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Abstract

We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-

free DNA through the amplification of ~350,000 repeated elements with a single primer. We 

hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with 

RealSeqS might reveal other differences between plasma samples from patients with and without 

cancer. This hypothesis was tested through the development of a machine learning approach 

called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples 

from 5178 individuals, 2073 with solid cancer and the remainder without cancer. Samples from 

patients with cancer and controls were prespecified into four cohorts used for model training, 

analyte integration, and threshold determination, validation, and reproducibility. A-PLUS alone 

provided a sensitivity of 40.5% across 11 different cancer types in the validation cohort, at a 

specificity of 98.5%. Combining A-PLUS with aneuploidy and eight common protein biomarkers 

detected 51% of the cancers at 98.9% specificity. We found that part of the power of A-PLUS 

could be ascribed to a single feature—the global reduction of AluS subfamily elements in the 

circulating DNA of patients with solid cancer. We confirmed this reduction through the analysis of 

another independent dataset obtained with a different approach (whole-genome sequencing). The 

evaluation of Alu elements may therefore have the potential to enhance the performance of several 

methods designed for the earlier detection of cancer.

INTRODUCTION

Alu elements are short interspersed nuclear elements (SINEs) of ~300 base pairs, with 

more than 1 million copies spread throughout the human genome (1). Their role in 

biology and evolution is an ongoing area of research, but some elements have already 

been shown to be involved in the regulation of tissue-specific genes. In cancer cells, they 

participate in structural changes, probably through homologous recombination given their 

widespread distribution throughout the genome and highly similar sequences (2). Moreover, 

Alu elements are hypomethylated early during tumor progression (3–9), and this feature has 

been incorporated into methods for the earlier detection of cancer through plasma cell-free 

DNA (cfDNA) analysis (10). Alu elements also reflect the altered fragmentation patterns 

found in the cfDNA of patients with cancer: One of the first plasma multicancer biomarkers 
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used quantitative polymerase chain reaction (qPCR) to calculate the ratio of short and long 

Alu segments (11–13).

Whole-genome sequencing (WGS) has been widely used in recent blood-based multicancer 

earlier detection assays (14–16). WGS should in theory allow evaluation of Alu elements, 

but predictive algorithms often discard them as a result of bioinformatic challenges 

stemming from their resemblance to each other and difficulties in mapping them 

unambiguously (17). Even with the inclusion of mappable Alu elements, shallow WGS 

is inefficient to optimally evaluate Alu elements because they represent only a small fraction 

(~11%) of the genome (1).

We previously developed an approach, called RealSeqS, to specifically amplify Alu 

sequences (18). RealSeqS offers advantages over WGS, including a simpler workflow that 

does not require library construction and has a reduced requirement for input DNA, faster 

computational analysis, and higher sequencing coverage at individual Alu loci. Specifically, 

the RealSeqS workflow uses a single-primer pair to concomitantly amplify ~350,000 Alu 

elements. For an equivalent sequencing depth, RealSeqS achieves ~28-fold greater coverage 

of the Alu elements it amplifies than is achievable with WGS at an equivalent sequencing 

depth, enabling improved predictive modeling.

As noted above, there is much precedent for Alu sequence elements being especially 

prone to epigenetic changes in various cancers. Epigenetic changes include those involving 

methylation and chromatin fragmentation patterns [reviewed in (19)]. We therefore 

hypothesized that the representation of specific Alu elements might be different in the 

cfDNA of plasma patients with cancer than in normal controls. Because there are so many 

Alu elements in the genome, an evaluation of this hypothesis required machine learning 

(ML) tools. Here, we report and test a ML-based approach, called Alu Profile Learning 

Using Sequencing (A-PLUS), to distinguish individuals with cancer from those without 

cancer on the basis of the representation of Alu elements in their cfDNA.

RESULTS

Rationale and background of the assay

During the development and implementation of RealSeqS, we observed substantial 

differences in read depth at specific loci. These loci did not appear to correlate with cancer-

specific copy number alterations, which was the original intent of RealSeqS, or regions 

of high technical variability, in the noncancer controls. We hypothesized that an unbiased 

supervised ML method might be able to select cancer-specific Alu element representations 

from RealSeqS data and be used to provide a metric in addition to aneuploidy for cancer 

classification.

The detection of cancer in asymptomatic patients, which is the primary goal of multicancer 

earlier detection tests, requires very high specificity. Designing a highly specific ML 

algorithm to predict cancer status from the ~350,000 features assessed in RealSeqS 

sequencing data thereby poses technical challenges. First, the selected features must be 

empiric and solely derived from the sequencing data. Unlike the evaluation of aneuploidy, 
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or of mutations, methylation, or other epigenetic changes, we did not know (and still 

do not know) why certain Alu elements are more represented than others in the cfDNA 

from patients with cancer. Presumably, these differences result from nucleases or chromatin 

structure characteristics that are different in cancer cells from those in normal cells, but this 

is speculative. We also do not know the cell types of origin of differently represented Alu 

loci in the cfDNA. They could be from neoplastic cells, from nonneoplastic cells of the 

same organ surrounding the cancer cells that have been destroyed because of the cancer 

environment, or from one or more types of leukocytes. Note that leukocytes are the major 

source of cfDNA in patients with or without cancer (20).

Other challenges facing the development of a highly specific ML cancer detection algorithm 

are more general than those noted above. ML models built on thousands of features often 

unintentionally result in predictions based on confounding variables such as ethnicity, sex, 

sample processing, or batch effects at any one of the experimental procedures used to obtain 

the final data rather than on attributes of cancer per se (14, 21–24). Learning and integrating 

features optimally requires more training samples than the number of available features, and 

this is impossible from a logistical standpoint when there are 350,000 features and limited 

research resources. This problem is often referred to as the curse of dimensionality (d>>n) 

(25). Even under the best circumstances, ML models often do not reliably classify samples 

when tested on data from cohorts independent of those used for training.

Cross-validation is frequently used to assess classifier performance but can generate overly 

optimistic estimates when the ML model accidentally learns a confounding variable that 

“leaks” between samples in the training and testing folds (14, 26, 27). Adjustments to 

traditional k-fold cross-validation, including nested, k-batch, ordered k-batch, or balanced 

k-batch cross-validation, can eliminate knowledge leak (14, 28), but with high-dimensional 

data such as ours, feature selection is one of the keys to success. With cross-validation, 

each iteration yields a different set of features. In practice, a diagnostic test must use a 

prespecified threshold to determine whether the sample is positive. Selecting a threshold 

becomes even more challenging when optimizing for the high-specificity requirements 

needed in multicancer early detection. Nested cross-validation is one potential solution 

where half of the folds are used for model construction and half for threshold determination, 

but this still will not eliminate the potential for knowledge leak across folds. Even a 

subtle drift in model prediction values near the threshold could result in a much higher-

than-expected number of positive tests when applied to large numbers of individuals in an 

asymptomatic cohort.

To address the challenges listed above, we incorporated several principles into the 

development of A-PLUS. First, we attempted to identify and eliminate confounding loci 

associated with technical noise, ethnicity, sex, and batch differences. Second, we reduced 

the number of features from 350,000 using principal components analysis (PCA). Third, we 

used an order of magnitude more samples (thousands rather than hundreds) than typically 

used in initial studies on new tests of cfDNA performance. Fourth, we divided samples into 

four prespecified and nonoverlapping cohorts to minimize overfitting: Cohort 1 was used 

to choose features and train the ML model; cohort 2 was used to establish thresholds for 

scoring samples as positive or negative; cohort 3 was used to independently test (validate) 
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the ML model based on cohort 1 and the thresholds based on cohort 2; and cohort 4 was 

used to evaluate reproducibility of the scoring system (Fig. 1).

The prespecified study design is relatively simple, is easily understood, and offers many 

advantages evaluating a high-dimensional ML model but is not without drawbacks. The 

primary concern is that any approach designed on a limited number of samples will be 

underpowered compared with a model using our entire dataset. To date, many of the 

proposed multicancer early detection models rely on thousands of predictive features but 

have only been trained on a few hundred to a thousand samples (14, 15, 29). Given how 

widespread this issue is, we asked not what the most powerful model is but whether we can 

structure our study to evaluate and generate realistic performance estimates for a complex 

ML model with limited training examples. Technical nuances underlying the development of 

A-PLUS are detailed in Materials and Methods, and the code is publicly available at https://

zenodo.org/record/8225868. In the remainder of this section, we discuss results related to the 

four cohorts described above.

Cohort 1: A-PLUS feature selection and model training

Cohort 1 consisted of 566 individuals (715 total samples) from 354 individuals without 

cancer (400 total samples) and 202 patients with solid cancers (315 total samples). 

Individuals with multiple samples are always from the same time point and considered 

technical replicates. Cohort 1 has 459 samples previously analyzed for aneuploidy (18) 

using RealSeqS (18) and an additional 250 samples from controls of Vietnamese, Han 

Chinese, South Asian, or Native American/Inuit ethnicities not included in previous studies. 

These additional samples were included because inherited polymorphisms within Alu 

elements could alter alignments and the subsequent read depth representation of Alu loci. 

Slightly fewer cancer than control samples were purposefully used because we valued 

specificity over sensitivity: Cancer samples erroneously classified as controls were deemed 

less harmful to performance of the final classifier than the reverse. Sample demographics are 

listed in table S1 in data file S1.

Important elements of the training included normalization of read depths and the removal of 

amplicons with insufficient coverage and removal of amplicons that were unstable based on 

t tests. After these steps, there were 121,197 loci of the original 350,000 that remained. PCA 

was then used to reduce dimensionality. Last, a support vector machine (SVM) was used 

to identify the 60 first PCA components. This feature number (60) was ~10% of the total 

number of unique patients in the training set, which we considered a reasonable compromise 

to cope with the d>>n conundrum (25). The noncancer samples were used to generate a 

euploid reference panel for aneuploidy calls. Both the cancers and noncancer samples were 

used to generate and optimize model building. Performance was not assessed in cohort 1.

To reduce the chance of overfitting and establish quality metrics before evaluation of 

samples, we used the previously published metrics and thresholds for inclusion of patients 

rather than exclude any participants because of any metric related to A-PLUS performance. 

Our previously introduced quality control metrics were designed to identify technical 

outliers (18). The first metric identified samples with unusual GC bias. Next, we used 

two different size metrics to identify the presence of large molecular weight DNA. Large 
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molecular weight DNA is frequently attributed to genomic DNA from blood cells lysed 

during collection or storage rather than from cfDNA. Contamination from genomic DNA 

can limit the sensitivity of an assay given that it is unlikely to be derived from the tumor. 

These previously defined criteria excluded 3.1% of cohort 1 samples, and their global 

aneuploidy scores (GAS) and A-PLUS scores are listed in table S2 for transparency. We 

excluded a small fraction of patients in cohorts 2, 3, and 4 using identical criteria (tables S2 

and S3).

Cohort 2: Analyte integration and determination of thresholds

Cohort 2 included samples from 704 patients with solid tumors (total of 852 samples) and 

958 control individuals without cancer (total of 1402 samples). None had metastases at 

the time of the blood collection, and as with cohort 1, cancers included those from colon, 

esophagus, stomach, breast, colorectum, lung, ovary, and pancreas. The A-PLUS score 

corresponding to 99% specificity among the control samples was 0.28 in cohort 2 (fig. S1A). 

At this threshold, samples from patients with cancers of the esophagus and stomach had 

the highest sensitivities [86% confidence interval (CI): 68 to 96% and 87% CI: 73 to 94%, 

respectively], and samples from patients with breast cancer had the lowest (34% CI: 28 to 

40%; Fig. 2A and tables S3 and S4).

We also investigated whether the number of principal components would affect 

performance. An A-PLUS model using the first 60 principal components outperformed 

models with 15, 30, 90, and 240 principal components. Across cohort 2, 51.5% of cancers 

were detected using a model built with 60 principal components, whereas 36.5% of cancers 

were detected with a model built on 15, 46.0% with 30, 49.9% with 90, and 49.2% with 240 

based on a threshold that produces >99% specificity. We also tested whether a random forest 

model would outperform the SVM model we used, with all other parameters identical. The 

SVM outperformed the random forest model (51.5 versus 39.8% at 99% specificity). A full 

list of the principal components is provided in table S2.

We then generated GAS scores for cohort 2 samples with the same RealSeqS data used 

to generate A-PLUS scores. The GAS uses a different ML technique to generate a single 

score that reflects gains or losses of 39 chromosome arms, focusing on those arms that are 

typically altered in cancers (30). A GAS threshold of >0.64 yielded a 99% specificity in the 

cohort 2 control samples (fig. S1B). The highest sensitivities at this 99% specificity were 

achieved for cancers of the esophagus and liver (43% CI: 26 to 62% and 37% CI: 17 to 61%, 

respectively) and the lowest in breast (6% CI: 4 to 10%; Fig. 2, A and B, and tables S3 and 

S4). In the 687 cancers scoring negatively (that is, below the 99% specificity threshold) in 

the GAS assay, 318 (46%) scored positively (that is, above the 99% specificity threshold) in 

the A-PLUS assay (Fig. 2C and tables S3 and S4). Conversely, 81% of the cancer samples 

that scored positively in GAS also scored positively in A-PLUS. No A-PLUS–positive 

noncancer samples scored positively in GAS (Fig. 2D).

Next, we evaluated a panel of eight protein markers previously shown to be useful for cancer 

detection when used at high thresholds (OPN, HGF, AFP, CA125, CA15–3, CEA, CA19–9, 

and TIMP-1). To integrate these eight protein values into a single score, logistic regression 

with binary classification was used to generate a protein score. Performance was assessed 
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using 10-fold cross-validation and a protein score (“PROT”) of >0.73 generated 99% 

specificity in the samples from patients without cancer (fig. S1C). The highest sensitivities at 

this threshold were achieved for cancers of the liver and stomach (84% CI: 60 to 96% and 

69% CI: 54 to 81%, respectively) and the lowest in breast (18% CI: 14 to 23%; tables S3 and 

S4). In the 535 cancers scoring negatively with the protein assay, 44% scored positively with 

A-PLUS.

Logistic regression was then used to integrate A-PLUS and GAS with the proteins into a 

multi-analyte classifier (table S5). Performance was assessed using 10-fold cross-validation 

and a threshold of >0.87 generated 99% specificity (fig. S1D). The highest sensitivities were 

achieved for patients with cancers of the esophagus and liver (90% CI: 72 to 97% and 90% 

CI: 66 to 98%, respectively) and the lowest in patients with breast cancers (32%; tables S3 

and S4). The sensitivity of the multi-analyte classifier was equivalent or higher than any 

individual analyte in every cancer type and maintained high specificity.

Cohort 3: Independent validation

Cohort 3 samples were from 2960 individuals, including 1167 patients with solid tumors 

of 11 types: breast, colorectum, esophagus, head and neck, kidney, lung, ovary, pancreas, 

prostate, stomach, and uterus (Table 1 and table S1). None of these samples had been 

previously analyzed with RealSeqS in prior publications.

The 99% thresholds defined by cohort 2 were used to assess performance in cohort 3 for 

each of the assays described above (table S3). For A-PLUS, the specificity observed in 

cohort 3 (98.5%) was slightly less than the 99% expected from cohort 2 (P = 0.03, one-sided 

two-sample Z test for equality of proportions). In the seven cancer types that were evaluated 

in both cohorts 2 and 3, the cancer-type sensitivities were similar, with the exception of 

lung, where the sensitivities were 54 and 27%, respectively (Fig. 3A and tables S3 and S4). 

This decrease in cohort 3 sensitivity for lung cancers could not be attributed to differences 

in cancer subtype between the two cohorts (table S1). The sensitivities and specificities of 

aneuploidy alone as well as proteins alone were similar in cohorts 2 and 3 (tables S3 and 

S4). The multi-analyte test incorporating A-PLUS, aneuploidy, and proteins detected more 

than two-thirds of cancers for each of the following organs: esophagus, pancreas, ovary, 

stomach, and colorectum, at an observed specificity of 98.9% (Fig. 3B and tables S3 and 

S4). The sensitivities of the two other cancer types evaluated in both cohorts 2 and 3 were 

lower (37% CI: 29 to 46% and 26% CI: 16 to 38% in lung and breast, respectively). Four 

cancer types (head and neck, kidney, prostate, and uterus) were represented in cohort 3 but 

not cohort 1 or 2. Although no algorithmic training was performed on these cancer types, the 

sensitivity for their detection ranged from 17 to 36% (Fig. 3C). Cancers of the liver were not 

available in cohort 3, although the sensitivity for their detection in cohort 2 was high (90%).

The overlap in analyte detections (A-PLUS, GAS, and PROT) at the predefined thresholds 

is depicted as a Euler diagram in Fig. 3 (D and E). A-PLUS made a greater contribution to 

positive calls than aneuploidy or proteins, and A-PLUS detected 41% of the samples that 

were not detected by either aneuploidy or proteins.
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Most cancers represented in cohort 3, and all the samples in cohorts 1 and 2, were relatively 

early in the sense that few had any distant metastatic lesions evident at the time of sample 

acquisition. However, there were 15 cases (0.6% of 2349), all ovarian and all in cohort 3, 

that were later restaged to IV. When these were removed, the sensitivity for ovarian cancer 

detection decreased from 75 to 73%. The sensitivity was 72% for ovarian in cohort 2, which 

did not contain any stage IV cancers. When categorized by stage I, II, or III, the average 

sensitivities for all cancers using each individual analyte or the multi-analyte classifier 

increased with stage in both cohorts 2 and 3 (table S4). With the multi-analyte classifier, for 

example, sensitivity averaged 57% in stage I, 60% in stage II, and 65% in stage III.

Cohort 4: Reproducibility

The technical reproducibility of the A-PLUS and GAS assays (both based on RealSeqS 

sequencing data) was evaluated in 1686 individuals (1539 without cancer and 147 with 

cancer) from cohort 2 or cohort 3. The cancers were predominantly breast [n = 98 (67%)], 

colorectum [n = 17 (12%)], and lung [n = 11 (7%)], with the remainder [n = 21 (14%)] 

from various other solid tumors. The samples were all technical repeats taken from the 

same patient at the same time point. When an individual had three or more technical 

replicates available, only the first two replicates were considered; all replicate scores are 

provided in tables S2 and S3. Separate aliquots of purified DNA (comprising separate 

template molecules) from the same plasma sample were independently amplified using the 

single RealSeqS primer pair, and the PCR products were sequenced. The amplification and 

sequencing of each DNA sample from the same patient were performed on different days. 

Of the 1686 pairs, quality control failed for at least one of the two samples in 54 (3.2%) of 

the cases.

Using the thresholds defined by cohort 2, 95.8% of the 1632 pairs scored concordantly 

(either positively or negatively) with a Cohen’s kappa of 0.56 (95% CI: 0.47 to 0.65) for 

A-PLUS (Fig. 4 and table S6). The imperfect concordance of A-PLUS reflects the balance 

between specificity and sensitivity. The specificity was purposefully set to be very high 

(99%), realizing that this could limit sensitivity in light of experimental variation between 

different assays on the same samples. Thus, the difference between specificities of the 

replicates, at the same preset threshold, was only 1.2%, whereas the difference between 

sensitivities of the replicates was more than 10× higher (18%) (Fig. 4 and table S6). Of 

the 70 discordant samples, 23 scored just below the threshold in one of the two DNA 

aliquots (that is, between the scores required for 98 and 99% specificity) and above the score 

required for 99% specificity in the other aliquot.

With GAS, 99.3% pairs were concordant (Fig. 4B) with a Cohen’s kappa of 0.66 (CI: 0.48 

to 0.85). The lower sensitivity of GAS in cohort 4 compared with cohort 3 was due to the 

fact that most (67%) of the cancer cases in cohort 4 were derived from patients with breast 

cancers, whereas only 6% of the cancers in cohort 3 were derived from the breast. Breast 

cancers had the lowest GAS in cohort 3.
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Alu subsets

We next asked whether there was a subset of the Alu loci included in the A-PLUS heuristic 

that was particularly important for its success in distinguishing samples from individuals 

with or without cancer. The most notable observation was a global reduction in read depth 

across all AluS loci. The AluS subfamily is the largest subfamily and older than AluJ but 

younger than AluY (31, 32). Using only a single feature—the average normalized read 

depth of AluS elements (herein dubbed AluS fraction) from RealSeqS data, without any ML 

algorithms at all—samples from patients with cancer could be distinguished from those of 

controls [P < 2 × 10−176, one-sided t test; area under the curve (AUC) = 0.70; Fig. 5A]. A-

PLUS scores and the proportional representation of AluS elements were inversely correlated 

(−0.19; P < 2.2 × 10−16 via Pearson’s). We noted that the third principal component from 

the A-PLUS model was associated with the global change in read depth across AluS, with 

a Pearson correlation coefficient of 0.72. Given that the AluJ fraction, AluS fraction, and 

AluY fraction add to 1, a change in AluS naturally produces a change in the other fractions. 

The decrease in AluS fraction for cancer samples is associated with increases in the AluJ 

fraction (P < 4 × 10−38, one-sided t test; AUC = 0.46; fig. S2A) and the AluY fraction 

(P < 5 × 10−100, one-sided t test; AUC = 0.66; fig. S2B) fraction. Statistically significant 

differences in AluS fractions were observed in all of the cancer types evaluated [P < 2 × 

10−16, analysis of variance (ANOVA)].

We then asked whether this observation could have been affected by the filtering used for 

A-PLUS feature selection. We repeated this analysis across all Alu elements in RealSeqS 

rather than only those used to build the model. Again, a decrease in the AluS fraction was 

observed in the cancer samples (P < 3 × 10−98, one-sided t test). Analogously, increases in 

the AluJ and AluY fractions (P < 7 × 10−47 and P < 0.0002, one-sided t tests) were observed 

in the cancer samples. A full list of the unfiltered fractions is included in table S7.

We wondered whether the reduced representation of AluS elements in the cfDNA from 

patients with cancer was the result of some unknown bias in amplification efficiency or 

sequencing generated from the RealSeqS approach, which used a single primer pair. To 

address this question, WGS data from our recently published study that included 65 cfDNA 

samples from individuals without cancer and 58 samples from patients with cancer were 

evaluated (55 colorectum, 2 lung, and 1 pancreas) (table S8) (33). Cancer samples had a 

global reduction of AluS representation compared with controls (P < 2.6 × 10−5, one-sided 

t test; Fig. 5B). Moreover, this single feature (AluS fraction, defined as the number of AluS 

reads divided by the number of all Alu reads) could distinguish samples from patients with 

cancer and controls with an AUC of 0.73 in receiver operating characteristic (ROC) analysis. 

The AluS fraction value corresponding to >99% specificity among the control samples was 

0.6546. At this threshold, 36% of the samples from patients with cancers were positive. The 

increased representation of AluJ (P > 0.05, one-sided t test) and AluY (P < 1 × 10−5) was 

also observed in WGS data from patients with cancer (fig. S2, C and D).

Next, we evaluated a publicly available dataset that included 266 cfDNA samples from 

patients with cancer (25 bile duct, 54 breast, 22 colorectum, 27 stomach, 76 lung, 26 ovary, 

and 35 pancreatic) and 260 samples from individuals without cancer (34). Again, cancer 

samples had a global reduction of AluS (P < 4 × 10−43, one-sided t test; Fig. 5C). Using 
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the preselected threshold for the AluS fraction, 21% of cancers were detected at a specificity 

of 98.8% (Table 2 and table S8). There was also a statistically significant difference among 

cancer types (P < 0.0006, ANOVA). An increased representation of AluJ (P < 3 × 10−16, 

one-sided t test; fig. S2E) and AluY (P < 0.02, one-sided t test; fig. S2F) was also observed 

in the publicly available WGS dataset.

Last, we evaluated whether AluS fraction in WGS data could be combined with the 

evaluation of aneuploidy in the same dataset. WisecondorX was used to count the number of 

aberrant chromosomal regions throughout the genome in the FinaleDB dataset. Aneuploidy 

was defined by the WisecondorX default settings. The scores for aneuploidy and AluS 

fraction were combined with a Boolean OR to avoid the possible pitfalls of ML algorithms 

mentioned above. The addition of AluS analysis enhanced the sensitivity of detection of 

cancers from 42% with aneuploidy alone and 21% with AluS alone to 52% in combination, 

with an aggregate specificity of 98.5% (Table 2). Similar to the A-PLUS results, patients 

with cancers of the stomach (67%) and colorectum (65%) had the highest sensitivities.

DISCUSSION

The results described above show that the evaluation of the representation of SINEs can add 

to the power of aneuploidy to detect cancers. In RealSeqS data, the A-PLUS algorithm 

considerably enhanced sensitivity over that achieved for aneuploidy alone at matched 

specificities. We found that part of the power of A-PLUS was derived from the global 

reduction in one Alu subfamily (AluS). Although a single feature (AluS fraction from 

RealSeqS data) could be used as a standalone classifier, it was not as powerful as A-PLUS, 

which uses 95,116 AluS features and an additional 16,702 AluY and 9373 AluJ features. 

The underrepresentation of AluS in cfDNA from patients with cancer was supported and 

extended by the evaluation of WGS data. This single feature (AluS fraction from WGS 

data) could be used to increase the performance of a classifier based on WGS copy number 

analysis, without any additional wet bench experiments.

One of the strengths of our study was its independent cohort design. Cohort 1 was 

used for training, cohort 2 was used to establish thresholds for scoring a sample as 

positive, and cohort 3 was used to evaluate sensitivity at a predetermined specificity. 

Cohort 4 (comprising different experiments from the same individuals as cohort 3) was 

used to assess reproducibility. Numerous problems with ML algorithms that limit their 

application to other datasets have been highlighted in the literature (24). Moreover, it is 

now generally recognized that cross-validation, although an effective approach when the 

number of samples is limiting, is not as reliable for predicting performance as a completely 

independent dataset (14, 26, 27). Despite its advantages, this study design does have 

drawbacks. Models constructed on rigid prestructured smaller cohorts will inherently have 

less statistical power than if we had used the entire dataset and assessed performance using 

nested cross-validation. Another strength of our study was that one of its major findings—

the reduced representation of AluS elements in the cfDNA of patients with cancer—could 

be confirmed using a completely independent experimental approach (WGS) on samples 

distinct from those processed in our laboratory.

Douville et al. Page 11

Sci Transl Med. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One limitation of our study is that we only evaluated solid tumors. We have yet to evaluate 

whether our findings extend to hematologic malignancies or other types of solid tumors 

that are less common than those studied here. Another weakness is that all RealSeqS 

experiments were performed in our laboratory. We are confident that future samples 

evaluated in our laboratory, using identical methods for blood collection, sample storage, 

DNA purification, PCR-mediated amplification, and sequencing, will perform similarly 

based on the comparison between cohorts 2 and 3. However, we cannot be confident 

that other laboratories will achieve the same performance. It is conceivable that small 

differences in any of the experimental procedures used could affect performance, and these 

can confound analysis. Another limitation of our study is that A-PLUS is empirical. Alu 

element representation is unequivocally different in the cfDNA of patients with cancer than 

in normal individuals, but we do not know why. The usual suspects are differences in 

chromatin structure or nucleases in neoplastic cells versus nonneoplastic cells. However, 

we are not sure that the observed differences in Alu element representation arise from the 

neoplastic cells themselves or from other cells within or outside of tumors, such as white 

blood cells (19, 35).

Regardless of the molecular basis for the observed differences, our study shows that Alu 

element representations, in general, and AluS subfamily elements, in particular, are altered 

in the cfDNA of patients with many different cancer types. Future investigation of the 

mechanisms underlying their altered representation will be facilitated by their abundance 

in the genome and their similar sequences and structures. At the practical level, it will be 

informative to determine whether Alu representation can add sensitivity to other features 

obtained through WGS data, such as fragment sizes, end motifs, or chromatin accessibility 

(36, 37), as well as to assays of mutation or DNA methylation.

MATERIALS AND METHODS

Study design

This study was designed to assess the potential of Alu elements to enhance methods 

designed for the earlier detection of cancer. This study was approved by the Institutional 

Review Boards for Human Research at Johns Hopkins Medical Institutes and other 

participating institutions in compliance with the Health Insurance Portability and 

Accountability Act. No proper sample size was calculated. Samples were chosen on the 

basis of availability. All individuals participating in the study provided written informed 

consent. Plasma was purified from 3105 individuals without cancer and 2037 patients 

with solid cancer using the BioChain Cell-free DNA Extraction Kit (Cat X K5011625). 

All patients were deidentified, and patients are not known to anyone outside the research 

group. Demographics for the individuals in the study are included in table S1. Samples 

from patients with cancer and cancer-free controls were prespecified into four cohorts 

used for model training, analyte integration and threshold determination, validation, and 

reproducibility.
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RealSeqS experimental protocol

A detailed experimental protocol for RealSeqS is listed in the supporting appendix of 

Douville et al. (18). Briefly, PCR was performed in 25 μl of reactions containing 7.25 

μl of water, 0.125 μl of each primer, 12.5 μl of NEBNext Ultra II Q5 Master Mix (New 

England Biolabs, catalog no. M0544S), and 5 μl of DNA. Eight independent reactions were 

performed in ~0.1 to 0.25 ng of DNA. A second round of PCR was then performed to 

add dual indexes to each PCR product before sequencing. The second round of PCR was 

performed in 25-μl reactions containing 7.25 μl of water, 0.125 μl of each primer, 12.5 

μl of NEBNext Ultra II Q5 Master Mix (New England Biolabs, catalog no. M0544S), 

and 5 μl of DNA containing 5% of the PCR product from the first round. Amplification 

products from the second round were purified with AMPure XP beads (Beckman, catalog 

no. a63880), as per the manufacturer’s instructions, before sequencing. As noted above, 

each sample was amplified in eight independent PCRs in the first round. Each of the 

eight independent PCRs was then reamplified using index primers in the second PCR 

round. The sequencing reads from the eight replicates were summed for the bioinformatic 

analysis but could also be assessed individually for quality control purposes. The forward 

(cgacgtaaaacgacggccagtNNNNNNNNNNNNNNNNGGTGAAACCCCGTCTCTACA) and 

reverse (cacacaggaaacagctatgaccatgCCTCCTAAGTAGCTGGGACTACAG) RealSeqS 

primers were generated at Integrated DNA Technologies.

Sequence analysis

Massively parallel sequencing was performed using Hiseq4000. During the first round of 

PCR, degenerate bases at the 5′ end of one of the primers were used as molecular barcodes 

[unique identifiers (UIDs)] to uniquely label each DNA template molecule. This ensured that 

each DNA template molecule was counted only once, as described in (38). In all instances 

in this paper, the term “reads” refers to UIDs. Depending on the experiment, each read was 

sequenced on average 1.1 times. An average of 10.4 million reads per sample (interquartile 

range, 7.9 to 12.7 million) were assessed. If multiple reads had the same UID, we required 

at least 50% of the reads to map to the same genomic location. Reads with the same UID, 

but with discordant genomic locations, were discarded from analysis. Only samples with 

sufficient read depth (>2.5 million) were included.

A-PLUS model building

A-PLUS is a supervised ML approach to identify differences in normalized read depth for 

RealSeqS loci between noncancer and cancer cell samples. To build A-PLUS, we used the 

following steps:

1. Assemble a diverse and balanced training set of noncancer and nonmetastatic 

cancer samples. Alu SINEs are known to have ethnic-specific single-nucleotide 

polymorphisms that could affect alignment and potentially alter the normalized 

read depth representation of various RealSeqS loci. We wanted to limit 

the potential for possible confounders to affect predictions. Our training set 

consisted of 134 previously published noncancer and 198 solid tumor samples 

(breast, colorectum, esophagus, lung, liver, pancreas, ovary, and stomach) from 

stages I, II, and III (table S1). For the noncancers with self-reported ancestry 
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information, the cohort consisted of 41 African/Black, 24 Hispanic, 33 white/

Caucasian, and 27 multiple ancestries. For the cancers, the self-reported ancestry 

consisted of 65 Asian, 3 African/Black, and 120 Caucasian/white. We added 

264 noncancer samples and 13 cancer samples not previously published to 

diversify the ancestry representation of samples. The additional unpublished 

samples with ancestry information included 20 Vietnamese, 2 Pacific Islander, 59 

Black/African, 35 Asian, 3 Native American/Inuit samples, and 136 Caucasian/

white. The unpublished cancers with ancestry information included 2 Asian and 

10 Caucasian/white samples.

2. The 99 patients with cancer were selected for the training set because each had a 

second technical replicate.

3. All samples were normalized for total read depth, that is, the sample’s Alu loci 

were divided by its total autosomal coverage.

4. Perform amplicon feature selection.

a. Remove sex chromosome loci. This removed 28,399 loci on chrX (AluJ 

= 5090; AluS = 18,111; AluY = 2905; other loci that are not Alu SINEs 

= 2293). This removed 2406 loci on chrY (AluJ = 311; AluS = 1495; 

AluY = 457; and other loci that are not Alu SINEs = 143).

b. Remove loci with insufficient coverage. We only considered loci with 

an average of one normalized read in our training set and removed 

445,711 loci (AluJ loci = 93,030; AluS loci = 242,659; AluY loci = 

33,803; other loci that are not Alu SINEs = 76,219). After applying 

this filter, only 299,473 loci remained. Note that in theory RealSeqS 

could amplify 745,184 repetitive elements, but typically only 350,000 

Alu SINEs were observed.

c. Perform a paired t test for the 99 patients with cancer with a technical 

replicate. Loci that were statistically significant (P < 0.01) were 

discarded (AluJ loci = 16,377; AluS loci = 109,728; AluY loci = 

27,389; other loci that are not Alu SINEs = 5). After applying these 

filters, only 145,974 loci of the original 745,184 loci remained. We 

acknowledge that a statistically significant difference in paired samples 

could still be informative if the effect size were greater than the 

technical variability. This filtering step was a conservative choice and 

likely removed informative loci. Given the large number of loci, we 

prioritized stability over power.

d. Perform the Kolmogorov-Smirnov test on samples from different 

ancestries in the samples from individuals without cancer. Loci that 

were statistically significant (P < 0.01) were discarded (AluJ loci = 

1559; AluS loci = 18,286; AluY loci = 4932; other loci that are not 

Alu SINEs = 0). After applying this filter, 121,197 loci remained. The 

remaining loci consisted of 9373 AluJ loci; 95,116 AluS loci; 16,702 

AluY loci; and 6 loci that were not Alu SINEs. A full list of A-PLUS 
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loci is listed in data file S2. A list of filtered loci is also provided. 

Genomic coordinates are in hg19.

5. Perform PCA on the 121,197 loci. PCA was performed using the prcomp 

function in R version 3.4.

6. Generate an SVM using the first 60 principal components from step 5 as 

predictive features. The number of components (n = 60) was based on ~10% 

of the total number of samples in the training set (~600). We used the e1071 

(v1.7–9) library with a radial basis kernel, cost = 1, and nu = 0.5.

Detection of aneuploidy

An algorithm to detect the presence of aneuploidy from amplicon sequencing data has 

been described in our previous publications (18, 30). This approach uses the normalized 

read counts of 500-kb intervals across the genome and performs a “within-sample” 

comparison. Outlier intervals were bioinformatically identified and filtered. The remaining 

intervals were aggregated across the chromosome arm, and a circular binary algorithm 

is performed (39). Any aberrant segment <5 MB was assumed to be a germline copy 

number variation and bioinformatically removed. The statistical significance was then 

calculated for the chromosome arm without the aberrant <5-MB segments. The 39 non-

acrocentric chromosome arm statistical significances were then used as predictive features 

in a supervised ML model. An SVM (40) was trained on 363 presumably euploid samples 

from individuals without cancer, from 128 samples of patients with cancer, and from 648 

in silico–generated aneuploid samples derived from the samples of individuals without 

cancer. The model was built using R v3.4 with the e1071 library (41) and generates a 

GAS that ranges from 0 to 1. Several studies have evaluated copy number alterations in 

clonal hematopoiesis of indeterminate potential (CHIP) in large population databases (42–

44). We initially did not explicitly account for the possibility of CHIP, but many of the 

candidate regions are <5 MB and would already be excluded using our previously described 

bioinformatic filters. On the basis of these CHIP studies, we instituted one additional 

bioinformatic filter to limit the possibility that a positive GAS was derived from CHIP. CHIP 

samples most frequently exhibit only one aneuploid arm and are limited to a small number 

of candidate arms (34). Any aneuploid sample (positive GAS) with only one aneuploid arm 

from chr 5q, 13q, 14q, and 20q was therefore bioinformatically labeled as CHIP and the 

GAS set to 0 (table S3).

Evaluation of plasma proteins

The Bioplex 200 platform (Bio-Rad) was used to determine the concentration of eight 

proteins in the plasma samples. Luminex bead– based immunoassays (Millipore) were 

performed following the manufacturer’s protocols, and concentrations were determined 

using five-parameter log curve fits (using Bioplex Manager 6.0) with vendor-provided 

standards and quality controls. The HCCBP1MAG-58K panel was used to detect OPN, 

HGF, AFP, CA125, CA15–3, CEA, and CA19–9. The HTMP1MAG-54K panel was used to 

detect TIMP-1.
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Multi-analyte classifier

Using 1402 noncancer samples and 852 cancer samples (cohort 2), a multi-analyte classifier 

using A-PLUS scores, GAS, and the eight proteins described above was generated. The 

protein values were supplemented with 126 negative controls from Luminex bead–based 

immunoassays (table S3). Some samples were not assessed for proteins. To account for 

missing feature values in these samples, we randomly sampled and assigned values from our 

prior studies of individuals without cancers to these samples. The missing values are labeled 

in table S3. Feature values <98th percentile in the noncancer cohort 2 samples were set to 0 

to reduce possible overfitting to features with low scores. We used logistic regression in R 

with the feature coefficients listed in table S5. Cross-validation was performed by randomly 

partitioning the dataset into 10 equally sized folds. We used the same seed to preserve the 

random partitions. Then, a model was generated on nine folds and tested on the one fold that 

was withheld. This protocol was repeated for the remaining nine folds. At the conclusion of 

cross-validation, each sample was withheld once, and the scores on the withheld fold were 

recorded.

External validation using WGS data

Samples from (15) were downloaded from FinaleDB on 19 February 2023. These included 

266 samples from patients with cancers of the bile duct, breast, colorectum, stomach, 

lung, ovary, and pancreas and 260 samples from individuals without cancer. Molecules that 

mapped to autosomal Alu elements were retrieved using overlapSelect from the kent src 

tools package using a threshold = 1 (the entire read had to fall within the Alu element). 

The AluS fraction was calculated as the fraction of AluS molecules divided by the total 

molecules in Alu elements. We applied WisecondorX using default parameters and only 

considered autosomal chromosomes for the evaluation of aneuploidy in these samples (45). 

Default thresholds (z > 5 or z < −5) were used, and >3 autosomal copy number alterations 

were used as a threshold for positivity.

Statistical analysis

The two-sample Z test for equality of proportions was used to determine whether the 

sensitivity and specificity of cohort 2 versus cohort 3 were different. The two-sample Z test 

for equality of proportions assumes sufficient sample size in both populations, and this was 

assessed and satisfied before being used. Differences were considered statistically significant 

when P < 0.05. Cohen’s kappa statistic was used to assess whether concordance between 

technical replicates was different from random chance. Error bars represent confidence 

intervals as calculated by the Wilson score interval (46, 47). Pearson’s correlation coefficient 

was used to compare A-PLUS scores to the AluS fraction. Cohort sample size was not 

selected for statistical power but on the basis of sample availability, and no samples 

previously reported were used in the validation set (cohort 3).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Study overview.
This study evaluated the potential of Alu elements to enhance methods designed for the 

earlier detection of cancer. We introduce an ML model called Alu-Profile Learning Using 

Sequencing (A-PLUS). The model uses differences in the representation of Alu elements in 

cell-free DNA (cfDNA) to predict cancer status. Samples were prespecified into four distinct 

cohorts used for model training, analyte integration and threshold determination, validation, 

and reproducibility.
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Fig. 2. Detection of cancer in cohort 2 plasma samples.
(A) Evaluation of the A-PLUS, GAS, and PROT individual performances as well as that 

of the multi-analyte classifier (A-PLUS + GAS + PROT). Sensitivities were calculated at 

99% specificity in each case. Error bars represent 95% CI. (B) ROC curve for the samples 

in cohort 2. (C) Euler diagram of the overlap in biomarker predictions in cohort 2 cancer 

samples. (D) Euler diagram of the overlap in biomarker predictions in cohort 2 noncancer 

samples.
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Fig. 3. Detection of cancer in cohort 3 plasma samples.
(A) Comparison of cohort 2 and cohort 3 performance for A-PLUS predictions. Only cancer 

types common to both cohorts are depicted. (B) Comparison of cohort 2 and cohort 3 

performance for the multi-analyte classifier (A-PLUS + GAS + PROT). Only cancer types 

common to both cohorts are depicted. (C) Full performance metrics for the individual assays 

and multi-analyte classifier in cohort 3. (D) Euler diagram of the overlap of biomarker 

predictions for cohort 3 cancer samples. (E) Euler diagram of the overlap of biomarker 

predictions in cohort 3 noncancer samples.
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Fig. 4. Reproducibility of biomarker predictions in technical replicates.
The concordance of positive and negative predictions is depicted with Euler diagrams. (A) 

A-PLUS concordance. (B) GAS concordance.
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Fig. 5. Cancer samples exhibit a global reduction in sequencing depth of AluS when compared 
with the total depth of the Alu elements (AluS fraction).
(A) AluS fraction of RealSeqS data from samples used in the current study (cohorts 1, 2, 3, 

and 4). (B) AluS fraction for WGS samples. (C) AluS fraction for a publicly available WGS 

dataset. There were 312,138 AluJ loci, 686,962 AluS loci, and 143,178 AluY loci distributed 

throughout the genome. RealSeqS, however, only amplified a subset of the total Alu loci 

(AluJ—125,797; AluS—485,614; AluY—86,252), hence the substantial difference between 

the AluS fractions between RealSeqS and WGS samples.
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