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A B S T R A C T

Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the X chromosome-
linked gene Methyl-CpG Binding Protein 2 (MECP2). Restoring MeCP2 expression after disease onset in a
mouse model of RTT reverses phenotypes, providing hope for development of treatments for RTT. Translatable
biomarkers of improvement and treatment responses have the potential to accelerate both preclinical and
clinical evaluation of targeted therapies in RTT. Studies in people with and mouse models of RTT have identified
neurophysiological features, such as auditory event-related potentials, that correlate with disease severity,
suggesting that they could be useful as biomarkers of disease improvement or early treatment response. We
recently demonstrated that treatment of RTT mice with a positive allosteric modulator (PAM) of muscarinic
acetylcholine subtype 1 receptor (M1) improved phenotypes, suggesting that modulation of M1 activity is a
potential therapy in RTT. To evaluate whether neurophysiological features could be useful biomarkers to assess
the effects of M1 PAM treatment, we acutely administered the M1 PAM VU0486846 (VU846) at doses of 1, 3, 10
and 30 mg/kg in wildtype and RTT mice. This resulted in an inverted U-shaped dose response with maximal
improvement of AEP features at 3 mg/kg but with no marked effect on basal EEG power or epileptiform dis-
charges in RTT mice and no significant changes in wildtype mice. These findings suggest that M1 potentiation
can improve neural circuit synchrony to auditory stimuli in RTT mice and that neurophysiological features have
potential as pharmacodynamic or treatment-responsive biomarkers for preclinical and clinical evaluation of
putative therapies in RTT.
Introduction

Rett syndrome (RTT) is a neurodevelopmental disorder (NDD) that
predominantly affects girls and women and is characterized by loss of
hand skills and spoken language, repetitive hand movements, and gait
problems [1]. The majority of people with RTT have loss-of function
mutations in the X-linked gene Methyl-CpG-binding Protein 2 (MECP2),
which encodes the transcriptional regulatory protein MeCP2 [2,3].
Affected individuals also exhibit a number of other clinical features such
as seizures, growth failure, breathing irregularities and other autonomic
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abnormalities [4–7] and are dependent on caregivers for all activities of
daily living throughout their lives [8].

Mouse models of RTT display numerous phenotypic abnormalities
similar to clinical features found in people with RTT [1,9–11]. Restora-
tion of MECP2 expression in RTT mice, even after symptom onset, re-
verses phenotypes and provides hope for the development of meaningful
disease modifying/reversing therapies in RTT [12,13]. These findings
have led to the evaluation of a number of novel therapeutic approaches in
RTT disease models, including modulation of glutamate signaling
[14–17], treatment with growth factors [18–21], gene therapy [22–26],
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and re-expression of MeCP2 [27–31]. A number of human clinical trials
in RTT have been conducted, initiated, or proposed [15,20,32–34]
including a recent successful phase 3 clinical trial and FDA approval of
trofinetide, the first drug for RTT [35].

Rapid therapeutic development in RTT is hindered by the lack of well-
validated biomarkers of early treatment response and clinical improve-
ment. Biomarkers that are consistent between pre-clinical disease models
and affected individuals have the potential to improve preclinical ther-
apy evaluation, informing and accelerating efficient clinical trials. Recent
work in people with RTT has detected changes in neurophysiological
measures, such as changes in quantitative EEG frequency power and al-
terations in evoked potentials, that correlate with disease severity [36,
37]. Interestingly, similar neurophysiological features have been found
to correlate with phenotypic abnormalities in RTT mouse models [13,
38–40], and can be normalized in mice expressing a partial
loss-of-function (LOF) allele of MeCP2 by increasing expression of the
partial LOF MeCP2 variant [40], suggesting that these neurophysiolog-
ical features may serve as translatable biomarkers of disease progression
and improvement.

Here, we characterized changes in neurophysiological features in a
RTT mouse model after acute treatment with a positive allosteric
modulator (PAM) targeting muscarinic acetylcholine receptor activity
(mAChRs). Alterations in the expression of various mAChRs have been
seen in human RTT brain autopsy samples and in animal models with
RTT syndrome [41–45]. Selective removal of MeCP2 function from
cholinergic neurons in mice causes phenotypic and physiological ab-
normalities that are similar to those seen in RTT mouse models
lacking MeCP2 protein expression [46–48]. Treatment with com-
pounds that increase cholinergic tone or selective restoration of
MeCP2 function in cholinergic neurons improves phenotypes in RTT
model animals [46–50]. Further, mRNA levels of the M1, M2, M3 and
M5 mAChR subtypes were significantly decreased in cortical autopsy
samples from people with RTT relative to unaffected cortical samples;
however, only M1 expression demonstrated a linear relationship with
MeCP2 expression [44,45]. Additionally, similar decreases in M1
expression were also found in Mecp2þ/� mice, and treatment of these
animals with an M1 positive allosteric modulator (PAM), VU0453595,
corrected deficits in social preference, spatial memory, associative
memory deficits, and apneas [45]. In the present study, we evaluated
changes to neurophysiological features after acute administration of
an M1 PAM, VU0486846 (VU846), to Mecp2þ/� mice; we have shown
this compound to be a highly selective ligand for M1 receptors that
exhibits robust pro-cognitive efficacy in animal models without
cholinergic adverse effects and has a pharmacokinetic profile suitable
for chronic dosing [51,52]. In the current study, we show that acute
treatment with VU846 across a dose range from 1 to 30 mg/kg results
in an inverted U-shaped dose-response relationship with the most
robust improvement in auditory event-related potential (ERP) (also
known as auditory evoked potential [AEP]) features at 3 mg/kg.
These results point to the potential for translatable neurophysiological
features such as AEP to be useful in preclinical as well as early-stage
clinical studies to conduct dose-finding experiments and validate
treatment options.

Methods

Animals

Heterozygous female Mecp2þ/� (MUT) and littermate wildtype (WT)
animals at 8 weeks were purchased from Jackson Laboratory (3860
B6.129P2(C)-Mecp2<tm1.1Bird>/J). All procedures used in this study
adhered to the published guidelines of the National Institutes of Health
and were approved by the Institutional Animal Care and Use Committee
at Vanderbilt University Medical Center. Mice were maintained in an
AAALAC accredited facility in 12 h light/dark cycles with food and water
ad libitum.
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EEG headmount implantation

Headmount implantation for EEG recording was performed at 16 weeks
of age as described previously [38]. Briefly, animals were anesthetized and
secured in a stereotaxic apparatus. A midline sagittal incision was made
along the scalp to expose the skull. An EEG/EMG headmount (#8201-SS,
Pinnacle Technology Inc.) was positioned along the middle of the exposed
skull with the front edge 2.0 mm anterior to bregma, and fixed with four
screw electrodes (#8209, Pinnacle Technology Inc.) at the four attachment
sites of the headmount. Two stainless wires mounted to the tail of the
headmount were inserted into the two side trapezius muscles for EMG
recording, and the electrodes and base of the headmount were covered in
fast-setting dental cement. After recovery from anesthesia and resuming free
mobility, animals were returned to the vivarium and housed individually.

Compound administration

VU0486846 (VU846), a positive allosteric modulator (PAM) of the
M1 muscarinic acetylcholine receptor, was synthesized at Warren Center
for Neuroscience Drug Discovery (WCNDD) of Vanderbilt University. The
compound was dissolved in 10% Tween 80 and sonicated for 1 h before
administration. Vehicle (10% Tween 80) and VU846 (1, 3, 10 and 30mg/
kg) were administered to Mecp2þ/� and wildtype female mice via
intraperitoneal (i.p.) injection. VU846 dosing started 2 weeks after
headmount implantation. All the doses were administered in a random-
ized, within-subject design, in which animal received a dose with a week
washout interval [51]. Animals were dosed from weeks 18–23 and
euthanized at 24 weeks of age.

Data collection

After a two-week recovery from surgery, EEG recordings were
collected from freely moving mice with EEG headmount rigidly con-
necting to a preamplifier system (#8202-SL, Pinnacle Technology Inc.,
Lawrence, KS). The signals were pre-amplified 100 � with initial high
pass filter of 0.5 Hz, sampled at 400 Hz and digitized using a 14bit A/D
converter and routed to a PC-based acquisition and analysis software
package via USB. All EEG data were obtained using Sirenia Software from
Pinnacle Technologies, Inc. Animal activity was monitored using an on-
line camera and data were stored for offline analysis. AEPs were evoked
during EEG recordings. Auditory stimuli consisted of a series of 200 white-
noise pips (10-ms duration, 0.25 Hz frequency) and were generated using
RVPDX software and RZ6 hardware (Tucker Davis Technologies FL) and
presented through multi-field magnetic speakers (Tucker Davis Technol-
ogies, FL) which were located at a distance of 12 inches directly above the
cage. Sound delivery was synchronized with EEG recordings using a TTL
pulse to annotate the onset of each sound in a train. Stimuli were cali-
brated using a sound pressure meter at 80 �3 dB SPL. During data
collection, 1 h baseline EEG and basal AEP were recorded before either
vehicle or VU846 administration. AEPs were tested again 30 min after
compound administration, and 1 h EEG was subsequently recorded.

Data analysis

EEG power spectrum
The saved EEG data was first determined as Wake (continuous

movement) and Sleep (prolonged periods of no movement) according to
the captured video, EEG and EMG waveform [38]. Two minutes of EEG
data in the Wake and Sleep states from baseline and after drug/vehicle
administration were retrieved and imported into MATLAB (MathWorks,
Inc) for power spectrum analysis. Spectral plots were generated with the
Fast Fourier Transformation (FFT) function with rectangular binning of 1s
with 50%window overlap and a spectral resolution of 0.5 Hz. The average
power (μV2/Hz) was calculated from 1 to 100 Hz and further binned into
standard frequency bands: Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–12
Hz), Beta (12–30 Hz), low Gamma (30–55 Hz) and high Gamma (65–100
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Hz). For comparisons across the individuals, the spectral power was
normalized by the total power under 0–100 Hz. To investigate the po-
tential role of abnormal neural network activities in RTT mice, and the
effect of neural noise in shaping the power spectrum seen in these mice,
the 1/f slope of the power spectrum was calculated in the 2–20 Hz fre-
quency range via linear regression in log-log scale [38,53].

Auditory evoked potential (AEP)
For AEP analysis, EEG datawere imported intoMatlab and extracted as

�100 ms to 500 ms epochs relative to the auditory stimulation. All trials
were visualized in the Matlab browser. Signals from �100 ms to 0 before
the stimulation were taken as the baseline. The trials shown as artificial
noise, unstable baseline or epileptiform discharging were eliminated from
the calculation; the grand average of AEP was then calculated for indi-
vidual mice. Peak components were extracted from grand average wave-
forms as follows: P1 (positive deflection between 10 and 70 ms), N1
(negative deflection between 50 and 150 ms), P2 (positive deflection be-
tween 100 and 350 ms) and N2 (negative deflection between 150 ms and
400 ms) The rising-slope of the P2 phase was calculated by Δ (change) in
peak amplitude (P2–N1)/Δ in peak time (P2–N1) and the decay slope of
P2 was calculated by Δ peak amplitude (N2–P2)/Δ peak time (N2–P2).

Event-related spectral perturbation and inter-trial phase coherence
calculations

Event-related spectral perturbation (ERSP) measures average dy-
namic changes in amplitude of the broad band EEG frequency
3

spectrum as a function of time relative to the auditory stimulation. In
this study, ERSP was calculated from the Morlet wavelet-transformed
data according to the common methods by Cohen (Cohen 2014). The
raw power values (from 0 to 500 ms) were corrected by dividing
each time point by the mean activity in a pre-stimulus baseline
period (�100 to 0 ms) at each frequency [54]. The resulting values
were then converted to decibels (dB) by taking the base 10
logarithm.

Inter-trial phase coherence (ITPC, also referred as phase locking
factor [PLF]) is a descriptive statistical measure characterizing the cir-
cular variance of even-related phase information (the phase consistency
across trials). It is defined by the magnitude of the vector average of the
oscillatory phases at every point of the time-frequency channel domain
across the trials. A value of 0 represents random phase distribution,
whereas a value of 1 represents identical phase values in all trials. In this
study, ITPC was calculated from the Morlet wavelet-transformed epoch
time-frequency with wavelet cycles of 6 using Matlab script derived from
Cohen's method [54].

Epileptiform discharge
One hour baseline EEG and 1 h EEG post AEP detection after drug

administration were exported to Clampfit 10 and bandpass filtered at
0.5–20 Hz. Waveforms were characterized as epileptiform by their spike-
wave appearance with peak voltage of at least 1.5-fold of background,
occurring in a rhythmic train with frequency between 6 and 10 Hz and
duration of at least 0.25 s. The detected events were verified by visual
Fig. 1. Acute treatment with the M1 PAM VU846
at 3 mg/kg improved AEP in RTT mice. A. Grand
average AEP in wildtype (WT, n ¼ 11) animals 30 min
after acute injection of vehicle (gray) or 3 mg/kg
VU846 (yellow), showing no change in AEP after
VU846 injection. B. Grand average AEP in Mecp2þ/�

mice (n ¼ 11) after vehicle (black) or 3 mg/kg VU846
(purple) injection, showing increased N1 and P2 am-
plitudes. C. Individual WT animal AEP peak ampli-
tudes after vehicle or VU846 injection. D. Individual
MUT animal peak amplitudes after vehicle or VU846
injection. 3 mg/kg VU846 treatment increased N1, P2
and N1–P2 amplitudes in MUT mice (*p < 0.05,
paired t-test). E. P2 rising slope in WT and MUT ani-
mals after vehicle or 3 mg/kg VU846 injection. P2
rising slope was reduced in MUT animals compared to
WT after vehicle injection but increased after VU846
injection. F. P2 decay slope in WT and MUT animals
after vehicle or 3 mg/kg VU846 injection. P2 decay
slope was decreased in vehicle treated MUT animals
but increased to WT levels after VU846 injection. (E
and F, *p < 0.05 and **p < 0.01 one-way ANOVA
followed by posthoc Tukey's multiple comparisons
test). (For interpretation of the references to color in
this figure legend, the reader is referred to the Web
version of this article).



H.-W. Dong et al. Neurotherapeutics 21 (2024) e00384
confirmation. Incorrect detections were eliminated from the final
calculation.
Statistics

Statistics and graphical representation of data were performed using
Prism 9.0 (San Diego, CA). Data were expressed as mean � SEM. Com-
parisons between vehicle and a specific VU846 dose within genotype
were compared using paired Student's t-test. One-way ANOVA followed
by posthoc Tukey multiple comparison was used when comparing the
difference among multiple dosing treatments within genotype. Compar-
isons between genotypes under the same dose were evaluated using
Student's t-test, and among the multiple doses using two-way ANOVA
following by Tukey multiple comparison test. p < 0.05 was set as a sig-
nificant difference. Statistical group comparisons of ERSP and ITPC were
conducted by binning time into 240 parts and frequency into 100 parts,
resulting in a 100X240 matrix. Nonparametric cluster analysis was used
to determine contiguous regions in the matrix that were significantly
different from a distribution of 1000 randomized Monte Carlo permu-
tations based on previously published method [55,56]. If the cluster sizes
of the real assignments (both positive and negative direction, resulting in
a two-tailed alpha of p ¼ 0.025) were larger than 97.25% of the random
group assignments, those clusters were considered significantly different
between treatment. The statistical method was described in detail in each
applicable section.
Fig. 2. Acute treatment with M1 PAM VU846 at 3 mg/kg increased auditory ES
with color gradient indicating power changes (legend). WT animals are shown in the
left panels, VU846 treatment in the middle panels, and the difference between treatme
Vehicle) between treatments, with significant differences (permutation testing) out
(bottom right). B. Mean ESRP in defined frequency from 0 to 250 ms after vehicle inj
Mean frequency band ESRP in WT (C) or MUT (D) animals after vehicle or VU846 inje
within genotype). (For interpretation of the references to color in this figure legend
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Results

To assess the effect of acute M1 PAM administration on neurophysi-
ological features, vehicle and VU846 (1, 3, 10 and 30 mg/kg) were
administered in a randomized manner to Mecp2þ/� (MUT) and wildtype
(WT) littermate female mice. This dose range of VU846was chosen based
on previous work which demonstrated that 10 mg/kg VU846 treatment
reversed risperidone-induced deficits in contextual fear conditioning,
with a minimal effective dose of 1 mg/kg and a moderate effect at 3 mg/
kg [51]. We observed significant effects on various AEP parameters with
the 3 mg/kg dose of VU846; to demonstrate VU846's effect on each
neurophysiological feature, the data for this dose are presented first. We
then used the same analysis to evaluate the drug's dose-response.
Acute injection of 3 mg/kg M1 PAM VU846 improved auditory evoked
potential peak amplitudes and waveforms in RTT mice

VU846 at 3 mg/kg and an equal volume of vehicle were administered
to 11 female MUT and 11 WT mice, and AEP was evaluated before and
30 min after treatment. As previously observed in a different female RTT
mouse model [38], vehicle-treated MUT animals showed alterations in
AEP features compared to vehicle-treated WT animals, including
decreased AEP N1 amplitude, P2 amplitude, increased P2 latency
(Fig. 1A–B, Supplemental Table 1) and broadening of the P2 waveform as
shown by decreased rising slope (Fig. 1E–Supplemental Table 1) and
RP in RTT mice. A. Heat maps of ESRP after auditory stimulus (time 0, X-axis)
top panels and MUT animals in the bottom panels, with vehicle treatment in the
nt in the right panels. The right panel shows the difference of the power (VU846-
lined in the red-dotted area for WT (top right) and black-dotted area for MUT
ection in WT and MUT mice (##p < 0.01, t-test comparing between genotypes).
ction (*p < 0.05, **p < 0.01, paired-t-test between vehicle and VU846 injection
, the reader is referred to the Web version of this article).
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decaying slope (Fig. 1F–Supplemental Table 1). Vehicle-treated MUT
animals also showed increased variability in the shape of the AEP
waveform compared to vehicle-treated WT animals as demonstrated by
an increased coefficient of variation (CV) of the P1 peak amplitude, P1
and N1 peak latency, and P2 rising slope (Supplemental Fig. 1A and B).

Acute treatment with VU846 (3 mg/kg, i.p.) in WT animals did not
change AEP peak amplitudes (Fig. 1A–C), latency (Supplemental
Table 1), P2 rising and decay slope (Fig. 1E–F) or CV of AEP features
including peak, latency and P2 rising and decay slopes (Supplemental
Fig. 1). In contrast, acute injection of VU846 (3 mg/kg) in MUT animals
increased the N1 and P2 peak amplitudes compared to vehicle-treated
control (Fig. 1 B, D); additionally, treatment increased both the N1–P2
rising slope (Fig. 1E), P2–N2 decay slope (Fig. 1F), and decreased both
N1 and P2 latency CV (Supplemental Fig. 1). 3 mg/kg VU846 treatment
in MUT mice did not affect AEP peak latencies (Supplemental Table 1).

Acute injection of 3 mg/kg M1 PAM VU846 improved auditory event-
related power in RTT mice

Previous work using time-frequency decomposition analysis found
alterations in auditory time-locked oscillatory activity in RTT mice, with
changes in both auditory event-related spectral pertubation (ERSP), a
measure of frequency power averaged across trials, and inter-trial phase
coherence (ITPC), which assesses oscillatory phase locking across trials
[39,57,58]. Because ERSP and ITPC both correlate with phenotypic
severity and age in RTT mice [38,39], we sought to evaluate the effect of
VU846 on these putative neurophysiological biomarkers. Consistent
with prior studies, vehicle-treated MUT animals exhibited decreased
auditory ERSP compared to WT animals (Fig. 2A, left panels), with
decreased alpha, beta, gamma, and high gamma frequency power
Fig. 3. Acute treatment with the M1 PAM VU846 at 3 mg/kg increased ITPC in
(bottom row) after vehicle injection (left panels), VU846 injection (middle panels),
outlined in black-dotted area, permutation testing). B. Heat maps as in A, with freq
frequency ITPC changes observed in MUT animals after VU846 injection. C. Mean ITP
injection (#p < 0.05 and ##p < 0.01, t-test comparing between genotypes). Mean fre
0.05, paired-t-test between vehicle and VU846 injection within genotype).
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(Fig. 2B). Compared to vehicle injection, acute administration of 3
mg/kg VU846 in MUT animals increased high frequency (30–70Hz)
ESRP in the first 100 ms after stimulation as well as low frequency
(10–20Hz) ESRP between ~100 and 250 ms after stimulation (Fig. 2A,
bottom right panel, black dotted area p < 0.05 using permutation
testing). In contrast, acute injection of 3 mg/kg VU846 in WT animals
did not change ESRP in the early time window (<100 ms) but decreased
ESRP in frequencies >20Hz in the 100–250 ms time period after stim-
ulation (Fig. 2B, top right panel, red dotted area p < 0.05 using per-
mutation testing). We calculated ESRP power averaged over 0–250 ms
for individual frequency bands and found that acute injection of 3
mg/kg VU846 in WT animals decreased high gamma ESRP but did not
affect other frequency bands (Fig. 2C). Acute injection of 3 mg/kg
VU846 in MUT animals increased averaged ESRP in the theta, beta, and
gamma frequency bands (Fig. 2D).

Consistent with our previous findings [38], vehicle-treated MUT an-
imals showed decreased phase locked power (ITPC) compared to
vehicle-treated WT animals (Fig. 3A–B), specifically in the theta, alpha,
and gamma frequency bands (Fig. 3C). Acute injection of 3 mg/kg VU846
did not change ITPC inWT animals (Fig. 3A–B, 3D), but increased ITPC in
MUT animals (Fig. 3A, lower row, black dotted area), specifically in the
low frequency range of 2–6 Hz (Fig. 3B, p< 0.05, lower row, black dotted
area, permutation testing). ITPC average power between 0 and 250 ms
after stimulation showed increased ITPC in delta and theta frequencies
between MUT animals treated with vehicle versus VU846 (Fig. 3E). The
increased phase-locked low frequency power in MUT animals after
VU846 injection supports the concept that M1 activation increases
auditory stimulus-induced cortical neuronal synchrony in MUT animals,
consistent with the effects on grand average AEP observed in MUT ani-
mals after VU846 injection, specifically the increased P2 amplitude
RTT mice. A. Heat maps showing average ITPC in WT (top row) and MUT mice
and difference in ITPC between treatment (right panels, significant differences
uency range displayed (y-axis) restricted to the 0–10Hz range to highlight low
C (0–250 ms) in defined frequency bands in WT and MUT animals after vehicle
quency band ITPC in WT (D) and MUT (E) after vehicle or VU846 injection (*p <



Fig. 4. Dose-response of VU846 auditory-event
related features. A. Normalized AEP peak ampli-
tudes (normalized to individual animal baseline
values prior to injection: A1-P1; A2-N1; A3-P2) after
treatment with vehicle or doses of VU846 indicated
along the X-axis. B. VU846 dose-response effects on
P2 rising (B1) and decay (B2) slopes. C. Change in
ESRP after VU846 injection at various doses
compared to vehicle injection in low frequency bands
(C1, 0–12 Hz) and high frequency bands (C2,
12–100Hz). D. Change in ITPC after VU846 injection
at various doses compared to vehicle injection in low
frequency bands (C1, 0–12 Hz) and high frequency
bands (C2, 12–100Hz). *p < 0.05, **p < 0.01, within
genotype ANOVA with post-hoc Tukey pairwise
comparison between VU846 dose and vehicle.
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(Fig. 1D), increased P2 rising and decay slope (Fig. 1E–F) and decreased
intra-and inter-animal AEP response variability (Supplemental Fig. 1).

Dose-dependent effect of the M1 PAM VU846 on AEP

As acute treatment of MUT animals with 3 mg/kg VU846 improved a
variety of auditory-event related neurophysiological features, we evalu-
ated the dose-dependent effects of VU846 by acutely treating WT (n ¼
8–13) and MUT (n ¼ 10–14) mice with an additional range of VU846
doses (1, 10, and 30 mg/kg). To compare across doses, AEP features after
vehicle or VU846 treatment were normalized to individual animal values
captured immediately before treatment (Fig. 4A–B). VU846 treatment at
any dose did not affect AEP latencies in WT or MUT mice (Supplemental
Table 1). In WT animals, VU846 treatment only showed an effect on P2
amplitude at 1 mg/kg compared to vehicle injection, with no effect at any
dose on normalized P1 amplitude, N1 amplitude, or P2 rising or decay
slope (Fig. 4A–B, Supplemental Table 1). In MUTmice, 3 mg/kg injection
of VU846 increased normalized N1 and P2 peak amplitudes (Fig. 4A), but
this effect was not seen at other doses of VU846; however, 30 mg/kg
injection of VU846 decreased the normalized N1 peak amplitude
6

(Fig. 4A2, Supplemental Table 1). Similarly, the increase in P2 rising
(Fig. 4B1) and decay slope (Fig. 4B2) was only seen after 3 mg/kg in-
jection of VU846 and not after treatment with other VU846 doses
(Supplemental Table 1). We observed a similar inverted U-shaped VU846
dose-response curve in MUT animals in the ESRP (Fig. 4C) and ITCP
(Fig. 4D), with increased ESRP in low frequency bands (<12Hz, Fig. 4C1)
and high frequency bands (12–100Hz, Fig. 4C2) and increased ITPC in
low frequency bands (<12Hz, Fig. 4D1) only observed after injection of
3 mg/kg VU846. Aside from a decreased high frequency ESRP in WT
mice after injection of 3 mg/kg VU846 (Fig. 4C2), no other changes in
ESRP or ITPC were seen in WT animals at any VU846 dose (Fig. 4C–D).
Overall, the inverted U-shaped dose response seen in MUT animals
suggests a narrow response range for VU846.

VU846 treatment did not alter basal EEG power or epileptiform discharges

We previously found changes in basal EEG power in a mouse model of
RTT with increased delta power, decreased alpha and gamma power, and
increased 1/f slope between 2 and 20 Hz in MUT animals compared to
WT, similar to that observed in people with RTT [36,38,53]. Here, we



Fig. 5. EEG power spectrum after acute VU846 treatment. A. Normalized EEG power (log scaled, normalized by total power) from parietal cortex during sleep after
vehicle or VU846 administration (3 mg/kg) in WT (A1) or MUT mice (A2). Insets show normalized power between 2 and 20 Hz in non-log scale. B. 1/f slope for WT
and MUT animals after acute VU846 doses. C. Mean total parietal sleep EEG power in WT or MUT animals after acute dosing as indicated along the X-axis showing
(C1) delta, (C2) theta, (C3) alpha, (C4) beta, (C5) gamma, and (C6) high gamma frequency band power. #p < 0.05, #p < 0.01, ###p < 0.001 between genotype
comparisons after vehicle injection. *p < 0.05 within genotype comparison between VU846 and vehicle injection. Two-way ANOVA followed by Tukey's post-hoc
pairwise comparison.
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observed similar changes in a different RTT mouse model (Fig. 5A, pa-
rietal cortex EEG power during sleep), with increased 1/f slope (Fig. 5B),
increased delta power (Fig. 5C1), and decreased beta (Fig. 5C4), gamma
(Fig. 5C5), and high gamma (Fig. 5C6) in vehicle-treated MUT animals
compared to vehicle-treated WT. Treatment of WT animals with 1 mg/kg
VU846 decreased beta power compared to vehicle (Fig. 5C4), but did not
affect other features of basal EEG at any VU846 dose (Fig. 5). VU846
treatment in MUT animals did not change EEG power or 1/f slope at any
dose (Fig. 5, Supplemental Table 2). Similar results were observed in
active state parietal EEG as well as frontal cortex EEG in sleep and active
states (Supplemental Table 2).

As seizures and frequent epileptiform discharges are common in
people with RTT [4], and frequent spontaneous epileptiform discharges
have been observed in both hemizygous male and heterozygous female
Mecp2mutant mice [38,59], we evaluated the effect of acute treatment of
VU846 on epileptiform discharges in MUT mice (Fig. 6). No changes in
the incidence (Fig. 6B) or duration (Fig. 6C) of epileptiform discharges
was observed in any of the doses of VU846 tested.

Discussion

Recent studies in people with RTT and animal models of RTT have
demonstrated consistent changes of neurophysiological features that
correlate with age and clinical/phenotypic severity, suggesting the po-
tential for these neurophysiological measures to serve as biomarkers of
clinical progression [36–39,60–64]. However, it has not been deter-
mined if these neurophysiological features have the potential to serve as
treatment-responsive biomarkers. In this study, we found that VU846, a
7

PAM targeting the M1 mAChR, improved neurophysiological features by
increasing AEP peak amplitudes, enhancing auditory evoked power, and
increasing stimulus-driven neuronal synchronous activity as seen by
improvement of the AEP waveform and increased inter-trial phase
coherence. By evaluating the dose-dependent response, we found that
VU846 treatment showed an inverted dose-response effect on these AEP
features with a narrow effective dose range. Additionally, VU846 treat-
ment across a range of doses had no marked effect on basal EEG power or
the frequency of epileptiform discharges. These results suggest that
neurophysiological features such as AEP could serve as biomarkers to
evaluate early treatment response and pharmacodynamic dose finding in
preclinical trials.

The inverted U-shaped response of M1 PAM VU846 on AEP in RTT
mice suggests a narrow dose range for efficacy in this outcome measure.
We previously reported the activity of a 10 mg/kg dose of another M1
PAM, VU0453595, which effectively rescued social preference, spatial
memory, and associative memory deficits in RTT mice [45]; however,
dose-response experiments were not performed. Our studies here were
based on the development of VU846 as an improved M1 PAM with
enhanced potency and pharmacokinetics compared to VU0453595 [51,
65] as well as studies showing that acute administration of VU846
dose-dependently enhanced recognition memory in naive rats and
reversed risperidone-induced deficits in acquisition of contextual fear
conditioning with minimum effective dose of 3 mg/kg with no inverted U
response observed [51]. Based on these findings, there appears to be a
disconnect between behavioral efficacy and changes in AEP that will
require cross validation of multiple M1 PAMs in dose-response format in
both behavior and EEG/AEP evaluation in RTT mice. Interestingly,



Fig. 6. VU846 has no effect on epileptiform discharges in RTT mice. A.
Representative EEG traces showing epileptiform discharges in MUT mice after
vehicle or VU846 injection. B. Quantitation of frequency of epileptiform dis-
charges in MUT mice after vehicle or VU846 injection. C. Quantification of
average epileptiform discharge duration after vehicle or VU846 injection.
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chronic dosing of 10 mg/kg VU846 in either an Alzheimer's or a prion
disease model for several weeks resulted in efficacy in reversing cognitive
deficits as well as benefits in neuronal survival and amyloid processing
with no loss of efficacy over time [52,66,67]. This suggests that chronic
dosing of VU846 may induce differential efficacy compared to acute
administration; as VU846 has been optimized for use in chronic dosing
paradigms, these could form the basis of future studies. We would note,
however, that a similar inverted U-shaped dose response in RTTmice was
reported in our study of the of M4 PAM VU0467154 (VU154), which
rescued anxiety, social preference, associative memory, and respiratory
phenotypes in RTT mice after several weeks of dosing, but benefit was
seen only with 3 mg/kg but not with 1 or 10 mg/kg doses [44,68]. Based
on our findings, future studies evaluating compound behavior on both
behavior and AEPs with RTT mice using dose-response and chronic
dosing studies would be informative in positioning AEPs as a biomarker
for muscarinic mechanisms. Regardless, the studies here show that ef-
fects on AEPs are detected in RTT mice, suggesting that they have the
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potential to serve as translatable biomarkers for dose-finding and treat-
ment outcomes in the clinic.

In general, the effects of PAMs are often subtle based on their
mechanism of action. However, it is not unexpected to observe a more
robust effect in a disease model with reduced expression of the receptors
being targeted by the PAM, as seen here with the RTT mouse model.
Experiments of VU846 in slices from WT mice examining the prefrontal
cortex (PFC) layer V or the ventral hippocampal-PFC synapse in the
prefrontal cortex from WT mice showed that the compound did not
induce LTD when applied alone; however, it potentiated the LTD induced
by mAChR agonists [51]. In contrast, in vivo treatment of naïve WT rats
with VU846 showed a dose-dependent improvement in novel object
recognition, with minimal effect at 3 mg/kg [51], but no effect on
contextual fear conditioning. In the current study, we did observe an
effect of VU846 on neurophysiological features in WT mice, with
decreased ESRP>20 Hz in the time window of 100–240 ms following the
stimulation after 3 mg/kg treatment (Fig. 2B, top right panel, red dotted
area), and decreased basal EEG beta band power after 1 mg/kg treat-
ment. However, we did not observe the same dramatic changes in the
AEP in WT mice as we did in RTT mice. We hypothesize that this dif-
ference reflects potentially altered sensitivity to an M1 PAM in RTT mice
due to decreased M1 receptor expression in this disease context. These
results suggest a potentially important pathophysiological change in RTT
mice and provide guidance for future mechanistic exploration of the
underlying neurocircuitry.

Previous studies have observed that abnormalities in the cholinergic
system in RTT and increasing cholinergic tone in RTT animal models
improved phenotypic responses [41–45,69,70]. We predict that im-
provements in AEP features in RTT mice after VU846 treatment are due
to potentiating cholinergic tone. Studies in people or animals (not with
RTT) also have shown that altering cholinergic tone affects AEP [71,72].
For examples, treatment with rivastigmine, a cholinesterase inhibitor,
enhances AEP features and this effect is blocked by an mAChR antago-
nists [71,73]. Additionally, a study on vagal nerve stimulation (VNS)
demonstrated that increased cholinergic tone enhances AEP evoked in
the primary auditory cortex (A1) [74], further supporting the relation-
ship between cholinergic signaling and AEP responses. Interestingly,
cortical recordings found that the VNS-induced strengthening of the AEP
response was observed in the superficial, but not the deep, cortical A1
layer. This cortical layer-specific response was proposed by the authors to
be due to differences in cortical laminar ACh innervation, with increased
ACh nerve terminal density in superficial compared to deep cortical
layers [75]. Further, VNS-induced modulation of EEG oscillatory activity
was more robustly observed in stimulus-evoked conditions compared to
resting state [76–78], consistent with our results showing that VU846
treatment did not alter the basal EEG power but increased auditory
event-related power in RTT mice. Finally, VNS treatment decreased
auditory stimulus-specific adaptation only with repeated stimuli [74]. All
of these findings suggest that VNS treatment affects sensory gain control
[74], and that the modulation of cholinergic tone might be related to
basal cholinergic activity, providing insight to the observed inverted
U-shaped VU846 dose-response on AEP observed here.

Event-related potentials (ERPs), such as AEPs, are thought to reflect
the synchronized firing of similarly oriented cortical pyramidal neurons
during information processing elicited by a variety of sensory, cognitive
or motor events [79,80]. Changes in EPR could reflect variation of neural
network activity, capability of neuronal crosstalk, or alterations in the
local excitatory/inhibitory (E/I) balance [58,81–83]. Previous studies
have shown that variation of local neurocircuit E/I balance alters AEPs
evoked in RTT animal models [58]. In this study, we found that treatment
with 3 mg/kg VU846 increased both AEP peak amplitudes and enhanced
stimulus-driven neuronal synchronous activity, reflected by normaliza-
tion of P2 latency, increased P2 rising and decay slope, decreased AEP
waveform variation, and increased inter-trial phase coherence in RTT
mice. Thus, it is possible that the improvement of VU846 on neural
network synchronous activity occurs by its modulation of the local
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neurocircuit cholinergic tone that then influences network E/I balance.
Interestingly, VNS paired with sound stimulation in a rat model of RTT
improved cortical A1 sound stimulus response and synchrony [84]. The
effects of VNS on AEPs are thought to involve the modulation of sensory
gain to enhance cortical output via a feedforward mechanism [74,85].
Thus, we hypothesize that a similar mechanism underlies the improve-
ment of AEP by VU846 in RTTmice, in which VU846 treatment may shift
the E/I balance within feedforward neurocircuitry in auditory processing
pathways and result in the enhancement of auditory evoked responses
[77,86–88].

Excitingly, Adcock et al. demonstrated that VNS treatment of a RTT
rat model improved cortical response strength to sounds, supporting
the concept that VNS treatment increased the auditory stimulus
induced neural response and information [84]. Combined with pre-
viously observed effects of VNS on AEP, the connection of these effects
to cholinergic signaling, and the role of modulating cholinergic tone in
RTT to improve both AEP features and phenotypic abnormalities
points to the therapeutic potential of cholinergic modulation in people
with RTT. Importantly, positive modulation of M1 cholinergic tone via
VU846 did not increase epileptic discharges in RTT mice, which is
important given the high incidence of seizures in people with RTT and
previous work showing that PAMs with agonist activity at M1 can
induce seizures [51,89–91]. Future work is needed to further evaluate
the effects of sub-acute or chronic dosing of VU846 on neurophysio-
logical responses and phenotypic improvement to validate the utility
of these neurophysiological features as biomarkers of treatment
response. Furthermore, these findings provide both insight into and
experimental approaches to characterize neural circuit level patho-
physiological mechanisms in RTT related to cortical processing of
sensory stimuli and the role of the cholinergic system in modulating
cortical responses.
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