
FISEVIER

Contents lists available at ScienceDirect

Neurotherapeutics

journal homepage: www.sciencedirect.com/journal/neurotherapeutics

Corrigendum

Corrigendum to "The relationship between atrial cardiopathy biomarkers and prognosis of patients with acute ischemic stroke after endovascular treatment" [Neurotherapeutics 21 (2) (2024) e00327]

Yixin Zhao ^{a,b,1}, Yuye Ning ^{c,1}, Lei Lei ^a, Qin Liu ^a, Mengmeng Li ^a, Xiangyu Lei ^a, Wanying Chen ^a, Yiting Hu ^d, Ting Xie ^e, Jiaxin Luan ^f, Haoyu Yang ^g, Guogang Luo ^{a,*}

The authors regret several errors in the original publication. Specifically, it has been identified that the number of patients in the atrial cardiopathy group should be 58, while the non-atrial cardiopathy group should encompass 29 individuals. These inaccuracies had a consequential impact on the presentation of data in Table 1 and Figure 2, as well as their corresponding descriptions. The correct sections are restated herein:

Abstract

Among these patients, 58 (66.7%) had atrial cardiopathy, while the remaining 29 (33.3%) did not. In the non-atrial cardiopathy group, 12 patients (41.4%) had poor functional outcomes (mRS>2), compared to 19 (32.8%) in the atrial cardiopathy group.

Results

Characteristics of included patients

The baseline characteristics of the atrial cardiopathy group (n=58) and the non-atrial cardiopathy group (n=29) were similar in terms of clinical severity or medical history.

Association between atrial cardiopathy and outcome

A poor outcome (mRS score of 3–6) was achieved by 19 (32.8%) patients with atrial cardiopathy and 12 (41.4%) patients with non-atrial cardiopathy.

a Stroke Centre and Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China

^b Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200235, China

^c Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China

d Pavlov First Saint Petersburg State Medical University, L'va Tolstogo Str. 6-8, Saint Petersburg, 197022, Russia

e Stroke Centre and Department of Neurology, Hancheng People's Hospital of Shaanxi Province, Ziyun Dajie, and Huanghe Dajie, Hancheng, 715400, China

f Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China

g Pharmacy Department, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, China

DOI of original article: https://doi.org/10.1016/j.neurot.2024.e00327.

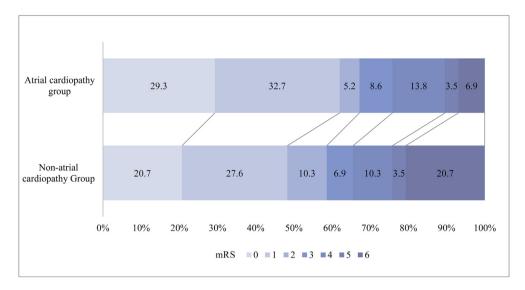
^{*} Corresponding author.

E-mail address: lguogang@163.com (G. Luo).

¹ These authors contributed equally to this work.

Table 1Baseline characteristics of the patients.

	Total (n = 87)	Atrial cardiopathy group ($n = 58$)	Non-atrial cardiopathy group (n $= 29$)	P-value
Age, y, mean (SD)	60.93 ± 12.47	61.59 ± 11.80	59.62 ± 13.83	0.49
Gender, male, n (%)	72 (82.8)	45 (77.6)	27 (93.1)	0.08
Medical history, n (%)				
Hypertension	55 (63.2)	36 (62.1)	19 (65.5)	0.82
Diabetes mellitus	34 (39.1)	24 (41.4)	10 (34.5)	0.64
Coronary heart disease	11 (12.6)	7 (12.1)	4 (13.8)	1.00
Dyslipidemia	47 (54.0)	29 (50.0)	18 (62.1)	0.36
General status				
BMI, kg/m ²	24.61 ± 3.41	24.26 ± 3.68	25.36 ± 2.68	0.25
Admission SBP, mmHg	143.48 ± 23.20	148.18 ± 20.80	135.35 ± 25.24	0.02
Admission DBP, mmHg	82.64 ± 12.55	83.70 ± 12.31	80.77 ± 13.00	0.35
Admission NIHSS	10.11 ± 7.02	10.88 ± 7.40	8.59 ± 6.03	0.15
PR interval, M (Q)	153.84 ± 33.25	154.07 ± 37.64	153.38 ± 22.61	0.93
Laboratory examination				
WBC, cells/mL	10.55 ± 3.40	10.54 ± 3.42	10.56 ± 3.41	0.98
TC, mmol/L	4.10 ± 1.04	3.99 ± 0.90	4.31 ± 1.27	0.19
TG, mmol/L	1.28 ± 0.70	1.17 ± 0.64	1.50 ± 0.77	0.06
HDL, mmol/L	1.00 ± 0.23	1.01 ± 0.26	0.96 ± 0.16	0.08
LDL, mmol/L	2.37 ± 0.87	2.27 ± 0.83	2.56 ± 0.94	0.17
D-dimer, mg/L	2.34 ± 6.54	1.99 ± 3.79	3.08 ± 10.19	0.49
Hcy, µmol/L	27.90 ± 19.34	24.83 ± 14.93	30.36 ± 18.60	0.15
Echocardiography				
EF	65.48 ± 6.66	65.12 ± 7.27	66.21 ± 5.26	0.48
LVDD	47.57 ± 4.77	47.47 ± 4.72	47.75 ± 4.95	0.80
LVDS	30.31 ± 4.93	30.38 ± 5.36	30.18 ± 4.04	0.86
Endovascular treatment				
Internal carotid artery system	74 (85.1)	48 (82.8)	26 (89.7)	0.53
Vertebrobasilar system	13 (14.9)	10 (17.2)	3 (10.3)	0.53
IV rtPA, n (%)	30 (34.5)	20 (34.5)	10 (34.5)	1.00
Thrombectomy, n (%)	64 (73.6)	43 (74.1)	21 (72.4)	1.00
Stent implantation, n (%)	48 (55.2)	33 (56.9)	15 (51.7)	0.66
Balloon dilatation, n (%)	50 (57.5)	35 (60.3)	15 (51.7)	0.49
Contrast, ml	245.69 ± 78.80	249.22 ± 77.48	238.62 ± 82.28	0.56
TICI 2b/3, n (%)	66 (75.9)	47 (81.0)	19 (65.5)	0.11
The outcome, n (%)				
mRS>2	31 (35.6)	19 (32.8)	12 (41.4)	0.43
sICH	22 (25.3)	13 (22.4)	9 (31.0)	0.44
END	14 (16.1)	13 (22.4)	1 (3.4)	0.03
MCE	11 (12.6)	8 (13.8)	3 (10.3)	0.74
In-hospital death	2 (2.3)	0	2 (6.8)	0.31


Values are means (SD) or medians (IQR), or numbers (%).

Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; NIHSS, the National Institutes of Health Stroke Scale; WBC, white blood cells; TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein; Hcy, homocysteine; EF, ejection fraction; LVDD, left ventricular end diastolic diameter; LVDS, left ventricular end diastolic systolic diameter; IV, intravenous; rtPA, recombinant tissue plasminogen activator; TICI, thrombolysis in cerebral infarction; mRS, the modified Rankin scale; sICH, symptomatic intracranial hemorrhage; END, early neurological deterioration; MCE, malignant cerebral edema.

Additionally, a requisite correction has been applied to the count of individuals in the two-column headings of Table 1, along with associated percentage errors. The labels of the two groups in Figure 2 require interchange, and it is noteworthy that no significant difference in mRS

scores was observed between them. The complete and accurate versions of Table ${\bf 1}$ and Figure 2 are restated in full herein.

The authors would like to apologise for any inconvenience caused.

