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Rett syndrome (RTT) is a progressive X-linked neurodevelopmental
disorder (NDD) caused by mutations in the gene encoding methyl-CpG
binding protein 2 (MECP2). RTT affects approximately 1 in 10,000 live
births and is characterized by normal development for the first 6–18
months followed by developmental stagnation, rapid regression in pre-
viously acquired motor, cognitive, and communication skills, breathing
difficulties, and seizures [1]. Despite having a known genetic cause,
treatment options for RTT have been limited prior to the recent FDA
approval of Trofinetide (Daybue), a synthetic analog of
glycine-proline-glutamate (GPE), providing the first pharmacological
treatment specifically for Rett syndrome [2]. As in previous clinical trials
for NDDs, Daybue's LAVENDAR trial utilized caregiver and clinician
impressions of patient symptoms as the primary outcome measures for
evaluating treatment efficacy [2]. While feasible and implementable,
subjective patient outcome measures lack quantitative sensitivity and are
prone to placebo effects, partially contributing to the challenges in con-
ducting clinical trials for RTT and other NDDs [3]. Thus, clinical NDD
research increasingly necessitates reliable, objective, and quantitative
outcome measures, or biomarkers, to serve as primary readout for ther-
apeutic development and assessment.

Evoked event-related potentials (ERPs) are small voltage changes in
the brain that occur in response to specific sensory, motor, or cognitive
events measured by electroencephalogram (EEG), providing a noninva-
sive medium for evaluating sensory information processing deficits in
mammals [4]. Alterations in key polarity peak features, including peak
amplitude and latency, reflect changes in the strength and timing of
event-related cognitive processes, respectively. Additionally, altered
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event-related features, like evoked power and phase-locking factor (PLF)
or inter-trial phase coherence (ITPC), which quantify the strength and
trial-to-trial reliability of individual high (alpha, beta, gamma) and low
(theta, delta) EEG frequency oscillation phase, are indicative of impair-
ments in neural circuit activity and communication [5]. Accumulating
clinical and preclinical studies have identified altered ERPs, such as
auditory-evoked event-related potentials (auditory ERP or AEP) [5–8]
and visual-evoked event-related potentials (visual ERP or VEP) [8–10], in
conjunction with RTT symptoms, suggesting evoked ERPs may serve as
potential biomarkers for RTT. In patients with RTT, visual- and
auditory-evoked ERPs demonstrate sensory information processing de-
lays and deficits, as indicated by increased peak latencies [6], decreased
peak amplitudes [7–9], and prolonged response recovery [9]. Analogous
visual- and auditory-evoked ERP disruptions are observed in several RTT
rodent models [5,9–13], as well as decreased evoked power and PLF [5,
11,12]. Further, altered ERP features correspond with disorder onset and
severity in both patients and rodent models of RTT [5,9]. Collectively,
these findings support that evoked ERPs are highly congruent across
rodent models and patients with RTT, providing consistent neurophysi-
ological outcome measures for evaluating RTT phenotypes and severity.

Previous studies have demonstrated that altered ERP features can be
alleviated using genetic strategies in mouse models of RTT. Restoring
MeCP2 protein expression solely in somatostatin or parvalbumin-
expressing inhibitory neurons mitigated altered ERP features and RTT
phenotypic scores in hemizygous MeCP2-deficient male mice [11].
Moreover, transgenically increasing MeCP2-T158M protein expression
reduced ERP deficits and RTT phenotypes in a knock-in mouse model
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carrying the common RTT-associated mutation, MeCP2 T158M [12].
Alternatively, deletion of NMDA receptor subunit 2A in MeCP2-deficient
mice normalized parvalbumin cell hyperconnectivity and evoked activ-
ity, alongside reduced hindlimb clasping and improved visual acuity
[10]. Together, these findings suggested that altered ERP features can be
rescued and reflect improved RTT symptomology. However, whether ERP
features were sensitive to therapeutic intervention remained unknown.

In this issue of Neurotherapeutics, Dong and colleagues aimed to assess
whether neurophysiological features, such as auditory-evoked ERPs
(AEPs), could respond to pharmacological treatment with a positive
allosteric modulator (PAM) of muscarinic acetylcholine subtype 1 re-
ceptor (M1), after previously demonstrating improved RTT phenotypes
following M1 activity potentiation in MeCP2-deficient mice [14]. The
team administered acute treatments of the M1 PAM, VU0486846
(VU846), across a dose range from 1 to 30 mg/kg to evaluate
dose-dependent effects on AEPs in a female heterozygous knock-out
model of RTT [15]. Consistent with previous studies, MeCP2-deficient
mice demonstrated altered AEP features including decreased peak am-
plitudes, increased peak latency, reduced evoked power, and reduced
ITPC (or PLF) compared to wildtype littermates. However, acute treat-
ment with VU846 (3 mg/kg, intraperitoneal injection) 30 min prior to
testing ameliorated altered AEP features in heterozygous female
MeCP2-deficient mice, providing evidence of auditory-evoked ERPs as
pharmacologically responsive neurophysiological features in a translat-
able model of RTT.

Notably, ERP abnormalities have been consistently reported across
multiple NDDs, including patients with and animal models of CDKL5
deficiency disorder (CDD), MECP2 duplication syndrome (MDS), FOXG1
syndrome, and autism spectrum disorder (ASD) [16–22]. The findings of
Dong and colleagues raise the possibility that altered ERP features
observed in other NDDs may be responsive to pharmacological treatment
as well, implying a future direction to validate pharmacological sensi-
tivity of altered ERP features in the above NDDs.

To date, multiple studies across patient and animal models have
pointed to evoked ERPs as reliable and objective biological outcome
measures for Rett syndrome, developing alongside disorder progression
and paralleling disorder severity. The demonstration that auditory-
evoked ERPs are sensitive and responsive to dose-dependent pharma-
cological intervention in a translatable rodent model of RTT highlights
the potential to lean on this measure as a biomarker for RTT and likely
other NDDs. Utilization of auditory-evoked ERPs, thus, provides a
promising avenue to expedite pharmacodynamic dosage testing and
pharmaceutical development in both preclinical and clinical settings.
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