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A B S T R A C T

Deep brain stimulation (DBS) is an effective therapy for Meige syndrome (MS). However, the DBS efficacy varies
across MS patients and the factors contributing to the variable responses remain enigmatic. We aim to explain the
difference in DBS efficacy from a network perspective. We collected preoperative T1-weighted MRI images of 76
MS patients who received DBS in our center. According to the symptomatic improvement rates, all MS patients
were divided into two groups: the high improvement group (HIG) and the low improvement group (LIG). We
constructed group-level structural covariance networks in each group and compared the graph-based topological
properties and interregional connections between groups. Subsequent functional annotation and correlation an-
alyses were also conducted. The results indicated that HIG showed a higher clustering coefficient, longer char-
acteristic path length, lower small-world index, and lower global efficiency compared with LIG. Different nodal
betweennesses and degrees between groups were mainly identified in the precuneus, sensorimotor cortex, and
subcortical nuclei, among which the gray matter volume of the left precentral gyrus and left thalamus were
positively correlated with the symptomatic improvement rates. Moreover, HIG had enhanced interregional
connections within the somatomotor network and between the somatomotor network and default-mode network
relative to LIG. We concluded that the high and low DBS responders have notable differences in large-scale
network architectures. Our study sheds light on the structural network underpinnings of varying DBS re-
sponses in MS patients.
Introduction

Meige syndrome (MS) is a subtype of segmental dystonia, initially
manifesting as blepharospasm and subsequently involving oro-
mandibular and cervical muscles progressively [1]. The low incidence
and the absence of megascopic brain lesions on routine MRI images
impede the disclosure of the underlying neurobiological mechanisms.

Deep brain stimulation (DBS) has emerged as a recognized, secure,
and effective therapeutic approach for MS, even in cases resistant to
botulinum toxin injections [1,2]. The globus pallidus internus (GPi) was
once regarded as the preferred DBS target for MS [3,4]. However, recent
accumulating evidence suggests that stimulating the subthalamic nucleus
(STN) can yield comparable outcomes [5–7]. Considering the advantages
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of faster therapeutic response and lower energy consumption, we prefer
to target STN instead of GPi for MS patients in our center. However, the
challenge is that no matter which target to be stimulated, some MS pa-
tients have good treatment effects, while others do not. And we know
little about what drives the individual differences.

To address this issue, previous clinical studies have sought potential
clinical predictors of DBS prognosis, including disease duration, patient
age at the time of surgery, the choice of stimulation targets, and follow-
up duration [8–10]. In addition, several neuroimaging investigations
have attempted to identify specific brain regions linked to DBS outcomes,
such as the precentral gyrus, the supplementary motor area, and the
cerebellum [11–14]. However, these efforts have yielded unstable and
inconsistent predictive power. We hypothesized that this puzzle may
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need evidence from the network instead of the single brain region.
Because MS is precisely considered a brain network disorder, which is
supported by an increasing body of modern neuroimaging studies
uncovering structural and functional abnormalities in multiple regions
and widespread disturbance of their connectivity [15–19]. Unfortu-
nately, no study has explained the difference in STN-DBS efficacy from a
network perspective so far.

Structural covariance networks (SCNs), constructed at the group
level, elucidate the coordinated changes in gray matter (GM) volume or
thickness among different regions of the brain [20,21]. It is assumed to
reflect anatomical connectivity, mutually trophic effects of synapses, and
common experience-driven plasticity [22]. SCN is replicable and heri-
table in both healthy individuals and patients, and can track
disease-related topological changes [22]. GM morphology covariance
patterns have been associated with functional coactivation [23,24],
diffusional connectivity [25,26], and gene expression [27]. Moreover,
functional abnormalities tend to be interpreted by corresponding struc-
tural changes [28]. Notably, unlike DBS for Parkinson's disease, which
often produces immediate effects, DBS for dystonia, despite targeting the
same area, may require several weeks or even months to demonstrate
efficacy [8]. This suggests that DBS may not directly alter the functional
network but may instead fundamentally reshape the structural archi-
tecture. Therefore, all the above evidence indicates that investigating the
fine-grained differences in SCN architectures between good and poor
DBS responders is urgent and essential.

Graph theory analysis provides a robust framework for investigating
brain circuit reorganization by quantifying the topological properties of
brain networks [29]. While graph-based SCN measures have been
explored in the context of focal dystonia in comparison to neurotypical
individuals [16], no study has correlated these measures with STN-DBS
outcomes in MS patients.

Here, we constructed the volume-based, cortex-wide SCNs in two
groups separately: those who show substantial improvement (the high
improvement group, HIG) and those who show limited improvement (the
low improvement group, LIG). Next, we compared the topological pat-
terns and interregional connections between the two groups. For those
brain regions showing discrepant nodal centralities, we annotated their
cognitive functions and correlated them with the symptomatic
improvement rates. Our aim is to identify structural fingerprints linked to
STN-DBS outcomes.

Methods

Participants

We retrospectively collected clinical information of all MS patients
who underwent STN-DBS surgery at the Chinese People's Liberation
Army General Hospital from October 2015 to May 2023. Inclusion
Table 1
Between-group comparison of clinical information.

HIG (n ¼ 38)

Sex (male/female) 17/21
Age (mean � SD) 55.89 � 9.97
Education (year) 8.79 � 4.25
Handedness(R/L) 37/1
Disease duration (year) 4.23 � 4.77
Botulinum injection (times) 1.24 � 1.46
Pre-BFMDRS-M 11.45 � 5.08
Post-BFMDRS-M 2.58 � 2.31
BFMDRS-M improvement (%) 85.53 � 10.71
Follow-up time (months) 8.66 � 2.85

Data is presented as mean � standard deviation. HIG, high improvement group; LIG, l
movement subscale.

a two-sample t-test.
b Mann-Whitney U test.
c chi-square test.
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criteria: (i) idiopathic MS diagnosed by experienced neurologists; (ii)
over a three-month interval between scanning and the last botulinum
toxin injection (if any). Exclusion criteria: (i) secondary MS or dystonia
involving other body sites; (ii) longtime (>1 year) exposure to neuro-
psychiatric drugs before MS onset; (iii) combined with other neurological
diseases, such as symptomatic stroke, Parkinson's disease, essential
tremor, epilepsy, and Alzheimer's disease; (vi) encountering surgery-
related adverse effects; (v) low-quality MRI images. To keep group ho-
mogeneity, we only included MS patients treated by STN-DBS (eight GPi-
DBS cases were excluded). The exact neurosurgical procedure has been
described previously [6]. All patients were scheduled for an intra-
operative MRI or a postoperative CT to ensure the accurate implantation
of DBS electrodes. To control the potential influence of electrode position
on DBS efficacy, we also excluded those poorly responsive patients whose
postoperative imaging fusion revealed an over 3 mm displacement of
either electrode tip from the predefined target (two patients were
excluded).

Symptomatic severity was quantified preoperatively (around the time
of MRI scanning) and postoperatively (at least three months after DBS
activation) with the Burke-Fahn-Marsden Dystonia Rating Scale move-
ment subscale (BFMDRS-M), which is the most popular scale to quantify
the symptomatic severity for MS patients [30]. We sorted all MS patients
according to the improvement rates of BFMDRS-M and dichotomized
them into the high-improvement group (HIG, n ¼ 38) and the
low-improvement group (LIG, n ¼ 38) from the median point. All the
demographic and clinical information is presented in Table 1.

This study was approved by the local ethical committee of the
Chinese PLA General Hospital and carried out in accordance with the
Declaration of Helsinki. Written informed consent was obtained from
all participants.

MRI data acquisition

All images (three-dimensional T1 weighted structural image) were
acquired using a 3 T MR system (Discovery MR750, General Electric)
with a sagittal fast spoiled gradient-echo sequence (TR: 6.7 ms, TE: 2.9
ms, flip angle: 7�, FOV: 256 � 256 mm2, number of slices: 192, slice
thickness: 1 mm with no gap) one week before DBS surgery.

Data preprocessing and quality control

All images were inspected visually. Scans with evident head motion
artifacts or poor gray/white matter differentiation were excluded (one
patient). The T1-weighted structural images were processed and
analyzed in the Statistical Parametric Mapping (SPM12) software (htt
p://www.fil.ion.ucl.ac.uk/spm), which was implemented in the Matlab
(R2022b) environment (https://www.mathworks.com/). Images were
segmented into GM, white matter, and cerebrospinal fluid, spatially
LIG (n ¼ 38) X2/T/Z value P value

11/27 2.036c 0.154c

58.08 � 8.25 �1.04a 0.302a

8.95 � 3.37 �0.179a 0.962a

36/2 0.347c 0.556c

4.57 � 4.46 �1.224b 0.221b

1.34 � 1.81 �0.131b 0.896b

12.84 � 5.54 �1.408b 0.159b

8.47 � 4.34 ¡6.258b < 0.001b

33.81 � 15.86 ¡7.507b < 0.001b

8.20 � 3.39 0.575b 0.575b

ow improvement group. BFMDRS-M, Burke-Fahn-Marsden Dystonia Rating Scale
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normalized to the standard Montreal Neurological Institute (MNI) space,
and further modulated to preserve tissue volume by using the default
parameters of the Segment module in the Computational Anatomy
Toolbox (CAT12, http://www.neuro.uni-jena.de/cat). Subsequently, the
resultant images were checked for homogeneity using the Data Quality
module in CAT12. Flagged images (i.e., the mean absolute Z score >1.0)
were visually inspected before being discarded (two patients). Finally, all
images were smoothed with an 8 mm full-width at half-maximum
Gaussian kernel.
Construction of structural covariance networks

We parcellated the segmented, normalized and smoothed GM images
into 120 regions of interest (ROIs) defined by the automated anatomical
labeling 2 (AAL2) atlas, which is an upgraded version of the AAL atlas
(the most commonly used volume parcellation schemes) with further
parcellation of the orbitofrontal gyrus [31]. The mean GM volume of
each ROI was extracted and regressed out the effects of age, sex, total
intracranial volume (TIV), and education. Since both the cerebrum and
cerebellum have their network organizations [32,33], here to keep
consistent with other analogous studies, we focused only on the cerebral
cortex (94 ROIs) and ignored the cerebellar ROIs. Pairwise Pearson
correlations between ROIs across subjects were calculated for HIG and
LIG separately, yielding a 94 � 94 group-level association matrix in each
group (Fig. S2), with each value in the matrix representing the co-varied
strength (Pearson correlation coefficient) of GM volume between any two
brain regions (Fig. 1).
Fig. 1. Flowchart of SCN construction and subsequent analyses. From left to right: in
ROIs according to the selected atlas. The mean GM volume of each ROI was extracte
two group-level association matrices (i.e., SCNs). Between-group comparison of inter
Subsequently, a range of sparsity was set to threshold the SCNs into a series of binary
those brain regions showing discrepant nodal centralities, functional annotation and
low improvement group; SCN, structural covariance network; ROI, region of interes
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Given there existed no conclusive approaches for selecting a single
network density, we set a range of sparsity ([0.05–0.35], with interval
steps of 0.01) to produce a series of binary undirected networks in each
group. The lower limit was defined by the log(N)/(N-1) formula (N¼ ROI
numbers), while the upper limit was set to keep the small-world index
larger than 1.1 for all patients [34]. Each sparsity corresponded to a
threshold, and only connections above the threshold were preserved and
set to 1, while other connections were set to 0. This density range enabled
between-group comparisons of each topological metric with a compa-
rable number of edges, but without bringing in disconnections or losing
small-world properties [35,36]. To generate a summary metric, we
plotted curves showing how the measures of interest change as a function
of sparsity, and we computed the area under the curve (AUC) for each
network attribute.
Graph theory analyses

For each network at each sparsity threshold, we calculated global
and nodal network measures. First, the segregation (clustering coef-
ficient, Cp, and local efficiency, Elocal) and integration (characteristic
path length, Lp, and global efficiency, Eglobal) properties of structural
networks were computed using the Brain Connectivity Toolbox
implemented in Matlab [37]. To calculate the small-world index
(Sigma), we generated 100 random networks that had the same degree
distributions as the real networks, and then Cp and Lp were normalized
by the corresponding measures averaged by the 100 random networks.
Second, two nodal centrality metrics (betweenness and degree) were
each group, T1-weighted images were preprocessed before being parcellated into
d to calculate the pairwise Pearson correlation coefficients, thereby constructing
regional connectivity was conducted through non-parametric permutation tests.
undirected networks, based on which graph theory analyses were conducted. For
correlation analyses were further explored. HIG, high improvement group; LIG,
t.

http://www.neuro.uni-jena.de/cat
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calculated for each anatomical ROI at each sparsity threshold. Finally,
we compared and visualized the above global and nodal topological
properties between HIG and LIG. Detailed interpretations of these
graph theory metrics are summarized in the Supplementary Material.

Functional annotation of differential nodes

The brain regions showing significant differences in nodal centralities
were annotated functionally by using the Decoder module on the Neu-
rosynth platform (https://neurosynth.org/decode) [38], which includes
over 1300 meta-analytic brain maps synthesized from over 14,300
functional MRI studies, with each map corresponding to a cognitive term.
Specifically, the significant nodes were extracted from the selected atlas
and integrated into a binarymask by using the Image Calculatormodule in
SPM12. After submitting the mask to the Neurosynth database, we would
obtain hundreds of cognitive terms, which reflect the functions of these
brain regions. The resultant terms were filtered (correlation >0.1) and
visualized on a word-cloud plot after removing those anatomical (e.g.
‘motor cortex’, ‘parietal’) and non-specific terms (e.g. ‘primary’, ‘tasks’).
In this part, to show the functional differences more comprehensively, we
included all brain regions showing different betweennesses or degrees (as
per P < 0.05, uncorrected).

Correlation analyses of differential nodes

For those regions showing significant differences in nodal centralities,
we extracted their mean GM volume in each subject and controlled the
effects of age, sex, TIV, and education by linear regression. The stan-
dardized residuals were used to test their linear correlation with the
BFMDRS-M improvement rates for all MS patients. In this part, to limit
the number of comparisons, we only investigated those brain regions
showing significant differences in both betweenness and degree (as per P
< 0.05, uncorrected).

Interregional connectivity analyses

We further identify the between-group differences in the interre-
gional correlations of both group-level weighted SCNs, aiming to localize
the region pairs related to STN-DBS efficacy. Moreover, to define which
priori network module the discrepant edges belong to, we mapped each
atlas ROI to the seven large-scale functional networks proposed by
Thomas Yeo [32], with the largest voxel-wise overlapping as the final
match [39]. Subcortical nodes were defined as an eighth subcortical
network.

Validation

To validate the findings of network analyses, we repeated the pro-
cedures by using another structural atlas (Harvard-Oxford Atlas, HOA)
[40], which produced two 110 � 110 correlation matrices at the group
level after omitting the cerebellum, brain stem, and ventricles. The
graph-based topological properties and the interregional correlations
were explored and compared between groups using the same thresh-
olding and statistical methods.

Statistical analyses

Clinical and demographic variables were compared using two-sample
t-tests (normal distribution) or the Mann-Whitney U test (non-normal
distribution) for continuous variables and the chi-square test for cate-
gorical variables in SPSS 26 (IBM, Armonk, NY). The significance level
was set at P < 0.05 (two-tailed).

For network graph theory analysis, we conducted non-parametric
permutation tests (10,000 replications) to investigate whether the dif-
ferences in network parameters between HIG and LIG were induced by
chance, by randomly reassigning the group labels while keeping the same
4

number of cases within each group. We calculated the distribution of the
10,000 between-group AUC differences in each graph parameter and
observed whether the real between-group difference was localized
within the 95% confidence interval of this distribution. For global and
nodal network metrics, the significant level was set at P < 0.05 (Benja-
mini-Hochberg FDR-corrected, two-tailed). Likewise, permutation tests
were used to detect significantly altered edges in the interregional con-
nectivity analysis (P < 0.001, uncorrected, two-tailed).

For correlation analyses, Spearman correlation coefficients were used
owing to the non-normal distribution of BFMDRS-M improvement rates,
with significance levels set at P < 0.0125 (for AAL2) and P < 0.01 (for
HOA), Bonferroni corrected for multiple comparisons (0.05/the number
of tested brain regions).

Results

Clinical and demographic information

After quality control, a total of 76 MS patients (n¼ 38 for each group)
were included (Table 1). HIG showed higher postoperative BFMDRS-M
scores and BFMDRS-M improvement rates compared to LIG (P <

0.001). No significant between-group differences were detected in sex,
age, education level, disease duration, times of botulinum injection,
preoperative BFMDRS-M scores, and follow-up time (all P > 0.05). The
stimulation parameters and coordinates of activated contacts in the
standard space were provided in Table S4 and Table S5, respectively.

Between-group differences in global and nodal graph-based network
measures

The SCNs constructed in both groups showed small-world organiza-
tions across the selected sparsity range (Fig. 2A). As for global network
measures (Fig. 2B), HIG presented significantly higher AUC values of Cp
(P ¼ 0.012, FDR-corrected) and Lp (P ¼ 0.012, FDR-corrected) across the
sparsity compared to LIG, evidencing a more regular network architec-
ture (Fig. S1). Accordingly, the Sigma of HIG was significantly lower than
that of LIG (P ¼ 0.035, FDR-corrected). Furthermore, the comparisons of
network efficiency revealed a significantly decreased Eglobal (P ¼ 0.012,
FDR-corrected) but undifferentiated Elocal (P ¼ 0.891, FDR-corrected).
See Fig. S3 for detailed results for each measure at each network density.

As for nodal network measures, to show more potentially different
brain regions, we listed and visualized all the results thresholded at P <

0.05 (uncorrected) (Fig. 3A, Table 2). Compared with LIG, HIG displayed
increased nodal betweennesses in the left precentral gyrus, left supple-
mentary motor area, right posterior cingulate gyrus, left postcentral
gyrus, right postcentral gyrus, right inferior parietal gyrus, and right
precuneus, but decreased nodal betweennesses in the left superior pari-
etal gyrus, left thalamus, and left inferior temporal gyrus (all P < 0.05,
uncorrected). Only the right precuneus survived correction for multiple
comparisons (P ¼ 0.038, FDR-corrected). Moreover, increased nodal
degrees were observed in the left precentral gyrus, right calcarine fissure,
and right precuneus, and reduced nodal degrees were detected in the
right superior occipital gyrus, left putamen, right pallidum, left thalamus,
and left inferior temporal gyrus (all P < 0.05, uncorrected). Only the left
precentral gyrus (P ¼ 0.042, FDR-corrected) and the right precuneus (P
¼ 0.019, FDR-corrected) survived correction for multiple comparisons.
Of note, four regions (i.e., right precuneus, left precentral gyrus, left
thalamus, and left inferior temporal gyrus) displayed consistent alter-
ations in both centrality measures, implying their robust correlations
with STN-DBS outcomes. See Fig. S4 for detailed information about the
between-group comparison of each region.

Functional annotation: nodes showing differences in nodal centralities

Functional annotation via the Neurosynth platform suggested that
the nodes showing different betweennesses or degrees between groups

https://neurosynth.org/decode


Fig. 2. Results of global network analyses. (A) Changes in small-world indices of the SCNs as a function of selected sparsity [0.05–0.35]. Both HIG (red line) and LIG
(blue line) represent stable small-world attributes. The horizontal black dashed line indicates the defined criteria of a small-world network (Sigma �1.1). (B) Between-
group differences in areas under the curve (AUC) values of global topological properties (clustering coefficient, Cp; characteristic path length, Lp; small-world at-
tributes, Sigma; local efficiency, Elocal; global efficiency, Eglobal). The red squares represent the real AUC differences between HIG and LIG. The blue lines denote the
mean values (open circles) and the 95% confidence intervals of between-group AUC differences calculated from 10,000 permutation tests. A significant result is
defined when the red square is located outside of the blue line (P < 0.05, two-tailed).
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(P< 0.05, uncorrected) were predominantly involved in the preparation,
execution, and coordination of movements (Fig. 3B).

Clinical correlation analyses: nodes showing differences in nodal centralities

As shown in Fig. 3C, the BFMDRS-M improvement rates were posi-
tively correlated with the mean GM volume of the left precentral gyrus (r
¼ 0.331, P ¼ 0.003, Bonferroni corrected) and the left thalamus (r ¼
0.293, P¼ 0.010, Bonferroni corrected). Moreover, the GM volume of the
right precuneus (r¼ 0.308, P¼ 0.026), albeit not surviving correction for
multiple comparisons, showed a potential correlation with the BFMDRS-
M improvement rates. No significant correlation was identified when the
left inferior temporal gyrus (r ¼ �0.182, P ¼ 0.116) was tested.

Between-group differences in interregional connectivity

Compared with LIG, HIG showed more enhanced interregional con-
nections, most of which were intra-network connections in the somato-
motor network and inter-network links between the somatomotor
network and the default-mode network (DMN) (Fig. 4, Table S6). The
right postcentral gyrus, right precuneus, and left precentral gyrus
contributed the most (involved in � three differential edges). Further-
more, only one decreased connection (between the left angular gyrus and
the right superior occipital gyrus) was detected.

Results of validation based on Harvard-Oxford Atlas

The network measures based on HOA parcellation showed similar
results. Specifically, the SCNs constructed in both groups presented a
stable small-world attribute (Fig. S5A), and the comparisons in global
network metrics revealed significantly increased Cp (P ¼ 0.04, FDR-
corrected) and Lp (P ¼ 0.04, FDR-corrected) but decreased Sigma (P ¼
0.005, FDR-corrected) and indifferent network efficiencies in HIG
compared to LIG (Fig. S5B). Moreover, significant differences in both
nodal centralities between groups were consistently found in the left
precentral gyrus, right postcentral gyrus, right precuneus, posterior di-
vision of left superior temporal gyrus, and left thalamus (Fig. S6A,
Table S1), among which the right precuneus (P ¼ 0.044, FDR-corrected)
survived correction for multiple comparisons. These regions were mainly
associated with movement tasks and memory retrieval through Neuro-
synth annotation (Fig. S6B). For correlation analyses, the BFMDRS-M
5

improvement rates were positively correlated with the mean GM vol-
ume of the left precentral gyrus (r ¼ 0.293, P ¼ 0.009, Bonferroni cor-
rected) (Fig. S6C). For the comparisons of interregional connections,
most of the enhanced edges were still within somatomotor network or
between somatomotor network and DMN (Fig. S7), and the right post-
central gyrus, bilateral precuneus, and left precentral gyrus contributed
the most (involved in � three differential edges).

Discussion

Using SCNs and graph theory, we investigated the differences be-
tween HIG and LIG in global topological patterns, which revealed distinct
information integration and segregation between groups. The discrep-
ancies were mainly ascribed to the changes in interregional connectivity
within somatomotor network or between somatomotor network and
DMN. Further nodal topological comparisons, functional annotation, and
correlation analyses together suggested that STN-DBS outcomes of MS
were mainly associated with the changes in the precuneus, sensorimotor
cortex, and subcortical nuclei. In this study, we only used the cortex and
subcortical nuclei to construct the SCNs in both groups because most
previous SCN studies have excluded the cerebellum. Moreover, both the
resting-state functional MRI studies [33] and the task-related functional
MRI studies [41,42] have demonstrated that the cerebrum and cere-
bellum have their own network organization framework, though they are
connected structurally and functionally. Thus, it is reasonable to separate
them for analysis. To the best of our knowledge, this is the first study to
investigate the relationship between structural network integrity and
STN-DBS efficacy.
Interpretation of the differences in global network measures

The constructed SCNs in both groups held a stable small-world or-
ganization throughout the sparsity range, which suggested that the SCNs
can reflect brain structural architecture at a group level and this archi-
tecture can tolerate disease development albeit to different extents in the
two groups. Specifically, HIG displayed a lower Sigma, suggestive of a
more compromised trade-off between information processing and wiring
costs relative to LIG. Moreover, the higher Cp in HIG indicates a higher
prevalence of local cliquishness (a more segregated network), which may
result from the enhanced intra-network (within somatomotor network)
and inter-network connections (between somatomotor network and



Fig. 3. Results of nodal network analyses, functional annotation, and correlation analyses. (A) Spatial distribution of the nodes showing discrepant betweennesses
(left) and degrees (right) between HIG and LIG (permutation tests, P < 0.05, uncorrected). The discrepant regions are mapped onto the cortical surface (subcortical
nuclei are rendered separately) and illustrated in warm color (HIG > LIG) or in cold color (HIG < LIG) using the BrainNet Viewer software (https://www.nitrc.org/pr
ojects/bnv/). The color bar represents the value of log(1/P). (B) Functional annotation of the brain regions showing between-group differences in betweenness or
degree. The words in the figure represent the probable biological functions related to these brain regions. The font sizes of these words are scaled in terms of their
correlation coefficients with the meta-analytic co-activation maps, which were provided by the Neurosynth database after we submitted the binary mask involving
these differential brain regions to it. (C) Relationship between the BFMDRS-M improvement rates and the mean GM volume of regions showing differences in both
betweenness and degree (Spearman correlation, P < 0.0125, Bonferroni corrected). The x-axis denotes the standardized residuals of the mean GM volume of these
regions after regressing out the effects of sex, age, total intracranial volume, and education.
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DMN) in HIG revealed by the interregional connectivity analyses. The
Eglobal and Lp are reciprocal, both denoting the information transfer ef-
ficiency through the whole brain. The longer Lp and the lower Eglobal in
HIG indicate an impairment of network integration, which may be
6

caused by the loss of long-distance connections. Together, all the above
alterations denote that the SCN constructed in HIG developed towards a
regular network organization –– manifesting as higher fault tolerance
(higher Cp) but lower ability of global information transfer (higher Lp)

https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/


Table 2
Regions showing discrepant nodal centralities between HIG and LIG (AAL2 Atlas).

Abbreviation Brain Regions P value

Betweenness Degree

HIG > LIG
PreCG.L Left precentral gyrus 0.007 0.001*
SMA.L Left supplementary motor area 0.041 0.121
PCG.R Right posterior cingulate gyrus 0.036 0.177
CAL.R Right calcarine fissure and surrounding cortex 0.141 0.011
PoCG.L Left postcentral gyrus 0.028 0.154
PoCG.R Right postcentral gyrus 0.034 0.121
IPG.R Right inferior parietal gyrus - excluding supramarginal and angular gyri 0.011 0.131
PCUN.R Right precuneus 0.0004* 0.0002*
HIG < LIG
SOG.R Right superior occipital gyrus 0.186 0.022
SPG.L Left superior parietal gyrus 0.046 0.131
PUT.L Left putamen 0.249 0.009
PAL.R Right pallidum 0.306 0.012
THA.L Left thalamus 0.004 0.012
ITG.L Left inferior temporal gyrus 0.021 0.033

P values are computed by non-parametric permutation tests. Significant P values (two-tailed, P < 0.05, uncorrected) are shown in bold. Results corrected for multiple
comparisons are indicated with an asterisk (P < 0.05, Benjamini-Hochberg FDR correction). HIG, high-improvement group; LIG, low-improvement group.
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(see Fig S1). Since DBS works by normalizing the disrupted brain
network [43], we may interpret these findings as the HIG presenting
higher improvement in motor symptoms by leaving more room for
STN-DBS to correct the disrupted network. Moreover, the preoperative
BFMDRS-M scores displayed no difference between groups (Table 1),
which indicated that the degree of large-scale SCN change was inde-
pendent of the symptomatic severity.

Interpretation of the differences in nodal network measures

Between-group comparisons of nodal network topologies revealed
several regions showing potential relevance to STN-DBS outcomes, and
Fig. 4. Circular and anatomical distribution of the results of interregional connectivi
the Yeo seven networks with the subcortical nuclei labeled as the eighth network.
displayed in red (HIG > LIG) or in blue (HIG < LIG). The circular distribution (left
.circos.ca/software). The anatomical distribution (right) of the different edges is
ects/bnv/) with each region located according to their centroid stereotaxic coordin
difference (log(1/P)). See Table S2 for annotation of brain region abbreviations.
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functional annotation indicated that these regions were associated with
the function of movement. This indicated that the topological properties
of the motor-related brain regions were associated with STN-DBS out-
comes, which was consistent with how STN-DBS works, i.e., correcting
the dysfunctional sensorimotor networks. Moreover, the correlation an-
alyses identified the relationship between symptomatic improvement
rates and the GM volume of the left precentral gyrus and left thalamus,
suggesting that the discrepancies in nodal centralities were probably
related to the differences in regional volume.

Among the brain regions showing discrepant nodal centralities, the
precuneus consistently survived the multiple comparison corrections in
the comparisons of nodal centralities, hinting at its dominant role in
ty analyses. Ninety-four cerebral regions of AAL2 (no cerebellum) are mapped to
The significantly altered edges (permutation tests, P < 0.001, uncorrected) are
) of the different edges is displayed by using the Circos software (https://www
exhibited by using the BrainNet Viewer software (https://www.nitrc.org/proj
ates and the thickness of each edge representing the degree of between-group

https://www.circos.ca/software
https://www.circos.ca/software
https://www.nitrc.org/projects/bnv/
https://www.nitrc.org/projects/bnv/
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differentiating HIG from LIG. The structural alteration of precuneus had
been identified by a previous comparison between MS and HC [44], and
its GM volume showed a difference between the moderate-DBS-outcome
group and the superior-DBS-outcome group [13]. Another functional
study about laryngeal dystonia patients also found that the activity in the
left precuneus was associated with the short-term outcome of botulinum
injection [45]. Recent tractography studies found that the precuneus is a
heterogeneous region that has widespread white matter connections with
other brain structures, including those showing differential between-
nesses or degrees in this article, such as the parietal lobes, supplementary
motor area, lateral occipital cortex, and temporal lobe [46,47]. Also, the
precuneus has been deemed as a highly functional region, not only
participating in the visuospatial processing and sensory integration, but
also playing a critical role in complex cognitive tasks, such as episodic
and working memory, theory of mind, self-referential thinking, and
sensorimotor dynamics [48]. The decreased nodal centralities in the
precuneus in LIG indicate its compromised role in coordinating multiple
brain regions and integrating multiple functions, which may further
interfere with the efficacy of STN-DBS.

The disorganization of the somatomotor network (including basal
ganglia, thalamus, sensorimotor cortex, and cerebellum) has been
thought to be the main pathogenesis of MS by plenty of previous studies
[15,17–19,49]. In this study, we further detected different nodal cen-
tralities in the sensorimotor cortex and subcortical nuclei between
groups, and the GM volume of the left precentral gyrus and left thalamus
was positively correlated with the BMFDRS-M scores. Further interre-
gional connectivity analyses also revealed altered connections involving
the sensorimotor cortex. All these results suggest that the sensorimotor
cortex and subcortical nuclei (especially the left precentral gyrus and the
left thalamus) are not only related to MS progression but also associated
with STN-DBS outcomes. Since STN has extensive fiber connections with
the thalamus and sensorimotor cortex [50], it is not difficult to under-
stand that the structural alterations of these brain regions would influ-
ence the efficacy of STN-DBS. Although no previous study about MS has
correlated the DBS outcomes with the structural and functional alter-
ations of the sensorimotor cortex and subcortical nuclei, a GPi-DBS study
about generalized dystonia indicated that structural and functional
connectivity between the bilateral GPi and the primary sensorimotor
cortex was correlated with symptomatic improvement [51]. Another
structural MRI study about generalized and cervical dystonia found that a
better chronic GPi-DBS outcome was associated with hypertrophy of the
supplementary motor area [14]. Furthermore, the effect of the sensori-
motor areas on DBS efficacy can also be mirrored by the studies on
Parkinson's disease because of the same stimulation targets. For example,
a higher STN-DBS efficacy was correlated with a thicker precentral cortex
in Parkinson's disease [52]. In addition, in this study, we found that the
betweenness and degree tended to increase in the sensorimotor cortex
but decrease in subcortical nuclei in HIG. The changing directions cater
to the possible mechanism of STN-DBS revealed by DBS-ON functional
MRI studies, that is, STN-DBS induced activation of the GPi and thalamus
but deactivation of the precentral gyrus [12,53]. This may partly explain
why HIG possessed a better STN-DBS responsiveness.

In addition, the significant differences in nodal centralities of most
brain regions showed a unilateral pattern (Table 2). We think that the
hemispherical laterality in nodal centralities is due to several factors.
First, hemispherical laterality exists in normal motor control (e.g., most
people are right-handed). This laterality in motor control can be ampli-
fied in DBS responders (HIG), though the handedness showed no dif-
ference between HIG and LIG (Table 1). Second, the relatively small
number of subjects in each group may have reduced the sensitivity to
detecting symmetry changes. As shown in Fig. S4, the nodal centralities
of the contralateral nodes changed in almost the same direction as the
nodes with significant between-group differences (i.e., synchronized in-
creases or decreases), but just not yet to the level of statistical testing. We
speculate that large-sample studies will improve the detection rate of
8

symmetrical changes in the future. Finally, we detected laterality at the
group level, but this does not mean that all individuals must exhibit
laterality in the same direction. Future individual SCN analysis will
directly assess the asymmetry in each subject.

Interpretation of the validation results

In this study, we used the HOA to validate the results of the AAL2 atlas
and obtained similar results, which further verified the reliability and
reproducibility of SCN-based graph theory analyses. Even so, there still
exist certain atlas-related differences. For example, for the between-
group comparisons of the global topological properties, the Eglobal
showed a significant difference in the AAL2 results but no difference in
the HOA results. And the comparisons of nodal topological properties
yielded some non-overlapping brain regions. We speculate that these
inconsistencies come from the different node numbers of the two atlases
and the different cortical parcellation schemes. Previous studies have
shown that differences in network size (i.e., number of nodes) can
significantly affect the topological properties of functional and structural
brain networks [54,55]. Moreover, different cortical parcellation
schemes generated different brain region sizes, which can affect the
measurement of the mean GM volume of each ROI, leading to differences
in pairwise interregional Pearson correlations (SCNs). This relationship
between regional size and nodal centrality has also been unearthed by
previous functional and morphological brain network studies [54–56].

Limitations

Our study carries the following limitations. First, considering the
importance of the subcortical nuclei, we only explored volume-based
differences between the two groups. Whether surface-based analyses
could yield analogous results needs to be investigated in the future.
Second, we only performed comparisons of SCN-based graph theory
metrics. Currently, we still lack a clear understanding of the cellular and
molecular mechanisms underlying SCNs. To what extent the SCN-based
results are consistent with diffusional or functional results still needs to
be explored further. Third, there still existed certain non-overlapping
topological changes between the two atlases used in this study. Fourth,
the results of this study are based on single-center data, and whether
these significant findings stably exist in other independent datasets still
needs further validation. Finally, compared with diffusional and func-
tional networks, the group-level SCNs cannot generate individual met-
rics, thereby limiting the exploration of relationships between network
metrics and clinical variables, and the prediction of DBS outcomes using
network metrics.

In summary, good and poor STN-DBS responders have discrepant
large-scale topological properties of SCNs with good responders showing
a trend towards a regular network. STN-DBS outcomes are predomi-
nantly associated with the topological and volumetric changes in the
precuneus, sensorimotor cortex, and subcortical nuclei. These findings
extend our understanding of the neuroimaging mechanisms related to
STN-DBS outcomes from a network perspective.
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