2. Asymptotic standard error

percent level,

Smaller numbers mean better performance.

Relative risk aversion is set to 1.
s are in parentheses; "*" indicates significance at 10
nxk" at five percent level (two-tailed test).
3. The x%(5) column reports a test of the null that all £

row are equal to zero, with asymptotic p-value in brackets.

Each row reports

se the model that
"0.0" entry).
Table 2 describes the

The units are

ive nonzero entries in a given



Table 4
Effects of Alternative Specifications

A. Description of Specifications

Sample
period CRRA Description
A 6/17/81-4/5/89 1 Table 3 specification
Bl 6/17/81-5/8/85 1 first half of Table 3 sample
B2 5/15/85-4/5/89 1 last half of Table 3 sample
ci 6/17/81-5/25/83 1 first quarter of Table 3 sample
c2 6/1/83-5/8,85 1 second quarter of Table 3 sample
c3 5/15/85-4/22/87 1 third quarter of Table 3 sample
C4  4/29/87-4,5/89 1 fourth quarter of Table 3 sample
D 6/17/81-4,/5/89 10 Table 3 sample, with higher CRRA
B. Summary of Empirical Results
(1L (2) (3) (4)
Median Estimace Number of Countries Number. of Number of xz(S)
of (5), Wealch for which best t-statistics statistics
Sacrifice model is: significant at: significant at:
(1,1 ig .10 .05 .10 .05

Weekiv:

A 186.9 2 1 5 2 2 1
Bl 297.0 2 1 4 1 2 4]
B2 534.5 1 2 2 0 0 0
cl 321.4 2 1 3 1 1 1
c2 74.2 1 1 3 2 2 2
C3 3.7 [¢] 2 5 2 0 0
Ca 10.0 1 3 4 2 2 ]
D 4.6 2 1 5 2 2 0
Quarteriv:

A 447 3 1 7 2 1 0
Bl 100.4 2 2 [3 1 2 1
B2 23.2 1 0 [3 3 2 2
Ccl 55.4 1 3 5 2 2 1
cz 49.0 1 3 6 1 3 2
c3 53.4 1 1 8 6 3 3
Ca 17.4 Q 2 11 5 3 2
D 0.7 2 1 5 1 1 1
Notes:

1. Specification A is the one reported in detail in Table 3, and is repeated here for
convenience,

2. Panel B is based on estimates for the 4 (weekly) or 5 (quarterly) countries and 6
models listed in Table 3a. Since, for a given country, the estimates of the best model
(the "0.0" model) do not figure into the computation of the number of the panel B
values, the total number of values underlying each weekly row is 20 for columns (1) and
(3), 4 for columns (2) and (4); the corresponding quarterly figures are 25 and 5.




Table 35

Rankings by Qut of Sample Mean Squared Error, Weekly Horizon

Model -
home (1,1) ig e2AR  |e]AR nonp x2(5) X3 (1)
Country
Canada 5 1 3 4 2 6 7.244 1.243
{0.203] [0.263]
France 2 6 1 5 3 4 8.911 0.011
[0.113] [0.918]
Germany 2 5 1 6 4 3 8.147 0.012
[0.148] [0.912])
Japan 3 1 2 5 4 6 6.414 0.770
[0.268] [0.380]
U.X. 4 2 1 5 3 6 3.779 1.521
[0.582] [0.217]
Notes:

1. In each row, "l" indicates best (smallest) mean squared error for the indicated
country, "2" second best, ... , "6" worst.

2. The ¥?(3) column reports a test of the null of the equality of the six mean squared
errors underlying the ranking in a given row, with asymptotic p-value in brackets.

3., The x?(1) column reports a test of the null of the equality of mean squared error
for the homoskedastic and best model (either GARCH(1,1), or IGARCH, as indicated),
with asymptotic p-value in brackets.



Table 6

Results for Weekly Horizon, France, 8/14/85-11/6/85

Model
homo (1,1) ig e2AR  |e}AR mnonp
Estimates of (5), 77.6 0.0 8.4 48.2 16.5 105.5
wealth sacrifice to use
highest utility model
Rankings by out of sample 3 6 1 5 2 4

mean squared error
Notes:

1. For interpratation of the estimates of (5), see the notes to Table 3.
2. For interpretation of the rankings by mean squared error, see the notes to Table Iv.





