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COVID-19 of differing severity: from bulk to single-cell expression data analysis
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ABSTRACT
Coronavirus disease 2019 (COVID-19) is raging worldwide and causes an immense disease burden. 
Despite this, the biomarkers and targeting drugs of COVID-19 of differing severity remain largely 
unknown. Based on the GSE164805 dataset, we identified modules most critical for mild COVID-19 
(mCOVID-19) and severe COVID-19 (sCOVID-19) through WGCNA, respectively. We subsequently 
constructed a protein–protein interaction network, and detected 16 hub genes for mCOVID-19 
and 10 hub genes for sCOVID-19, followed by the prediction of upstream transcription factors 
(TFs) and kinases. The enrichment analysis then showed downregulation of TNFA signaling via 
NFKB for mCOVID-19, as well as downregulation of MYC targets V1 for sCOVID-19. Infiltration 
degrees of many immune cells, such as macrophages, were also sharply different between 
mCOVID-19 and sCOVID-19 samples. Predicted protein targeting drugs with the highest scores 
nearly all belong to naturally derived or synthetic glucocorticoids. For the two single-cell RNA-seq 
datasets, we explored the expression distribution of hub genes for mCOVID-19/sCOVID-19 in each 
cell type. The expression levels of PRKCA, MCM5, TYMS, RBBP4, BCL6, FLOT1, KDM6B, and TLR2 
were found to be cell-type-specific. Furthermore, the expression levels of 10 hub genes for 
mCOVID-19 were significantly upregulated in PBMCs between eight healthy controls and eight 
mCOVID-19 patients at our institution. Collectively, we detected critical modules, pathways, TFs, 
kinases, immune cells, targeting drugs, hub genes, and their expression distributions in different 
cell types that may involve the pathogenesis of COVID-19 of differing severity, which may propel 
earlier diagnosis and more effective treatment of this intractable disease in the future.
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Introduction

Coronavirus disease 2019 (COVID-19) pandemic 
threatens the worldwide healthcare system and severe 
acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2) serves as the causal virus. Clinical presenta
tions of COVID-19 vary greatly between individuals, 
ranging from asymptomatic infection to respiratory 
failure, and even death [1]. Approximately, 20% of the 
patients with COVID-19 experience exacerbations, 
and 5% require intensive care [2].

In order to identify novel biomarkers, previous 
transcriptomic studies of COVID-19 were on the 
basis of lung epithelial cell [3], peripheral blood 
mononuclear cells (PBMCs) [4], etc. To date, 
almost all previous transcriptomic studies of 
COVID-19 have simply divided included subjects 
into COVID-19 patients and healthy people, and 

have not further subdivided COVID-19 patients 
[4,5]. In doing so, the difference in gene expres
sion profiles of COVID-19 patients of differing 
severity remains largely unknown. Given that the 
variation in therapeutic measures for COVID-19 
patients ranges widely from at-home isolation to 
intensive care, it is therefore necessary to find 
novel efficient biomarkers for early patient strati
fication. The exploration of the molecular 
mechanisms behind COVID-19 of differing sever
ity is also particularly important for therapeutic 
tailoring. Gratifyingly, a previous attempt was 
made to find inflammatory and immune altera
tions of COVID-19 patients of differing severity 
based on bulk transcriptome analysis of PBMCs 
taken from mild COVID-19 (mCOVID-19) and 
severe COVID-19 (sCOVID-19) patients, as well 
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as healthy people [6]. In addition, two single-cell 
RNA-seq (scRNA-seq) transcriptome studies with 
mCOVID-19 and sCOVID-19 patients were also 
conducted for in-depth analyses of different cell 
populations [7,8].

The weighted gene co-expression network ana
lysis (WGCNA) acts as a useful methodology that 
enables the identification of interactions between 
genes and unveils complex biological mechanisms 
behind various physiological or pathophysiological 
states [9]. WGCNA thus far has been used to 
identify critical genes and modules in COVID-19 
[10–13], but nevertheless rarely applied in 
COVID-19 of differing severity. Here, we per
formed WGCNA to obtain critical modules in 
mild and severe COVID-19 patients. We subse
quently detected hub genes from protein–protein 
interaction (PPI) network. In addition, single sam
ple gene set enrichment analysis (ssGSEA) was 
utilized for the identification of the abundance of 
infiltrating immune cells. We also applied the 
Drug Gene Interaction Database (DGIdb) to find 
the targeting drugs. Furthermore, upstream poten
tial transcription factors (TFs) and kinases, as well 
as enriched downstream pathways were also pre
dicted. We also explored the expression distribu
tion of hub genes in each cell type through two 
scRNA-seq datasets. Furthermore, qPCR was uti
lized to validate the mRNA expression levels of 
hub genes in PBMCs between healthy controls 
and mCOVID-19 patients at our institution. 
Based on the above-mentioned comprehensive 
genomic analyses, we sought to determine the 
potential critical genes, hub modules, TFs, kinases, 
signaling pathways, infiltrating immune cells, and 
drug targets that may involve the pathogenesis of 
mild and severe COVID-19.

Materials and methods

Data sources

We achieved gene-expression profiling from the 
Gene Expression Omnibus (GEO) database. 
Inclusion criteria of this study for bulk or single- 
cell dataset selection were as follows: (1) transcrip
tome data should be available for COVID-19 sam
ples of differing severity; (2) gene expression data 
should contain at least 2000 genes. Correspondingly, 

the GSE164805 dataset, containing COVID-19 
expression profile from PBMCs was the unique eli
gible bulk microarray dataset. Specifically, the 
GSE164805 dataset was analyzed using GPL26963 
platform and contained 5 samples from healthy con
trols, 5 samples from mCOVID-19 patients, and 5 
samples from sCOVID-19 patients. Patient demo
graphic characteristics of the GSE164805 dataset, 
including age and gender, are shown in Table S1, 
and a comparison of these two demographic char
acteristics among groups is presented in Table S2. 
Here, there was no significant difference among 
groups with regard to age and gender. Also, three 
other datasets containing PBMC samples in the con
text of COVID-19 (GSE152418, GSE206263, and 
GSE157103) were included for further exploration. 
The GSE152418 dataset, containing 17 samples from 
healthy controls, 4 samples from mCOVID-19 
patients, and 8 samples from sCOVID-19 patients, 
was analyzed using GPL24676 platform [4]. In addi
tion, there were 7 samples from healthy controls, 5 
samples from mCOVID-19 patients, and 4 samples 
from moderate COVID-19 patients in the 
GSE206263 dataset, which was analyzed through 
the GPL24676 platform [14]. As for the GSE157103 
dataset, 50 samples from ICU COVID-19 patients 
and 50 samples from non-ICU COVID-19 patients 
were included [15].

In addition to the above-mentioned bulk datasets, 
two scRNA-seq datasets, namely Schulte-Schrepping 
dataset and the GSE216020 dataset, were also 
included in this study. Schulte-Schrepping dataset 
contained two independent cohorts of COVID-19 
cases [8], namely the Berlin cohort (cohort 1) [12] 
and the Bonn cohort (cohort 2). Specifically, cohort 1 
consisted of 49 COVID-19 samples (8 mild and 10 
severe patients at different time points) and 22 con
trol samples, while cohort 2 consisted of 50 COVID- 
19 samples (8 mild and 9 severe patients at different 
time points) and 14 control samples (13 controls at 
different time points). Besides, the GSE216020 data
set included 24 samples and was analyzed through 
GPL24676 platform. In order to guarantee the back
ground concordance of different groups, we selected 
those samples taken at day 0. Correspondingly, 5 
samples (GSM6656095, GSM6656096, 
GSM6656097, GSM6656098, and GSM6656099) 
from healthy controls, 4 samples (GSM6656081, 
GSM6656085, GSM6656101, and GSM6656104) 
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from mCOVID-19 patients, and 6 samples 
(GSM6656082, GSM6656084, GSM6656088, 
GSM6656090, GSM6656091, and GSM6656100) 
from sCOVID-19 patients were applied for further 
analysis.

Data processing of bulk RNA-seq

The expression matrix and sample information of 
the bulk RNA-seq datasets were downloaded from 
the GEO website. FeatureCounts function from 
the subread R package was utilized to summarize 
counts per gene. Then, we imported, organized, 
filtered, and normalized the data using the edgeR 
package. To be specific, we filtered out the low- 
abundance genes using the filterByExpr function, 
and we normalized the data using the TMM 
method. As the datasets were downloaded from 
different studies and different platforms, we 
applied the ComBat function in the sva 
R package [16] in order to perform batch effect 
correction. Subsequently, for the assessment of 
sample similarity and putative batch effect, princi
pal component analysis (PCA) was conducted 
before and after batch effect correction. The log 
2-fold change (logFC) and false discovery rate- 
adjusted P value (FDR) of hub genes were calcu
lated between healthy controls and COVID-19 
PBMC samples through the limma R package 
[17]. A moderate t test was performed, and 
Benjamini–Hochberg method was applied for the 
adjustment of the P value.

WGCNA analysis

We constructed signed weighted gene co- 
expression network using WGCNA R package 
[9]. For the detection of numerous soft power 
threshold β over R2, pickSoftThreshold function 
was utilized. The power of β was set at 14 for 
ensuring the scale-free network (Figure S1C, 
S1D). We transformed Pearson correlation 
matrix into the adjacency matrix and subse
quently further transformed it into the topologi
cal overlap matrix (TOM) in order to compute 
the inconsistency. We incorporated very consis
tent modules and the height cutoff was set at 
0.25. According to Pearson association, we 
assessed the module–trait relationship. For 

specific gene, we calculated module membership 
(MM) on the basis of correlations between mod
ule eigengene and the expression levels across 
samples. Gene significance (GS) refers to the 
correlation of gene expression level with the phe
notype. For the critical module, we calculated GS 
and MM of every gene within this module. The 
specific gene within one module was considered 
critical when both MM > 0.8 and GS > 0.2 
were met.

PPI network establishment

We utilized Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) to explore 
PPI network [18]. Subsequently, we applied 
Cytoscape software to better visualize the PPI net
work [19]. Cytoscape plugin CytoHubba [20] was 
adopted for the identification of key genes in the 
network. Lastly, we intersected the top 40 genes in 
every method within the CytoHubba plugin, and 
the intersected genes were treated as hub genes.

Upstream regulatory network prediction

In order to determine TFs and kinases that may 
regulate COVID-19 related genes, we applied 
eXpression2Kinases (X2K) (https://amp.pharm. 
mssm.edu/X2K) for the identification and ranking 
of potential TFs, intermediate proteins, and 
kinases that were likely responsible for the dysre
gulation of gene expression [21]. We obtained the 
top 10 TFs and top 10 kinases on the basis of 
hypergeometric P value, followed by the construc
tion and visualization of the regulatory network.

Drug target establishment

The drug–gene interactions were analyzed using 
DGIdb (https://dgidb.org/) [22]. Drugs and com
pounds were predicted to target critical genes. 
Here, we only included approved drugs that had 
activation or inhibitory interaction with the critical 
gene. After downloading, we input the interaction 
network into the Cytoscape to better visualize the 
network.
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Gene set enrichment analysis (GSEA) and gene 
set variation analysis (GSVA)

GSEA was conducted through the clusterProfiler 
R package [23] and the Benjamini–Hochberg 
(BH) method was applied for the adjustment of 
P value. False discovery rate < 0.1 and P value <  
0.05 were set as the threshold for the confirmation 
of significant enrichment. GSVA is 
a nonparametric unsupervised method to display 
differential enrichment pathways [24]. We used 
GSVA R package to explore hallmark pathways of 
immune-related genes. Based on the Molecular 
Signature Database (http://software.broadinstitute. 
org/gsea/msigdb/index.jsp), we obtained gene set 
“h.all.v7.1.symbols.gmt”, which was used as the 
reference.

Immune cells infiltration analysis

We implemented ssGSEA through GSVA 
R package for the assessment of enrichment 
scores of PBMCs samples [24]. Here, we applied 
gene expression to PBMCs samples and meta
genes within 28 types of immune cells. Immune 
infiltration levels of each immune cell enrich
ment were indicated by the normalized enrich
ment score. Subsequently, the correlation of each 
hub gene with each immune cell was also 
computed.

ScRNA-seq data analysis

The cell unique molecular identifier (UMI) matrix 
was converted to a Seurat object through the pack
age Seurat v3 [25]. The criteria for the filteration 
of the matrix were a minimum number of cells 
equal to 3 and a minimum number of features 
equal to 200. We merged the three caput samples 
and detected single-cell transcriptomes after filtra
tion. We detected neighbors through seven dimen
sions. As for the unsupervised clustering, a suitable 
resolution parameter was selected. PCA dimen
sions were reduced via Uniform Manifold 
Approximation and Projection (UMAP). Besides, 
feature plots were generated through the package 
Seurat v3.

Random forest (RF) model construction

In order to explore the discriminatory ability of 
hub gene expression between non-ICU COVID-19 
and ICU COVID-19 patients, we constructed an 
RF model using the randomForest R package [26]. 
For the identification of a better RF model, we 
endowed mtry and ntree with 3 and 500. Genes 
with an importance value>2 were considered ICU 
COVID-19-specific genes. We randomly split the 
data into 70% training and 30% testing partitions. 
In addition, we plotted the area under the receiver 
operating characteristic (ROC) curve (AUC) for 
assessment of the RF model.

RNA extraction and quantitative polymerase 
chain reaction (qPCR)

We extracted PBMCs in blood samples from eight 
healthy controls and eight mCOVID-19 patients at 
our institution. Then, we extracted total mRNAs 
from the PBMCs through RNAprep pure blood kit 
(Tiangen Biotech, Beijing, China). Subsequently, 
a reverse transcription kit (Servicebio, Wuhan, 
China) was used to synthesize cDNA. We conducted 
qPCR using SYBR Green Master Mix (Servicebio, 
Wuhan, China) on a QuantStudio 5 Real-Time instru
ment (Applied Biosystems). In accordance with the 
comparative Ct method (ΔΔCt method), we con
ducted the normalization of relative mRNA level to 
GAPDH mRNA level. The synthesization of primers 
was performed by Tsingke (Nanjing, China). The 
primer sequence of each hub gene is listed in Table S6.

Results

Hub modules establishment

A detailed flowchart depicting the design of 
this study is provided in Figure 1. Initially, 
we clustered all 15 samples. One sample from 
healthy controls was considered the outlier and 
therefore excluded (GSM5019817; Figure S1A). 
For the identification of COVID-19-related 
modules, the top 25% variant genes across 14 
samples (from 4414 gene expression matrix) 
were used for WGCNA (Figure 2a). Besides, 
β = 14 and R2 = 0.7 were considered optimal 
for ensuring the scale-free network (Figure 
S1C, S1D). In the process of incorporating 
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similar modules, clustering height cutoff was 
set to 0.25, and 8 modules were achieved 
(Figure 2b,c). The darkorange module exhib
ited the most relevant association with 
mCOVID-19 (R = 0.78, P = 9e-04, Figure 2d), 
whereas the darkgreen module indicated the 

most relevant association with sCOVID-19 (R  
= 0.87, P = 6e-05, Figure 2d). The interactions 
among these co-expressed modules were shown 
through the module eigengene dendrogram. 
Notably, the darkorange module was in close 
proximity to mCOVID-19, and exhibited 

Figure 1. The flowchart of this study design. GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; Mcovid-19, mild 
COVID-19; Scovid-19, severe COVID-19; WGCNA, weighted gene co-expression network analysis.
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Figure 2. Construction of co-expression modules using WGCNA. (a) Clustering dendrogram of the samples. (b) the cluster 
dendrogram of module eigengenes. (c) the cluster dendrogram and module color. (d) Module-trait relationships between different 
modules and traits. (e) the correlations among Mcovid-19 modules. (f) the correlations among Scovid-19 modules. (g) Scatter plot 
showing the correlation between GS and MM according to genes within Mcovid-19 darkorange module. (h) Scatter plot showing the 
correlation between GS and MM according to genes within Scovid-19 darkgreen module. WGCNA, weighted gene co-expression 
network analysis. Mcovid-19, mild COVID-19. Scovid-19, severe COVID-19.
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a highly relevant association with mCOVID-19 
(Figure 2e). Similar results were found in dark
green module for sCOVID-19 (Figure 2f). 
Intramodular results indicated that genes in 
the darkorange module were positively corre
lated with mCOVID-19, with p < 3e-30 and 
correlation = 0.55, while genes in the darkgreen 
module showed negative correlation with 
sCOVID-19, with P < 1.2e-30 and correlation  
= 0.55 (Figure 2g,h). Given that cor. 
geneModuleMembership >0.8 and cor. 
geneTraitSignificance >0.2 were set as the cut
off values, we obtained 201 critical genes in the 
darkorange module for mCOVID-19 and 249 
critical genes in the darkgreen module for 
sCOVID-19.

PPI network establishment

According to 201 critical genes for mCOVID-19 and 
249 critical genes for sCOVID-19, we established PPI 
networks for mCOVID-19 and sCOVID-19, respec
tively (Figure 3a,c). We applied all 12 approaches in 
the CytoHubba plugin, and intersected the top 40 
genes of every approach (Figure 3b,d). In doing so, 
16 intersected genes, including CDC25A, H2AFX, 
KIF4B, RBBP4, RAD51C, PLK1, NR3C1, CKAP5, 
HIST1H4B, TYMS, MCM5, MUTYH, UBA52, ID4, 
SOX9, and YWHAH were obtained for mCOVID- 
19 (Figure 3b; Table S3), while 10 hub genes, includ
ing TLR2, EDN1, KDM6B, GNAI3, RAB7A, 
TEAD4, FLOT1, GRM5, BCL6, and LMO2, were 
achieved for sCOVID-19 (Figure 3d; Table S4).

Figure 3. PPI network and hub genes detection. (a) PPI network according to genes from Mcovid-19 darkorange module. (b) Hub 
genes within Scovid-19 darkgreen module. (c) PPI network based on genes from Scovid-19 darkgreen module. (d) Hub genes within 
Scovid-19 darkgreen module. Degree, node connect degree; DMNC, density of maximum neighborhood component; EPC, edge 
percolated component; MCC, maximal clique centrality; MNC, maximum neighborhood component; Closeness, node connect 
closeness; PPI, protein–protein interaction.
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Upstream regulatory network

For the understanding of upstream regulatory 
molecules, we utilized X2K web based on the 
gene expression within the most critical module 
for mCOVID-19 or sCOVID-19. Among 
mCOVID-19 related TFs, PML and SIN3A 
exhibited the most associations with intermedi
ate proteins and kinases (Figure 4a). 
Furthermore, MAPK3, CDK4, CK2ALPHA, 
MAPK14, AKT1, GSK3B were the top kinases 
with the most associations for mCOVID-19 
(Figure 4a). STAT3, RUNX1, NFE2L2, and 
EGR1 were found to be the most significantly 
correlated TFs that regulated the sCOVID-19 
related genes (Figure 4b). In addition, DNAPK, 
CK2ALPHA, CSNK2A1, PRKCA, MAPK3, 
ERK1, and ABL1 were the kinases that showed 
the most associations for sCOVID-19 
(Figure 4b).

Functional enrichment

For the exploration of putative hallmark pathways 
correlated with mCOVID-19 and sCOVID-19, 
gene expression was applied for exploring the 
association between each hallmark pathway 
expression and every sample using GSVA (Figure 
S2A, S2C). In addition, the dysregulated hallmark 
pathways in mCOVID-19 and sCOVID-19 are 
visualized through lollipop plot (Figure S2B, 
S2D). The significantly enriched hallmark path
ways for mCOVID-19 included apoptosis, DNA 
repair, interferon gamma response, oxidative 
phosphorylation, interferon alpha response, and 

TNFA signaling via NFKB, which are shown 
through gseaplot (Figure S3A). Additionally, 
GSEA analysis demonstrated DNA repair, inflam
matory response, MYC targets V1, oxidative phos
phorylation, and TNFA signaling via NFKB as 
primarily associated hallmark pathways for 
sCOVID-19 (Figure S3C). The most significantly 
enriched hallmark pathways for mCOVID-19 and 
sCOVID-19 are plotted through cnetplot (Figure 
S3B, S3D). Then, through the intersection of sig
nificantly associated hallmark pathways using 
GSEA and GSVA, we obtained one upregulated 
and three downregulated pathways for mCOVID- 
19 and sCOVID-19, respectively (Figure 5a,b). 
According to this, we found that inflammatory 
signaling, including interferon alpha response 
and inflammatory response were upregulated in 
mCOVID-19 and sCOVID-19 patients 
(Figure 5a,b). On the other hand, a pronounced 
downregulation of DNA repair and oxidative 
phosphorylation was observed in both mCOVID- 
19 and sCOVID-19 patients (Figure 5a,b). 
Furthermore, downregulation of TNFA signaling 
via NFKB was detected for mCOVID-19 
(Figure 5a), while downregulation of MYC targets 
V1 was observed for sCOVID-19 (Figure 5b).

Immune cells abundance

For the exploration of immune fluctuations in the 
process of COVID-19 progression, infiltrating 
immune cells of all included samples were evalu
ated. Through the heatmap, the respective rela
tionships of infiltrating immune cells between 

Figure 4. Predicted upstream regulatory network through the X2K Web. (a) Upstream regulatory network based on genes from 
Mcovid-19 darkorange module. (b) Upstream regulatory network based on genes from Scovid-19 darkgreen module.
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healthy and mCOVID-19 samples were described 
(Figure 6a). Subsequently, the correlation between 
infiltrated levels of immune cells for healthy and 
mCOVID-19 samples were also shown 
(Figure 6b). Notably, a significant decrease of var
ious immune cells was found for mCOVID-19, 
including activated CD8 T cell, CD56bright natural 
killer cell, central memory CD4 T cell, effector 
memory CD8 T cell and type 1 T helper cell. In 
contrast, a significant increase was observed for 
immature B cell, monocyte, neutrophil, plasmacy
toid dendritic cell, regulatory T cell, and 
T follicular helper cell (Figure 6c).

Analogously, the relationships of infiltrating 
immune cells between healthy and sCOVID-19 
samples were mapped (Figure 7a), and the cor
relations of immune cells in healthy and 
sCOVID-19 samples were shown (Figure 7b). 
A significant decrease in certain immune cells 
(activated CD8 T cell, CD56bright NK cell, 
CD56dim NK cell, etc.) was observed for 
sCOVID-19 samples. Conversely, an increase in 
neutrophil, eosinophil, immature dendritic cell, 
macrophage, monocyte, plasmacytoid dendritic 
cell, and type 17 T helper cell were detected in 
sCOVID-19 samples (Figure 7c).

Interaction network of drugs and hub genes

In order to predict the drugs that target the hub 
genes, 16 hub genes for mCOVID-19 and 10 
hub genes for sCOVID-19 obtained from 

respective PPI networks were applied for the 
prediction of potential drugs. Only the approved 
drugs (inhibitors or activators) with obvious 
pharmacological effects were taken into consid
eration. NR3C1 and TYMS were found to be 
potentially targeted by drugs for mCOVID-19, 
and a total of 64 FDA-approved drugs were 
predicted for this disease status (Figure 8). 
Cortisone acetate and fluorometholone served 
as the two drugs with the highest query scores 
as well as interaction scores. As for sCOVID-19, 
only GRM5 was predicted to have potential 
interaction with FDA-approved drug 
(Figure 8a). The interactions between drugs 
and NR3C1, TYMS, and GRM5 are depicted in 
Table S5. Furthermore, a significant correlation 
between NR3C1, TYMS, and GRM5 and 
immune cells is also depicted (Figure 8b).

Expression distribution of hub genes in each cell 
type for Mcovid-19 or Scovid-19

In order to unveil the expression distribution of 
hub genes in different cell types, scRNA-seq ana
lysis of the Schulte-Schrepping dataset and 
GSE216020 dataset was conducted. With regard 
to cohort 1 in the Schulte-Schrepping dataset, we 
found 17 clusters of cells, which were annotated as 
classical monocytes, HLA-DRhi CD83hi mono
cytes, CD163 monocytes (sample ID1_d7), HLA- 
DRlo S100Ahi monocytes, non-classical monocytes, 
neutrophils, immature neutrophils, mDCs, pDCs, 

Figure 5. Intersected hallmark pathways for COVID-19. The intersection of significantly enriched hallmark pathways in (a) Mcovid-19 
and (b) Scovid-19.
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Figure 6. Infiltrating immune cells differences between Mcovid-19 and control samples. (a) the heatmap summarizing the correla
tion of immune cells with Mcovid-19 (right) and healthy (left) samples. (b) Heatmap of correlation showing the association between 
immune cells based on Mcovid-19 (right) and healthy (left) samples. (c) Bar graph nested by violin plot showing infiltrating immune 
cells difference between Mcovid-19 and healthy samples.

1786 L. TIAN ET AL.



Figure 7. Infiltrating immune cells differences between Scovid-19 and control samples. (a) the heatmap summarizing the correlation 
of immune cells with Scovid-19 (right) and healthy (left) samples. (b) Heatmap of correlation showing the association between 
immune cells based on Scovid-19 (right) and healthy (left) samples. (c) Bar graph nested by violin plot showing infiltrating immune 
cells difference between Scovid-19 and healthy samples.
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Figure 8. Drugs and immune cells related to NR3C1, TYMS and GRM5. (a) the potential drugs targeting NR3C1, TYMS and GRM5. 
Genes are shown as orange triangle. The pink circle represents the approved drug with activation effects, and the blue circle 
represents the inhibitor. (b) the bubble plots showing the significant associations between immune cells and NR3C1, TYMS and 
GRM5. Adjusted P value and number of genes are represented by color and size of each point for each immune cell.
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CD4+ T cells, CD8+ T cells, NK cells, B cells, 
plasmablasts, megakaryocyte, mixed and unde
fined cells (Figure 9a). UMAP analysis of these 
cells showed that the heterogeneity in different 
groups was evident (Figure 9b). UBA52, one hub 
gene for mCOVID-19, was found to be detectably 
expressed in a high percent of cells across different 
cell types. The expression of NR3C1 was pDCs- 
specific in the mCOVID-19 group (Figure 9c). 

Besides, BCL6, GNAI3, KDM6B and TLR2 yielded 
elevated expression in HLA-DRhi CD83hi mono
cytes and neutrophils in the sCOVID-19 group 
(Figure 9d). In cohort 2 of the Schulte- 
Schrepping dataset, 21 clusters of cells, including 
classical monocytes, HLA-DRhi CD83hi mono
cytes, HLA-DRlo CD163hi monocytes, HLA-DRlo 

S100Ahi monocytes, non-classical monocytes, neu
trophils, immature neutrophils, mDC, pDC, CD4+ 

Figure 9. Expression distribution of hub genes in each cell type based on cohort 1 from the Schulte-Schrepping dataset. (a) UMAP 
dimension reduction plot of control, Mcovid-19 and Scovid-19 samples. (b) UMAP plot of cells from all samples. Cells are colored for 
different groups. Feature dot plot showing mRNA expression levels of hub genes for (c) Mcovid-19 or (d) Scovid-19 in each cell type. 
UMAP, uniform manifold approximation and projection.
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T cells, CD8+ T cells, activated T cells, prol. Cells, 
NK cells, B cells, plasmablasts, megakaryocytes, 
progenitors, undefined, mixed 1, and mixed 2 
cells, were identified and annotated (Figure 10a). 
The heterogeneity of cells between healthy con
trols and COVID-19 patients was obvious 
(Figure 10a,b). Moreover, the expression levels of 
MCM5, TYMS, and RBBP4 were prol. cell-specific 
in both control and mCOVID-19 groups 
(Figure 10c), while the expression of BCL6, 
FLOT1, KDM6B, and TLR2 was CD4+ cell- 
specific in the control and sCOVID-19 groups. 
Similar to the cohort 1, the expression of UBA52 

and RAB7A in cohort 2 was detectable in a 
high percent of cells across the majority of cell 
types (Figure 10c,d).

As for the GSE216020 dataset, we identified up 
to 9 clusters of cells, which were subsequently 
annotated as naive CD4+ T cell, CD8+ T cell, 
CD14+ monocyte, platelet, NK cell, B cell, plasma 
cell, FCGR3A+ monocyte, and CD4+ memory 
T cell (Figure S4A,B,C). Besides, the expression 
distribution of hub genes for mCOVID-19 
(Figure S4D) and sCOVID-19 (Figure S4E) was 
shown. Notably, it was found that the expression 
of PRKCA was mainly distributed in Naive CD4+ 

Figure 10. Expression distribution of hub genes in each cell type based on cohort 2 from the Schulte-Schrepping dataset. (a) UMAP 
dimension reduction plot of control, Mcovid-19 and Scovid-19 samples. (b) UMAP plot of cells from all samples. Cells are colored for 
different groups. Feature dot plot showing mRNA expression levels of hub genes for (c) Mcovid-19 or (d) Scovid-19 in each cell type. 
UMAP, uniform manifold approximation and projection.
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T cell (Figure S4E,F). In addition, PRKCA expres
sion was significantly decreased in sCOVID-19 
patients in comparison with healthy controls.

Discriminatory ability of hub genes expression 
for COVID-19 (severity)

To further investigate the discriminatory ability of 
hub gene expression for COVID-19 severity more 
broadly, we applied machine learning modeling to 
rank the association between the hub genes in the 
context of COVID-19 severity. As the GSE157103 
dataset included samples from both ICU COVID- 
19 patients and non-ICU COVID-19 patients, the 
expression levels of all hub genes for mCOVID-19 
or sCOVID-19 were combined to distinguish ICU 
and non-ICU patients (Figure S5). We constructed 
the RF model with the least residuals. A total of 19 
hub genes were ranked according to the gene 
importance based on RF model, which indicated 
that FLOT1, MUTYH, and RAB7A possessed 
a high priority within the model (Figure S5A). 
The 500 trees were chosen as the variables of the 
present model (Figure S5B). Subsequently, the 
accuracy of the RF model was determined by the 
ROC curve, which yielded an excellent AUC value 
(Figure S5C).

For the assessment of broadly discriminative 
ability of hub gene expression between healthy 
controls and COVID-19 patients in other datasets, 
we combined the PBMC samples from two data
sets, namely GSE152418 and GSE206263. The 
expression levels of samples from these two data
sets before and after normalization were visualized 
(Figure S6A, S6B). In addition, we conducted PCA 
of these samples before and after batch effect cor
rection (Figure S6C, S6D). The heatmap indicated 
an ideally discriminative ability of the hub gene 
expression between healthy controls and COVID- 
19 patients for the GSE152418 dataset, but not for 
the GSE206263 dataset (Figure S6E). We provided 
detailed results of the comparison of hub genes 
expression between healthy controls and COVID- 
19 patients from the combined GSE152418 and 
GSE206263 datasets (Table S7). Specifically, the 
expression levels of 24 hub genes were detectable. 
Among them, logFC of eight hub genes (PLK1, 
TYMS, NR3C1, ID4, KDM6B, TEAD4, GRM5, 
and BCL6) was over 1, while logFC of another 

eight hub genes (CDC25A, MUTYH, RBBP4, 
EDN1, TLR2, SOX9, RAB7A, and YWHAH) was 
between 0.5 and 1.

Validation of Mcovid-19 hub genes expression 
through qPCR

As for the PBMC samples from eight healthy con
trols and eight mCOVID-19 patients at our insti
tution, the mRNA expression levels of 16 
mCOVID-19 hub genes were detected through 
qPCR. The mRNA expression values of 10 hub 
genes (CDC25A, H2AFX, RBBP4, RAD51C, 
NR3C1, HIST1H4B, TYMS, MCM5, UBA52, and 
YWHAH) were significantly elevated for 
mCOVID-19 patients when compared with 
healthy controls (Figure 11). On the other hand, 
the mRNA expression levels of CKAP5, MUTYH, 
KIF4B, and SOX9 were statistically insignificant 
between the two groups (Figure S7), while PLK1 
and ID4 were undetectable.

Discussion

COVID-19 has rapidly spread worldwide and 
caused a humanitarian disaster with social and 
economic consequences [27]. Due to the constant 
mutation of SARS-CoV-2, the efficacy of vaccines 
developed for COVID-19 tends to decrease [28]. 
The development of potential precision theranos
tics strategy requires a deeper understanding of the 
molecular mechanisms of COVID-19 of differing 
severity.

The current study identified many hub genes as 
potential molecular blood signatures for 
mCOVID-19 and sCOVID-19, respectively. As 
for mCOVID-19, hub genes included CDC25A, 
H2AFX, KIF4B, etc. Among these hub genes, 
PLK1 is located on the centrosome during mitosis 
and plays an essential role in cell division cycle. 
The overexpression of PLK1 has been reported in 
human tumors, such as digestive system tumor 
[29]. Previous study reported that NR3C1 was 
upregulated in mCOVID-19 group, but was down
regulated in the sCOVID-19 group [30], which 
was similar to our results. SOX9 belongs to 
X-linked genes encoding proteins that recognize 
the sequence CCTTGAG along with other DNA- 
binding proteins [31]. Interestingly, X-linked 
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genes such as FOXP3 and TLR7/8 and Y-linked 
genes such as SRY and SOX9 could be the reason 
for sex difference in COVID-19 lethality [32]. 
Besides, the ACE2+SOX9+ cells are readily infected 
by SARS-CoV-2 pseudovirus [33].

In the case of sCOVID-19, hub genes included 
TLR2, EDN1, KDM6B, etc. TLR2, one of the Toll- 

like receptor family, involves pathogen recognition 
and innate immunity activation. Besides, TLR2 
plays important roles in sensing various patho
gens, including bacteria, viruses, fungi, and para
sites [33]. In addition, TLR2 appears to participate 
in early-phase NF-κB activation, and prophylactic 
administration of TLR2/6 agonist attenuates the 

Figure 11. The comparison of Mcovid-19 hub genes expression in PBMCs between eight heathy controls and eight Mcovid-19 
patients at our institution. *P value < 0.05; **P value < 0.01; ***P value < 0.001. PBMCs, peripheral blood mononuclear cells.

1792 L. TIAN ET AL.



transmission of SARS-CoV-2 and protects subjects 
from COVID-19 [34]. RAB7A, a small GTPase, 
modulates vesicular transport and membrane traf
ficking [35]. RAB7A loss decreases viral entry 
through sequestering ACE2 receptor and altering 
endosomal trafficking [36]. BCL6 inhibits activa
tory and proliferative capacities of monocyte and 
macrophage, and the transcriptive capability of 
chemokines and IL-6 [37,38]. In addition, the 
upregulation of BCL6 was found in SARS-CoV, 
pneumonia, and severe acute respiratory syn
drome [39]. PRKCA is a family member of the 
protein kinase C (PKC) and can be activated by 
calcium and diacylglycerol. Each PKC family 
member possesses specific cellular functions attri
butable to the specific expression distribution. 
Interestingly, PRKCA was found to be a naive 
CD4+ T cell-specific gene and downregulated in 
sCOVID-19 patients (Figure S4E,F). It was 
reported that PRKCA is activated in respiratory 
disease originated from virus and/or bacteria 
[40]. PRKCA upregulates the outward transition 
of the ribonucleoprotein complex from the 
nucleus in affected cells [41]. The multiplication 
of SARS-Cov-2 can be accelerated through the 
activation of RKCA/mTORC2 and PI3K/PDK1 
signalings [42]. T cell plays critical roles in the 
clearance of virus, and naive CD4+ T cell serves 
as an important member of T cell that can be 
transformed into differentiated effector cells upon 
encountering foreign antigens [43]. On the other 
hand, the role of PRKCA in naive CD4+ T cell and 
the mechanism of its downregulation in sCOVID- 
19 patients remains to be clarified in future 
studies.

The upstream regulatory network that controls 
the most critical module for mCOVID-19 or 
sCOVID-19 was also assessed in this study. PML, 
SIN3A, and ATF2 were the most critical TFs asso
ciated with mCOVID-19. PML is a nuclear protein 
that forms nuclear bodies and exhibits antiviral 
activity against both DNA and RNA viruses. 
SIN3A, a transcription regulator, regulates histone 
deacetylase activity and inhibits many tumor- 
related factors [44]. ATF2 is a member of AP-1 
TF family, and can be activated through phosphor
ylating Thr69 and Thr71 once encountering extra
cellular stress. As for kinases, we identified CDKs 
and MAPKs most significantly enriched for 

mCOVID-19. MAPKs are serine/threonine protein 
kinases and share common features with CDKs. 
MAPK14 represses cell cycle progression through 
downregulating cyclins and upregulating CDK 
inhibitors [45]. In the case of sCOVID-19, 
STAT3, RUNX1, and TP63 were identified as the 
most correlated TFs. STAT3 plays a role in indu
cing many proinflammatory and immune response 
genes [46]. The activation STAT3 induces 
COVID-19 to occur through upregulating cyto
kine storm [47]. Furthermore, RUNX1 is impli
cated in the angiogenesis and fibrosis, which are 
essential components of cell responses to SARS- 
CoV-2 infection.

Our results from the enrichment and immune 
cells demonstrated hyperproliferation of periph
eral blood cells and activation of immune cells in 
COVID-19 patients. Concerning the infiltrating 
immune cells in the blood, upregulated abundance 
of neutrophils suggested important roles of neu
trophils in COVID-19 pathogenesis. Conversely, 
decreased abundances of CD8+ T cells were 
found for both mCOVID-19 and sCOVID-19 
(Figures 6c and 7c). Previous study reported that 
CD8+ T cells could express functional exhaustion 
molecules, such as TIM-3 [48]. In our current 
study, an upregulated abundance of macrophage 
was observed for sCOVID-19 but not mCOVID- 
19 (Figures 6c and 7c). In other words, it seems 
that macrophage-derived inflammation elevated to 
a large extent only when COVID-19 progresses to 
a severe stage. Future studies with more compre
hensive study designs such as the addition of 
research into macrophage polarization are war
ranted to unveil this phenomenon.

The mainstay of current pharmacologic treat
ment is mainly composed of antiviral drugs, anti- 
SARS-CoV-2-neutralizing monoclonal antibodies, 
and immunomodulator agents [49]. Overall, anti
viral drugs and monoclonal antibodies are suitable 
for patients at an early stage, and immunomodu
lator agents or combination therapy are appropri
ate for patients at an advanced stage [50]. 
Bioinformatic approaches provide the possibility 
of identifying putative drugs that may be helpful 
for future treatment of COVID-19. Herein, 
NR3C1, TYMS, and GRM5 were predicted to 
achieve the drug target. Among these three critical 
genes, NR3C1 had the largest number of protein 
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targeting drugs. NR3C1 may bind glucocorticoid 
response products within the promoter of gluco
corticoid responsive gene for the activation of its 
transcription [51]. TYMS catalyzes the synthesis of 
thymidylate or dTMP from dUMP [52] and main
tains the dTMP pool, a necessary element for 
DNA synthesis. GRM5 can activate phospholipase 
C and participate in multiple biological processes 
[53]. Among the protein targeting drugs, we found 
that drugs with the highest scores nearly all belong 
to naturally derived or synthetic glucocorticoids 
such as cortisone acetate, fluorometholone, and 
difluprednate.

Glucocorticoids are common ingredients of drugs 
for inflammation-related disorders due to anti- 
inflammatory and immunosuppressive properties. 
The pathophysiological features of sCOVID-19 are 
characterized by a hyperinflammatory state and ele
vated concentrations of inflammatory cytokines in 
bodily fluids. Recently, a large and open-label rando
mized controlled trial assessed the effects of dexa
methasone in patients hospitalized with COVID-19, 
and found that dexamethasone users who received 
respiratory support had a significantly lower 28-day 
mortality [54]. In clinical management, dexametha
sone has been routinely selected for hospitalized 
patients who require respiratory support. On the 
other hand, for patients with mild-to-moderate 
acute respiratory distress syndrome caused by 
COVID-19, it was reported that no clinical benefit 
was observed for high-dose administration of gluco
corticoids [55]. In addition, moderate-quality evi
dence arising from a previous meta-analysis 
suggested that in patients with mCOVID-19, gluco
corticoids was correlated with over three-fold higher 
risk of mortality [56]. In contrast, most of the gluco
corticoids in this study were predicted based on 
NR3C1 and TYMS, which served as two hub genes 
originated from a comparison between mCOVID-19 
and control samples. Several potential explanations 
may account for this discrepancy. The beneficial 
effect of glucocorticoids in COVID-19 patients relies 
on appropriate selections of the timing, dose, dura
tion, and pharmacotyping of drugs. Although gluco
corticoids are not contraindicated in the presence of 
mCOVID-19, high dose might be more harmful 
than helpful for such patients. Meanwhile, there 
may be the potential for mCOVID-19 patients to 
achieve therapeutic efficacy on the basis of short- 

term low-dose administration of glucocorticoids. In 
the era of precision and personalized medicine, one 
critical issue is how to choose an appropriate amount 
of drugs based on the specific medical condition and 
the stratification of heterogeneous patients. Despite 
these promising findings, there are several limita
tions of this study. Firstly, the experimental valida
tion of hub gene expression is only conducted 
between healthy controls and mCOVID-19 patients 
at our institution. Secondly, it should be noted that 
the small sample size in the control and case groups 
during network analysis is the major limitation to 
this exploratory study, which hinders the possibility 
of comparing mCOVID-19 and sCOVID-19 cases 
for the prediction of potential drugs. Future studies 
with large sample sizes are needed to confirm our 
results and to investigate severity-specific treatment 
targets for mCOVID-19 and sCOVID-19 cases.

Conclusions

In conclusion, we identified critical modules, sig
naling pathways, TFs, kinases, immune cells, tar
geting drugs, hub genes, and their expression 
distributions in different cell types that may 
involve the pathogenesis of COVID-19 of differing 
severity, and fuel future advances in early diagno
sis, patient stratification, and precision theranos
tics strategy of this notorious disease.
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