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Abstract 

Untarg eted g enetic appr oaches can be used to explor e the high meta bolic v ersatility of cyanobacteria. In this context, a compr ehensi v e 
metagenomic shotgun analysis was performed on a population of Dolichospermum lemmermannii collected during a surface bloom in 

Lake Garda in the summer of 2020. Using a phylogenomic approach, the almost complete metag enome-assembled g enome obtained 

from the analysis allowed to clarify the taxonomic position of the species within the genus Dolichospermum and contributed to frame 
the taxonomy of this genus within the ADA group ( Anabaena / Dolichospermum / Aphanizomenon ). In addition to common functional traits 
r e pr esented in the central metabolism of photosynthetic cyanobacteria, the genome annotation uncov er ed some distincti v e and 

adapti v e traits that helped define the factors that promote and maintain bloom-forming heterocytous nitrogen-fixing Nostocales 
in oligotrophic lakes. In addition, genetic clusters were identified that potentially encode several secondary metabolites that were 
pr eviousl y unknown in the populations evolving in the southern Alpine Lake district. These included geosmin, anabaenopetins, and 

other bioacti v e compounds. The r esults expanded the knowledge of the distincti v e competiti v e traits that dri v e algal b looms and 

provided guidance for more targeted analyses of cyanobacterial metabolites with implications for human health and water resource 
use. 

Ke yw ords: ADA Anabaena/Dolic hosperm um/A phanizomenon ; cyanobacterial b looms; Dolichosperm um ; genome mining; KEGG functional 
anal ysis; meta genome assemb led genome 
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Introduction 

Cyanobacteria are a group of photosynthetic prokaryotic microor- 
ganisms that are widely distributed throughout the world. In 

aquatic en vironments , c y anobacteria are essential for the sustain- 
ability of terrestrial life, accounting for ∼25% of carbon dioxide 
fixation (Aguiló-Nicolau et al. 2023 ). In phosphorus- and nitrogen- 
rich lake and river ecosystems, this group of microorganisms is 
often able to r epr oduce v ery r a pidl y, pr oducing high biomasses 
and causing blooms (Reynolds and Walsby 1975 ). In addition to 
eutrophication, c y anobacterial blooms are favoured and intensi- 
fied by high water temper atur es and thermal stability of the water 
column (Paerl and Huisman 2009 , Visser et al. 2016 , J anko wiak et 
al. 2019 ). Evidence of an increase in the frequency, size and dura- 
tion of c y anobacterial blooms around the w orld has been reported 

(Huisman et al. 2018 , Hou et al. 2022 ). These phenomena are influ- 
enced by geogr a phic location, lake and watershed c har acteristics 
and the species involved, and their documentation depends on 

monitoring cov er a ge and effort (Wood et al. 2017 , Hallegraeff et al.
2021 , Bullerjahn et al. 2023 , Mishra et al. 2023 , Erratt and Freeman 

2024 ). Given that many c y anobacteria are capable of producing 
a wide range of secondary metabolites that are toxic to humans 
and animals (Meriluoto et al. 2017 ), c y anobacterial blooms r equir e 
special attention in terms of monitoring and risk assessment re- 
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ated to the use of aquatic resources for drinking and bathing pur-
oses (Chorus and Welker 2021 ). 

The dynamics of c y anobacterial harmful algal blooms can be
ighl y v ariable, r anging fr om localized and episodic e v ents ov er a
ew hours or days to persistent, large biomass accumulations over
ar ge ar eas for se v er al days or weeks (Stumpf et al. 2012 , Steffen
t al. 2017 ). The intensity of these blooms depends on nutrient
vailability and local climatic and hydrological conditions (Wynne 
t al. 2010 , Wu et al. 2013 ). 

T he en vironmental localization and impact of c y anobacterial
looms ar e highl y species-specific, depending on the v ertical ac-
umulation of biomass , e .g. at the surface , dispersed in the wa-
er column, or forming metalimnetic blooms, as in the case of
lanktothrix rubescens (De Candolle ex Gomont) Anagnostidis and 

omárek (Lindholm et al. 1989 , Codd et al. 1999 , Boscaini et al.
017 , Zepernick et al. 2024 ). In turn, the ability to synthesize tox-
ns is often strain-specific and c har acterized by str ong geogr a phic
atterns (Kardinaal et al. 2007 , Haande et al. 2008 , Vico et al. 2020 ).
n all these cases, a complete taxonomic and functional c har ac-
erization of the e v ents is essential for a compr ehensiv e risk as-
essment and management of the affected waters. 

T he con v entional taxonomic a ppr oac h involv es the use of mi-
r oscopic observ ations of envir onmental samples, occasionall y
 is an Open Access article distributed under the terms of the Cr eati v e 
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oupled with genetic c har acterization of isolates and/or environ-
ental samples (Kurmayer et al. 2017 ). In parallel, a range of dif-

erent c y anotoxins is c har acterized and quantified using liquid
 hr omatogr a phy-mass spectr ometry (LC-MS) or enzyme-linked
mmunosorbent assay (Meriluoto et al. 2017 ). Ov er all, the genetic
nalysis of isolates and the metabolomic profiling of isolates and
nvironmental samples are based on targeted analyses, which re-
ain an efficient a ppr oac h to ensure the correct identification of

 y anotoxin producers. Ho w ever, the use of targeted analyses is of-
en v ery demanding, r equiring full y equipped labor atories and, in
he case of isolates, long periods of time r equir ed for the estab-
ishment and growth of populations . T hey are also restricted to a
imited number of target genes and metabolites. 

Mor e r ecentl y, conv entional a ppr oac hes hav e been comple-
ented by a number of technologies using culture-independent

igh-thr oughput sequencing (HTS) a ppr oac hes (Thompson and
hielen 2023 ). Metabarcoding has been widely used as a fast and

nexpensive tool to characterize the microbial and c y anobacte-
ial communities (Pawlowski et al. 2018 , Cordier et al. 2020 , Do-
aizon et al. 2021 ), allowing the study of spatial and temporal

atterns in the distribution of specific c y anobacterial oligotypes
Berry et al. 2017 , Salmaso et al. 2024 ) and toxigenic taxa (Casero
t al. 2019 , Linz et al. 2023 ). Analogous to the classical a ppr oac hes,
etabarcoding is based on the targeted analysis of short DNA

deo xyribon ucleic acid) amplicons, allowing a deep determina-
ion of micr obial comm unities, but with man y limitations, mainl y
ue to the use of single marker genes per run, the limited infor-
ation carried by short DNA fr a gments, and the incompleteness

f r efer ence databases (Malashenk ov et al. 2021 , Salmaso et al.
022 ). Conv ersel y, meta genomic a ppr oac hes ar e based on DNA-
argeted independent methods that allow the reconstruction of

etagenome-assembled genomes (MAGs) from the analysis of
ny type of biological and environmental samples (Quince et al.
017 , Pérez-Cobas et al. 2020 ). The use of draft genomes , i.e . MAGs
econstructed with different levels of completeness and contam-
nation (Garner et al. 2023 ), allows to unr av el the taxonomy and
hylogen y of micr obial assembla ges (Soo et al. 2014 , Dvo ̌rák et al.
023 , P essi et al. 2023 , Struneck ý et al. 2023 ), which opens impor-
ant perspectives for the determination of functional properties
f species and communities (Chrismas et al. 2018 , Linz et al. 2018 ,
lcorta et al. 2020 , Tran et al. 2021 , Van Le et al. 2024 ). 
In this w ork, w e report the results of a full-shotgun metage-

omic analysis performed on a sample collected during a sum-
er bloom of Dolichospermum detected in Lake Garda. In this con-

ext, and considering the many definitions proposed (Zepernick
t al. 2024 ), the term bloom is applied to indicate a visible for-
ation of scum. Blooms with the same c har acteristics hav e been

 ecorded irr egularl y since the earl y 1990s, and the taxonomy of
he unique species involved has been characterized (Salmaso et
l. 2015b , Capelli et al. 2017 ). Our main objectives were (i) to use
he MAG of Dolichospermum to c har acterize the taxonomic assign-

ent of the species at the genomic le v el; (ii) to identify, through
enome annotation, the main metabolic pathways and the pres-
nce of r ele v ant metabolites in Dolichospermum , including c y an-
toxins; and (iii) to discuss the prospects for the practical use of
eta genomic a ppr oac hes to complement conventional monitor-

ng in assessing the risks posed by the de v elopment of potentiall y
oxigenic c y anobacterial populations. 

aterials and methods 

ampling, filtr a tion, and phytoplankton analysis 

he sample for metagenomic and c y anotoxins analyses was col-
ected on the surface using a sterilized plastic bottle during a
loom observed on the afternoon of September 1, 2020, in the
hallo w er southeastern basin of Lake Garda, ∼3 km off the coast
f the village of Bardolino (45.55 N 10.68 E; Fig. S1 ). The sam-
led layer r anged fr om 2 to 10 cm. The sample was k e pt refriger-
ted overnight until filtration, which was performed the next day
n GF/C filters (nominal particle retention 1.2 μm) until almost
logged. 

During the bloom, water temper atur es wer e measur ed with
 ultipar ameter pr obes (Idr onaut Ocean Se v en 316 Plus and SBE

9plus SeaCAT). Water tr anspar enc y w as measur ed with a Secc hi
isk. Samples for chemical (0–2, 9–11, and 19–21 m) and phyto-
lankton (0–20 m) analyses were collected by the Regional Agency
or Environmental Protection and Prevention of the Veneto Re-
ion (ARPAV) (Ragusa et al. 2021 ). T he used methods ha ve been
 egularl y c hec ked between the ARPAV and the Fondazione Mach
f S. Michele all’Adige (FEM) laboratory as part of the activities
arried out within the Long Term Ecological Research (LTER) net-
ork (Capotondi et al. 2021 ) and previous projects (Domaizon et
l. 2021 ). Chemical analyses were performed according to stan-
ard methods (APHA, A WW A, and WEF 2018 ) and included pH,
issolved oxygen, sulfate (SO 4 

2 −), nitrogen (NO 3 -N, NH 4 -N and TN,
otal nitrogen) and phosphorus (SRP, soluble r eactiv e phospho-
us and TP, total phosphorus). Phytoplankton anal yses wer e per-
ormed using inverted microscopes (Salmaso et al. 2022 ). On the
ame day, additional field measurements and samples for chem-
cal and phytoplankton anal yses wer e collected in the deeper
orthwestern basin (45.69 N, 10.72 E), ∼20 km north of the bloom

ocation. 

yanotoxins analyses 

y anotoxins w er e extr acted fr om a GF/C filter and quantified as
escribed by Cerasino et al. ( 2017 ) and Cerasino and Salmaso
 2020 ). The extraction was performed in acetonitrile/water (60/40
/v), containing 0.1% formic acid. Extr acts wer e anal ysed using an
C-MS/MS system, composed of a Waters Acquity UPLC system
Waters, Milford, MA, USA) coupled to a SCIEX 4000 QTRAP mass
pectrometer (AB Sciex Pte. Ltd., Singapore). The most common
icrocystins (MCs) structural variants were quantified, including
C-RR, MC-[D-Asp3]-RR (RRdm), MC-[D-Asp3]-HtyrR (HtyRdm),
C-YR, MC-LR, MC-[D-Asp3]-LR (LRdm), MC-WR, MC-LA, MC-LY,
C-L W, MC-LF (limit of detection, LOD , 0.5–9 ng/g d.w .) (Cerasino

nd Salmaso 2020 ). Details on the analyses of anatoxins (ATXs)
A TX-a and homoA TX-a; LOD , 2.0–4.0 ng/g d.w .), cylindrosper-

opsin (CYN; LOD, 0.4 ng/g d.w.), and saxitoxins (SXTs) (STX, dc-
TX, NeoSTX, GTX1, GTX4, GTX5, C1, and C2; LOD 5.0–27.0 ng/g
.w) were reported in (Ballot et al. 2020 ). 

N A extr action, libr ary prepar a tion and 

equencing 

ilters were stored at –20 ◦C until DNA extr action, whic h was per-
ormed with DNeasy Po w erWater ® DN A Isolation Kit (Qiagen,
SA). DN A concentrations w ere measured with a NanoDrop ND-
000 (Thermo Fisher Scientific Inc., USA). Starting from a total
mount of 100 ng, total DN A w as fr a gmented by enzymatic re-
ction at 37 ◦C x 5 min pr oducing fr a gments of 500 bp. P air ed-
nd library was prepared using the KAPA HyperPlus kit (Roche).
da pters fr om the KAPA Unique Dual-Indexed Adapter Kit (Roche)

ecommended for use with the KAPA HyperPlus Kit were ligated
o the DNA fr a gments following the manufactur er’s instructions.
ibr aries wer e quantified using the KAPA Library Quantification
its (Roche) and were sequenced for 150 bp paired-end reads on

he Illumina Novaseq-6000 platform (Illumina Inc., San Diego, CA,
SA). 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
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Assembling and binning 

P air ed r aw r eads wer e c hec ked with F astQC 0.12.1 (github .com/s- 
andr e ws/FastQC). Remov al of residual adapters and PhiX contam- 
inated reads, and trimming (trimq = 18, maq = 20, maxns = 0,
minlen = 35) were performed using BBDuk (BBMap version 39.05; 
https://jgi.doe .go v ). Human DN A reads w ere mapped using Bowtie 
2.5.2 (Langmead and Salzberg 2012 ) against the corresponding hu- 
man r efer ence genome, GRCh38.p14 (GCF_000001405.40) and fil- 
tered with SAMtools 1.19 (Danecek et al. 2021 ). For de Bruijn graph 

assemblers, a very high cov er a ge depth amplifies the effect of er- 
rors on the assembly graph and may even confuse error correc- 
tion algorithms (Lapidus and K orobeyniko v 2021 ). To cope with 

the high cov er a ge of r eads c har acterizing Dolic hospermum (1015 ×
with r elativ e abundance 29.5% after assembly based on the en- 
tire set of reads), the paired-end reads were therefore subset- 
ted using BBMap reformat.sh, at a samplerate = 0.3. An assess- 
ment of the taxonomic composition of the microbial community 
with species-le v el r esolution using the filter ed r eads was carried 

out using MetaPhlAn 4.0.6 with the –unclassified_estimation pa- 
rameter (Blanco-Miguez et al. 2022 ), and results converted from 

NCBI (National Center for Biotechnology Information) to GTDB 

(Genome Taxonomy Database) taxonomy with the MetaPhlan 

utility script sgb_to_gtdb_profile.py. 
Filter ed r eads wer e corr ected with metaSPAdes 3.15.5 (Nurk et 

al. 2017 ) (–onl y-err or-corr ection) and ther eafter assembled with 

Megahit 1.2.9 (Li et al. 2015 ) (–presets meta-sensitive). After dis- 
carding contigs shorter than 1000 bp and simplifying the contigs 
names with Anvi’o 8 (Eren et al. 2021 ), the contigs were binned us- 
ing CONCOCT 1.1.0 (Alneberg et al. 2014 ), MetaBAT 2.17–21 (Kang 
et al. 2019 ), and SemiBin2 2.0.2 (Pan et al. 2022 ), and results com- 
bined using DAS Tool 1.1.6 (Sieber et al. 2018 ), using default op- 
tions and score threshold = 0.4. The resulting MAGs were assessed 

for the presence of chimerism using GUNC 1.0.6 (Orakov et al.
2021 ). Additional sources of bacterial and eukaryotic contamina- 
tion wer e c hec ked using MDMcleaner 0.8.7 (Vollmers et al. 2022 ) 
and Whokaryote 1.1.2 (Pronk and Medema 2022 ), and results were 
assessed manually. The Dolichospermum bin (FEM_B0920) was fur- 
ther c hec ked and confirmed with Anvi’o 8 (Eren et al. 2021 ). Com- 
pleteness and redundancy (Bowers et al. 2017 ) of MAGs were es- 
timated using CheckM 1.2.2 (Parks et al. 2015 ) and CheckM2 1.0.2 
(Chklovski et al. 2023 ). Cov er a ge of the individual MAGs was com- 
puted using CoverM 0.6.1 (github.com/wwood/CoverM). 

The Whole Genome Shotgun project has been deposited at 
DDBJ/ENA/GenBank under the project number PRJNA1074715. 

Taxonomic assignment and phylogenomic 

analyses 

The taxonomic analysis of the MAGs recovered from the Lake 
Gar da bloom w as based on the Genome Taxonomy Database 
(GTDB) 09-RS220, released in April 2024 (Parks et al. 2022 ). Tax- 
onomic classifications were performed using GTDB-Tk 2.4.0 up- 
dated to use the GTDB R220 taxonomy (Chaumeil et al. 2022 ). 

Genomes to be compared with the Dolichospermum MAG de- 
termined in Lake Garda (FEM_B0920) were selected to cover 
all the Dolichospermum species available in GTDB R220. Most of 
these genomes were obtained from metagenomic analyses of 
non-axenic cultur es, enric hed cultur es , and en vironmental sam- 
ples. Only in a few cases, DN A w as isolated from single cells 
( Dolic hospermum spp., str ains sed1-sed10; Woodhouse et al. 2024 ).
In the GTDB R220 taxonomy no Dolichospermum lemmermannii 
(Ric hter) P. Wac klin, L. Hoffmann, and J. Komár ek genomes wer e 
included, whereas in NCBI (Sayers et al. 2022 ), two genomes at- 
ributable to this species were reported. The first was D. lem-
ermannii CS-548, collected in 1981 from Lake Edlandsvatnet,
orwa y (GC A_028330815.1) and classified in the GTDB R220 un-
er Dolichospermum sp000312705. The second was Dolichospermum 

B001 (GCA_016462165.1), which was detected during an offshore 
loom of D. lemmermannii in Lake Superior in August 2018 (Sheik
t al. 2022 ); in GTDB R220, this genome was howe v er not included
n the r efer ence database. Fr om this initial set, three genomes
ac king NCBI genus-le v el classification and GTDB species clas-
ifications, and a further 12 genomes with completeness below 

5% and/or contamination above 4% (as determined by CheckM2) 
ere excluded from subsequent analyses. Similarly, Dolichosper- 
um SB001 (87.8% completeness and 0.2% contamination) was 
ot included in the main set of analyses . T he genomes analysed
r e r eported in Table S1 . 

The MAG of Dolichospermum recorded in Lake Garda 
GCA_037075685.1) was compared with this set of genomes 
sing the Av er a ge Nucleotide Identity (ANI) (Palmer et al. 2020 )
omputed using p y ani 0.2.12 (ANI b ) (Pritchard et al. 2015 ), Or-
hoANIu 1.2 (Yoon et al. 2017 ), and fastANI 1.32 (Jain et al. 2018 ).
he suggested species boundary for distinguishing between two 
pecies based on ANI values is 0.95–0.96 (Goris et al. 2007 , Richter
nd Rosselló-Mór a 2009 ), wher eas genomes of differ ent species
ener all y hav e ANI < 0.90 and ANI v alues in the r ange 0.90–0.95
r e compar ativ el y r ar e (Rodriguez-R et al. 2024 ). 

Phylogenomic anal yses wer e carried out using GT oT ree 1.8.6
Lee 2019 ) with the parameter -G set to 0.75. GT oT ree makes use
f Muscle 5 (Edgar 2022 ) to align sequences. Sequence alignments
ere computed using the pre-packaged HMM single-copy genes 

et specific for Cyanobacteria (251 genes) available in GT oT ree.
he alignment and partitions obtained with GT oT r ee wer e used to
uild phylogenomic trees with IQ-TREE 2.3.4, using ModelFinder 
o select the substitution mode (Nguyen et al. 2015 ), and with
r anc h supports computed using ultrafast bootstrap (UFBoot) val-
es (Minh et al. 2013 ) with 10 000 replicates; UFBoot 95% support
 alues r oughl y corr espond to a pr obability of 95% that a clade
s true. Two phylogenomic analyses were performed, the first in-
luding only the genomes classified at the species le v el in the
TDB R220 taxonomy (58 genomes) and the second including all

he available Dolichospermum genomes (96 genomes); besides the 
olichospermum collected in Lake Garda, in both cases, the genome 
f Cuspidothrix issatschenkoi CHARLIE-1 (GCF_002934005.1) was 
sed as an outgr oup, r esulting in a total of 60 and 98 genomes
eing utilized in the r espectiv e anal yses . T he tr ees wer e built us-

ng iTOL v6 (Letunic and Bork 2024 ). Analyses were performed by
alculating the alignment and trees using both protein and DNA
equences (Lee 2019 ), which yielded comparable results; only the
rees constructed using proteins are shown. Besides the GTDB tax- 
nomy, the clades obtained in the trees were interpreted taking
nto account the NCBI taxonomy and the classifications based on
he ADA ( Anabaena / Dolic hospermum / A phanizomenon ) clade concept
Driscoll et al. 2018 , Dreher et al. 2021 ). 

unctional annotation 

unctional annotation of the Dolichospermum draft genome was 
erformed using the NCBI stand-alone softwar e pac ka ge Pr okary-
tic Genome Annotation Pipeline (PGAP) 2023–10–03.build7061 
github.com/ncbi/pgap) (Li et al. 2020 ) and finally confirmed 

y annotation using the PGAP service in NCBI ( https://www.
cbi.nlm.nih.gov/). PGAP allows the prediction of protein-coding 
enes and other functional genomic entities such as struc- 
ural RN As, tRN As, small RN As and pseudogenes. Functional

https://jgi.doe.gov
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://www.ncbi.nlm.nih.gov/
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Table 1. Physical and chemical characteristics of samples collected in three discrete epilimnetic layers at the (A) southeastern and (B) 
northwestern stations of Lake Garda during the Dolichospermum bloom recorded in the southeastern basin. 

(A) (B) 

South East station (Bardolino) North West station (Brenzone) 

Variable/w ater lay er 0–2 m 9–11 m 19–21 m 0–2 m 9–11 m 19–21 m 

Temper atur e ( ◦C) 23.6 23.4 21.0 22.5 21.6 20.5 
pH 8.4 8.5 8.1 8.6 8.6 8.5 
Oxygen (mg L −1 ) 9.4 9.3 7.7 10.0 9.7 9.5 
Sulfate, SO 4 

2 − (mg L −1 ) 10 10 10 9 9 10 
NO 3 -N (mg L −1 ) < 0.05 < 0.05 0.14 0.164 0.185 0.121 
NH 4 -N (mg L −1 ) < 0.01 < 0.01 < 0.01 0.012 0.006 0.008 
TN (mg L −1 ) < 0.5 < 0.5 < 0.5 0.25 0.22 0.24 
SRP ( μg L −1 ) < 5 < 5 < 5 < 5 < 5 < 5 
TP ( μg L −1 ) 5 8 7 12 11 11 
Secchi disk depth (m) 4 7 
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nnotations have been integrated with Bakta 1.9.2, which assigns
table database identifiers from RefSeq and UniProt (Schwengers
t al. 2021 ) and, to impr ov e the annotation of antimicrobial re-
istance genes (ARGs), AMRFinderPlus (Feldgarden et al. 2019 ,
c hwengers et al. 2021 ). Antimicr obial r esistance (AMR) and ARGs
ere further predicted using ABRicate (version 1.0.1), incorpo-

ating the NCBI AMRFinder , ARG-ANNOT, ResFinder , and Card
atabases (github.com/tseemann/abricate) with minimum DNA

dentity and cov er a ge v alues of 80% and 50%, r espectiv el y. The lo-
ation of ribosomal rRNA genes in MAGs was further e v aluated
sing Barrnap 0.9 (github.com/tseemann/barrnap). 

Basic metabolism and phenotypic features of the NCBI D. lem-
ermannii species were defined using the Kyoto Encyclopedia of
enes and Genomes (KEGG) (Kanehisa et al. 2014 ). After iden-

ifying proteins with Prodigal 2.6.3 (Hyatt et al. 2010 ), the func-
ional orthologs defined by K numbers (Kegg Orthology, KO, iden-
ifiers) were determined using GhostKOALA computed with the
enus_prokaryotes + viruses database file (Kanehisa et al. 2016 ).
 he pathwa y KEGG modules (functional units of gene sets in
etabolic pathways) were identified with the KEGG Mapper Re-

onstruct tool (Kanehisa and Sato 2020 ). Selected phenotypic
r aits wer e anal ysed using KEGG pathway ma ps (Kanehisa et al.
022 ). 

The presence of secondary metabolite biosynthetic gene clus-
ers (BGCs) in the Dolichospermum genomes was assessed using
he antibiotics and secondary metabolite analysis shell antismash
.1.0 (default mode), which allows the detection and c har acter-
zation of BGCs in micr oor ganisms . T he similarity is defined as
he percentage of genes within the closest known compound that
ave a significant BLAST hit to genes within the current region

Blin et al. 2023 ). 
Identification of target genes encoding c y anotoxins (Kurmay er

t al. 2017 ) and geosmin (GEO) (Suurnäkki et al. 2015 ) in
he Dolichospermum genomes and contigs was performed us-
ng specific gene databases with ISeqDb 0.0.3 (github.com/hts-
ools/iseqdb). Selected markers included anaC and anaF (anatoxin-
, ATX-a), mc yB , mc yD and mc yE (microc ystins), c yrJ (c ylindrosper-
opsin), sxtA (saxitoxin) and geoA (geosmin) downloaded from
enBank and included in the ISeqDb pac ka ge. 

esults 

he Dolichospermum bloom 

hortly after sampling at the LTER station in the northeastern
asin, an opportunistic sample was taken on the afternoon of
eptember 1, 2020, from a bloom ∼3 km off the coast of the vil-
age of Bardolino. The bloom was observed during a period of calm
inds . T he bloom had the same c har acteristics observ ed in other

pisodes documented in pr e vious years (Salmaso et al. 2015b ), i.e.
ith distinct a ggr egates of filaments visible with the naked eye
nd more or less dense streaks in the first few cm of the water
olumn ( Fig. S2 ). 

yanotoxins 

he LC-MS analyses sho w ed a quantifiable presence of ATX-a
0.3 μg L −1 ). The other toxins analysed were not detected. 

nvironmental and light microscopy analyses 

uring the bloom, water temper atur es in the first 20 m were be-
ween 21.0 and 23.6 ◦C (Table 1 A). The Secchi disk depth was 4 m.
H and oxygen values were between 8.1 and 8.5, and 7.7 and
.4 mg L −1 (87%–120% satur ation), r espectiv el y. Sulfate sho w ed
omogeneous concentrations in the layers analysed (10 mg L −1 ).
RP and TP wer e extr emel y low thr oughout the epilimnion, below
he detection limit and < 10 μg L −1 , r espectiv el y. In the first 10 m,
itr ate nitr ogen was at or below the detection limit (0.05 mg L −1 ).

n the northwestern basin, the analyses gave comparable results,
ith the main difference being the more homogeneous and mea-

ur able concentr ations of NO 3 -N (120–190 μg L −1 ) and dissolved
xygen, and slightly higher SRP and TP concentrations in the epil-
mnion (Table 1 B). 

The microscopic analyses performed by ARPAV confirmed the
resence of D. lemmermannii in the integrated sample collected be-
ween 0 and 20 m. The total biovolume contributed by the whole
hytoplankton community was ∼400 mm 

3 m 

−3 , while the con-
ribution of c y anobacteria w as ∼100 mm 

3 m 

−3 . More than 60%
f the biovolume of cyanobacteria was contributed by picoplank-
on, filaments of Planktothrix rubescens (De Candolle ex Gomont)
na gnostidis and Komár ek and colonies of Microcystis aeruginosa

K ützing) K ützing, while the contribution of D. lemmermannii was
 uc h lo w er, i.e. ar ound 8% ( < 10 mm 

3 m 

−3 ). Tyc honema bourrel-
yi (J.W.G. Lund) Anagnostidis and Komárek was detected with
 fraction of biovolume around 5%. Eukaryotic phytoplankton
as mainly dominated by Chlorophyceae (142 mm 

3 m 

−3 ; Har-
otina reticulata (P.A. Dangeard) and Monactinus simplex (Meyen)
orda); Bacillariophyceae (60 mm 

3 m 

−3 ; Fragilaria crotonensis Kit-
on); Dinophyceae (36 mm 

3 m 

−3 ; Ceratium hirundinella (O.F. Müller)
ujardin); Trebouxiophyceae (27 mm 

3 m 

−3 ; Mucidosphaerium pul-
hellum (H.C. Wood) C. Boc k, Pr osc hold, and Krienitz); and Cryp-
ophyceae (21 mm 

3 m 

−3 ; Plagioselmis nannoplanctica (Skuja) G.

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
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Table 2. Summary of statistics from the Dolichospermum lemmer- 
mannii FEM_B0920 genome assembly. 

Variable 

Total length (bp) 4 787 045 
No. of contigs 189 
GC content (%) 38.13 
Mean cov er a ge ( ×) 305 
Size of longest contig (bp) 115 416 
N50 (bp) 40 920 
No. of protein-coding genes 4439 
No. of tRNA 40 
Complete 5S rRNA 3 
Complete 16S rRNA 1 
Complete 23S rRNA 1 
Completeness (CheckM) (%) 99.67 
Contamination (CheckM) (%) 0.22 
Str ain heter ogeneity (Chec kM) (%) 0.0 
Completeness (CheckM 2) (%) 99.94 
Contamination (CheckM 2) (%) 0.0 
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No varino, I.A.N. Lucas , and Morr all). No Dolic hospermum blooms 
wer e visuall y detected at the north-western LTER station. In the 
0–20 m layer of this station, the av er a ge total c y anobacterial bio- 
v olume w as 106 mm 

3 m 

−3 , of which 2 mm 

3 m 

−3 were contributed 

by D. lemmermannii ( Fig. S3 ). 

Metagenomes assembly and the Dolichospermum 

MAG 

Nov aseq sequencing gener ated 62 967 310 pair ed-end r eads. In to- 
tal, raw data quality processing removed around 11% of the raw 

r eads. After r esampling, the successiv e anal yses wer e performed 

on the 30% of the quality c hec ked and pr ocessed pair ed-end r eads.
After correction with metaSPAdes, assembly with Megahit yielded 

16 508 contigs larger than 1000 bp, with a total size of 76 Mbp and 

N50 of 18 548 bp. 
The Dolichospermum FEM_B0920 was 4.8 Mbp assembled into 

189 contigs, with N50 40 920 bp, GC content 38.1%, and cov er a ge 
305 ×; based on CheckM2, completeness and contamination esti- 
mates were 99.9% and 0%, respectively (Table 2 ). 

According to the GTDB taxonomy, the MAG FEM_B0920 was 
identified by GTDB-Tk as Dolichospermum sp000312705. Further- 
mor e, the Dolic hospermum genome r ecov er ed fr om the Lake Garda 
bloom shared the highest average identities (ANI b > 0.960) with 

the group of genomes included in GTDB R220 under Dolichosper- 
mum sp000312705, whic h corr esponded, according to NBCI tax- 
onomy, to se v er al species mostl y assigned to Dolic hospermum spp.
and Anabaena spp., as well as D. lemmermannii , Dolichospermum flos- 
aquae (Bornet and Flahault) P. Wacklin, L. Hoffmann, and Komárek 
and Dolichospermum circinale (Rabenhorst ex Bornet and Flahault) 
Wacklin, Hoffmann, and Komárek (Table 3 and Table S1 ). Specif- 
ically, D. lemmermannii CS-548 isolated from Lake Edlandsvatnet 
sho w ed an ANI b value of 0.966. The genome r ecov er ed fr om the 
Lake Superior bloom ( Dolichospermum sp. SB001; not included in 

Table 3 ) sho w ed an ANI b value of 0.982. 

Phylogenomic analyses 

In the phylogenomic tree, all the genomes classified at the species 
le v el following the GTDB ( D . flosaquae , D . circinale , D . heterosporum ,
D. gracile , and, partly, D. planctonicum ) and NCBI taxonomy ( D. lem- 
mermannii ) sho w ed a clear separation into different clades (Fig. 1 ).
D. gracile sho w ed a relationship with the sole r epr esentativ e of D.
ompactum , but at a lo w er le v el of identity (ANI b < 0.94) compar ed
o intraspecific differences. Excluding D. planctonicum , all groups 
ontaining distinct species in compact clades were supported by 
FBoot values > 95%. 
The phylogenomic analysis calculated using all the Dolichosper- 

um genomes confirmed the results obtained with the analysis 
ased on the species (Fig. 2 ). The close affinity of the two D. lem-
ermannii FEM_B0920 and CS-548 NCBI genomes to the Dolichos- 

ermum sp000312705 GTDB group (Table 3 and Table S1 ) was con-
rmed by the complete phylogenomic anal ysis, whic h sho w ed the

nclusion of these genomes in a unique compact cluster. While the
NI b values between the Lake Garda genome (FEM_B0920) and 

ll other genomes in this clade wer e al ways gr eater than 0.96,
he ANI b values calculated considering all other genomes not in-
luded in the Dolichospermum sp000312705/ D. lemmermannii clade 
er e al ways lower than 0.91. 
T he main clades , whic h included the major GTDB Dolic hos-

ermum taxa, were all assigned to different ADA re presentati ves
Driscoll et al. 2018 , Dreher et al. 2021 ) (“ADA” column in Fig. 2 ).
his allo w ed the r emaining unta gged taxa to be assigned to dis-
inct ADAs associated with the r espectiv e clades (“ADA + ” column
n Fig. 2 and Table S1 ), i.e. ADA-1 (mostly D. circinale and D. planc-
onicum ; minimum ANI b between species of the clade = 0.939),
DA-2 ( Dolichospermum sp000312705/ D. lemmermannii ; minimum 

NI b = 0.959), AD A-3 ( D . heterosporum ; minimum ANI b = 0.955),
D A-4 ( D . flosaquae ; minimum ANI b = 0.978) and ADA-6 ( Dolichos-
ermum sp017355425; minimum ANI b = 0.999). Within ADA-1, the 
NI b calculated separ atel y for the species belonging to D. plancton-

cum and D. circinale sho w ed higher minimum values , i.e . 0.947 and
.946 (0.956 excluding Anabaena sp. CRKS33), r espectiv el y, than
hat calculated for the whole group of ADA-1 species . T he remain-
ng ADAs were less represented in the GTDB database. 

ele v ant genes in the Dolichospermum 

EM_B0920 MAG 

GAP identified 4439 protein-coding genes, 40 tRNAs, and com- 
lete sequences of 5S rRNA (3), 16S rRNA (1), and 23S rRNA

1) in the genome of Dolichospermum FEM_B0920 (Table 2 ). Ex-
luding an uncultured bacterium and besides D. lemmermannii 
EM_CADL9 (Table 4 ), the 16S rRNA gene was 100% identical, with
uery cov er (QC) v alues 97%–99%, to se v er al str ains of D. lem-
ermannii isolated from Lake Garda and other deep lakes south

f the Alps. In addition to D. flos-aquae CCAP 1403/13F (pident
9.26%; Table 4 ), the 23S rRN A gene sho w ed per centage iden-
ity (pident) values > 98.5% (QC 100%) with six Dolichospermum
nd Anabaena taxa included in the Dolichospermum sp000312705 
TDB taxonomy (cf. Table 3 and Fig. 2 ). Comparable results (pi-
ent 98%–100% and QC 100%) were found for the three 5S rRNAs
opies (111–112 bp). Of functional and taxonomic r ele v ance, the
op hit percentage identities of rbcX (assembly chaperone of 
ibulose-bisphosphate carbo xylase/o xygenase, Rubisco) and rpoB 
RNA pol ymer ase B subunit) genes detected in the FEM_B0920
enome corresponded (QC 100%) to Dolichospermum lemmermannii 
IVA-CYA 281/1 (99.5%) and Dolichospermum sp. LBC05a ( Dolichos- 
ermum sp000312705) (99.3%), r espectiv el y. For rpoB , the sequence
dentified in the FEM_B0920 genome was 100% identical to some 
f the shortest sequences (575 bp) obtained by Sanger sequenc-
ng from strains of D. lemmermannii isolated from Lake Garda and
ther European lakes (Salmaso et al. 2015b , Capelli et al. 2017 ).
hese taxonomicall y r ele v ant sequences ar e r eported in Table S2 .

Following the KEGG analysis, the complete and incomplete 
athway modules found in the D. lemmermannii FEM_B0920 MAG 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
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Table 3. Av er a ge Nucleotide Identity (ANI) values between the Dolichospermum lemmermannii FEM_B0920 (GCA_037075685.1) and Dolichos- 
permum genomes from GTDB, calculated using three different ANI formulations (see text). 

ANI b OrthoANIu fastANI GTDB taxonomy NCBI taxonomy Accession 

0.979 0 .979 0 .978 Dolichospermum sp000312705 Anabaena sp. AL09 GCA_001672255.1 
0.977 0 .977 0 .976 Dolichospermum sp000312705 Anabaena sp. LE011-02 GCA_001672225.1 
0.969 0 .968 0 .966 Dolichospermum sp000312705 D. circinale CS-547 GCA_028329755.1 
0.967 0 .965 0 .963 Dolichospermum sp000312705 Dolichospermum sp. UHCC 0260 GCA_009711985.1 
0.967 0 .964 0 .966 Dolichospermum sp000312705 Dolichospermum sp. WA123 GCA_018447775.1 
0.966 0 .964 0 .963 Dolichospermum sp000312705 D. lemmermannii CS-548 GCA_028330815.1 
0.966 0 .965 0 .960 Dolichospermum sp000312705 Dolichospermum sp. UHCC 0299 GCA_009711965.1 
0.966 0 .963 0 .962 Dolichospermum sp000312705 Dolichospermum sp. UHCC 0406 GCA_009712025.1 
0.966 0 .964 0 .962 Dolichospermum sp000312705 D. flos-aquae CCAP 1403/13F GCA_012516395.1 
0.966 0 .965 0 .962 Dolichospermum sp000312705 Dolichospermum sp. DET73 GCA_017355625.1 

Onl y r esults with ANI b v alues ≥ 0.965 wer e included. Descending order of v alues according to ANI b . All the other Dolic hospermum sp000312705 not included in this 
table have ANI b values > 0.960. 
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er e r epr esented by the metabolism of cofactors and vitamins
42), amino acid metabolism (38), carbohydrate metabolism (32),
nd energy metabolism (27), whereas the remaining pathways in-
luded from 1 to 11 modules ( Table S3 A). A number of modules
ontained reactions essential for the central metabolism of photo-
ynthetic c y anobacteria, including oxygenic photosynthesis (pho-
osystems II and I; modules M00161 and M00163), beta-carotene
iosynthesis (M00097), and phycobilisomes (allophycoc y anin and
hycoc y anin/phycoerythroc y anin, but not phycoerythrin; Fig. S4 ),
he r eductiv e pentose phosphate c ycle (Calvin c ycle) (M00165),
he TCA (tricarboxylic acid - Krebs) cycle (M00009) and gl ycol ysis
M00001) ( Table S3 A). 

Specific pathw ays w er e r ele v ant for diazotr ophic blooming
pecies. Besides assimilatory nitrate reduction (M00531, which
ncluded the narB nitrate reductase and nirA nitrite reductase
enes), nitrogen metabolism was sustained by nitrogen fixation
M00175) ( Fig. S5 ). Specifically, the annotation by Bakta revealed
he presence of different nif genes involved in the fixation of at-

ospheric nitrogen (i.e. nifB , D , E , H , J , K , N , S , T , U , V , W , and X ). No
odules associated with dissimilatory nitrate reduction, denitri-

cation, nitrification, and anammox were identified ( Fig. S5 ). 
Se v er al pr otein components of ATP-binding cassette (ABC)

embr ane tr ansporters for a wide range of nutrients, micro-
lements, and organic molecules were identified in the D. lem-
ermannii FEM_B0920 genome ( Fig. S6 ). To support the intracellu-

ar assimilatory N-reduction and N-uptake, genes encoding a ni-
r ate/nitrite tr ansporter wer e pr esent ( nrtABC ), complemented by
mmonium uptake (K03320; amt gene). A bicarbonate transporter
CmpABCD) was part of the carbon-concentrating mechanism
CCM). Other set of genes encoded proteins for the selectiv e tr ans-
ort of molybdate and organic molecules, such as the polyamines
permidine/putr escine, osmopr otectants, oligosacc harides (se v-
ral with incomplete paths), polyols and lipids, and lipopolysac-
harides. Supporting the assimilatory sulfate reduction (M00176),
esides ABC transporters for sulfate/thiosulfate and alkanesul-
onate (as an additional source of S), a gene encoding non-ABC
o w er affinity sulfate transport was detected (K03321, sulfate per-

ease). FEM_B0920 included genes encoding active transporters
or phosphate and organophosphorus compounds (phosphonate),
s well as amino acids and the ric h-N ur ea, CO(NH 2 ) 2 . The Pst
ystem (phosphate ABC transporter; Fig. S6 ) was complemented
y Pho regulon components (PhoHURB; K06217, K02039, K07636,
nd K07657) involved in the regulation of P-uptake. A group of
enes was involved in the synthesis of ABC transporters targeting
r owth elements suc h as, besides mol ybdenum (in the form of
olybdate), zinc, cobalt, and nickel. Though potentially biosyn-
hesized by FEM_B0920 (M00950), specific pr oteins wer e poten-
ially encoded for the transport of biotin (vitamin B 7 ). 

The presence of genes encoding ferrous iron transport proteins
 (FeoA, K04758) and B (FeoB, K04759) were also identified. 
A few enzymes (K04564, K07217, K24157, K24158, K00799,

01920, K00383, and K09825) were identified that encode superox-
de dismutase , catalase , catalase-peroxidase , pero xiredo xins and
ther enzymes involved in the regulation of o xidati ve stress re-
ponse mec hanisms r equir ed for the r emov al of r eactiv e oxygen
pecies (ROS), i.e. superoxide (O 2 

−) and hydrogen peroxide (H 2 O 2 )
roduced as byproducts by photosynthesis. 

The essential role of cofactors and vitamins in various bio-
 hemical r eactions essential for the maintenance of cellular func-
ionality was expressed by the presence of several complete
r nearly complete modules associated with their biosynthesis;
mong others, and in addition to biotin/vitamin B7, vitamins B1
thiamine), B2 (riboflavin), B5 (Pantothenate), B6 (Pyridoxal-P), and
12 (Cobalamin). 

In the KEGG database, specific modules describing the gene
luster involved in the gas vesicle biosynthesis are not present.
ifferent gvp genes in the D. lemmermannii FEM_B0920 genome
 ere ho w ever identified b y specific K-numbers (K23262) and by
akta annotation. 

KEGG annotation of the D. lemmermannii CS_548 genome pro-
uced results that were almost indistinguishable from those ob-
ained with the D. lemmermannii FEM_B0920 annotation ( Tables
3 A–B and Fig. S6 ). 

enes potentially involved in the synthesis of 
ioacti v e peptides 

he antismash analysis allo w ed the detection of distinct sec-
ndary metabolite regions (Table 5 ). These included regions in-
olved in the physiology of heterocytous N-fixing c y anobacteria
heter ocyst gl ycolipids) and in the biosynthesis of GEO ( Table S2 ).
o r egions involv ed in the biosynthesis of the “conventional
 y anotoxins” commonly identified in Lake Garda, such as MCs
nd ATXs (Cerasino and Salmaso 2012 ), were detected. On the
ontr ary, ne w bioactiv e secondary metabolites, some with po-
ential inhibitory/to xic acti vity, belonging to the classes of non-
ibosomal peptides (NRP) and ribosomally produced natural prod-
cts (RiPP) were identified (Table 5 ). The first class included an-
baenopetins, sc ytoc yclamides (laxaphycins) and a mycosporine-
ike compound; varlaxin was detected with very low similarity.
he second class included the anacyclamides. 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
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Figure 1. Phylogenomic tree of Dolichospermum lemmermannii FEM_B0920 together with several Dolichospermum species of the ADA group ( Anabaena , 
Dolichospermum and Aphanizomenon ) available in the Genome Taxonomy Database (GTDB). All genome names, strain identifiers and accession numbers 
are taken from the NCBI taxonomy. Species names are highlighted and grouped in different colors and correspond to the NCBI ( D. lemmermannii ; in 
bold) and GTDB taxonomy ( D. compactum, D. gracile , D. heterosporum , D. planctonicum , D. circinale , and D. flosaquae ) (see legend). The tree was rooted with 
Cuspidothrix issatschenkoi CHARLIE-1 as an outgroup. UFBoot, Ultrafast bootstrap values . T he scale bar indicates the number of substitutions per site. 
Information on the individual assembled genomes is given in Table S1 . 
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Besides antismash, the absence of gene clusters encoding mi- 
crocystins and anatoxins in the FEM_B0920 genome was con- 
firmed by the negative results obtained with ISeqDb searching 
for the presence of anaC , anaF , mcyB , sxtA , and cyrJ . The genes 
mc yD and mc yE w ere detected with tw o short sequences (197 and 

128 bp, pident 95.9% and 99.2%) similar to fr a gments c har acter- 
ized by MITE (miniature inverted–repeat transposable elements) 
insertion (Fewer et al. 2011 ). These short fr a gments wer e also de- 
tected in other Dolichospermum genomes considered in this work. 
Compared to the D. lemmermannii FEM_B0920, the genome of D.
emmermannii CS-548 isolated from Lake Edlandsvatnet, Norway,
ho w ed the presence of microcystin genes . Furthermore , besides
C, the ability of this genus to potentially synthesize ATX, STX,

nd CYN was well documented after the analyses by antismash
 Table S1 ). Some a ppar ent patterns wer e distinguishable , i.e . a
r oad exclusiv e pr esence of genes encoding MC in ADA-2; a broad
xclusiv e pr esence of genes encoding ATX in ADA-3 (and ADA-8,
he outgr oup); the pr esence of genes encoding STX in D. gracile

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
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Figure 2. Phylogenomic tree of Dolichospermum lemmermannii FEM_B0920 and Dolichospermum taxa classified at either genus or species level available in 
the Genome Taxonomy Database (GTDB). All genome names, strain identifiers and accession numbers are from the NCBI taxonomy. For each clade, the 
names in red indicate the classification given by the GTDB taxonomy (excluding the Dolichospermum FEM_B0920 genome, not included in GTDB). ADA 

classifications are indicated by different colour codes; ADA and ADA + refer to the classifications given in Driscoll et al. ( 2018 ) and Dreher et al. ( 2021 ), 
and estimated in this paper based on membership in the same clade, respectively. In ADA-2, the Dolichospermum genomes classified as D. lemmermannii 
in the NCBI taxonomy are highlighted in bold. The tree was rooted with Cuspidothrix issatschenkoi CHARLIE-1 as an outgroup. UFBoot, Ultrafast 
bootstr a p v alues . T he scale bar indicates the number of substitutions per site . Information on the indi vidual assembled genomes is gi ven in Table S1 . 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
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Table 4. Megablast analysis of genes of taxonomic relevance and genes involved in geosmin biosynthesis from Dolichospermum lemmer- 
mannii FEM_B0920. 

Gene 
Q. Len. 

(bp) QC (%) Pident (%) Acc. Len. (bp) 
BLAST hit 
accession NCBI taxonomy Met. 

16S rRNA 1489 99 100 1477 LT671839.1 D. lemmermannii FEM_CADL9 PGAP 
23S rRNA 2832 100 99 .26 genome CP051206.1 D. flos-aquae CCAP 1403/13F 1 PGAP 
rbcX 430 100 99 .53 808 2 Z94883.1 D. lemmermannii NIVA-CYA 281/1 PGAP 
rpoB 3 3339 100 99 .25 genome CP050882.1 Dolichospermum spp. LBC05a 4 PGAP 
Geosmin synthase 2274 99 98 .23 genome CP099464.1 D. heterosporum TAC447 AS 

rbcX , RuBisCO c ha per one RbcX encoding gene; rpoB , RNA pol ymer ase B subunit gene; Q. Len., query length; QC, query cov er a ge; Pident, % identity; Acc. Len., accession 
length; Met., genome mining method: PGAP, NCBI Prokaryotic Genome Annotation Pipeline; AS, antismash. Sequences are reported in Table S2 . 
1 Assembly GCF_012516395.1 (GTDB taxonomy, Dolichospermum sp000312705). 
2 Subject sequence including rbcL and rbcX genes. 
3 blastn, pident 100% and QC 17% to se v er al str ains of D. lemmermannii isolated and analysed (Sanger sequencing) from the large lakes south of the Alps (e.g. 
LN871475.1). 
4 Assembly GCA_017346815.1 (GTDB taxonomy, Dolichospermum sp000312705). 

Table 5. Major secondary metabolites identified by antismash on Dolichospermum lemmermannii FEM_B0920. 

BGC type 
Region 

length (bp) Most similar known cluster Similarity Property 

NRPS 8935 anabaenopeptin/nostamide—NRP 44% Phosphatases and proteases 
inhibition/antimicrobial, cytotoxic 

NRPS 4026 anabaenopeptin—NRP 42% Phosphatases and proteases inhibition 
NRPS 13 791 sc ytoc yclamides—NRP + Polyketide 38% Antifungal acti vity, cytoto xicity 
NRPS 37 118 varlaxin—NRP 9% Aeruginosin-type inhibitors of human trypsins 
Cyanobactin 12 623 anac yclamide—RiPP:Cy anobactin 35% Antibacterial 
Cyanobactin 4478 anac yclamide—RiPP:Cy anobactin 28% Antibacterial 
hglE-KS, T1PKS 32 443 heter ocyst gl ycol ypids 85% Involved in heterocyte glycolipids biosynthesis 
hglE-KS 37 883 heter ocyst gl ycol ypids 57% Involved in heterocyte glycolipids biosynthesis 
Terpene 22 274 geosmin—Terpene 100% Impart earthy/musty taste and odor 
Mycosporine-like 16 006 hexose-palythine-serine/hexose- 

shinorine—NRP 
28% MAAs protection against UV damage 

BGC , biosynthetic gene cluster; NRPS , non-ribosomal peptide synthase; PKS , polyketide synthase; hglE-KS , heter ocyst gl ycolipid synthase-like PKS; RiPP, ribosomally 
synthesized and post-tr anslationall y modified peptide pr oduct. Onl y secondary metabolite r egions showing similarity to a known biosynthetic cluster are shown. 
Similarity indicates the percentage of genes within the closest known compound that has a significant BLAST hit to genes within the current region (Blin et al. 
2023 ). 
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and in one genome in ADA-1; excluding two annotations with 

weak support, exclusive presence of genes encoding CYN in ADA- 
6. Genes encoding anabaenopeptins (APs) wer e pr esent in ADA- 
2 and AD A-3, D . gracile , and all the Dolichospermum sp028658405 
genomes. Genes encoding GEO were well r epr esented in ADA-1 
and ADA-3, and only sporadically in ADA-2. Noteworthy is the ab- 
sence of all analysed genes encoding MC, ATX, STX, CYN, APs, and 

GEO in the genome of. D. flosaquae (ADA-4) and, excluding GEO,
D . planctonicum (AD A-1). In AD A-1, in addition to the detection of 
a genome containing STX genes found by antismash, the analy- 
sis of two D. circinale strains was positive for the biosynthesis of 
STX using analytical methods (Beers 2020 ), while five strains were 
positive for the presence of the gene encoding sxtA ( Table S1 ). 

Metagenomic analyses of the bacterial 
community 

The MetaPhlan analysis classified the 30% of the quality-filtered 

reads as re presentati ve of the surface sample (scum). Cyanobac- 
teria (28.4%) were mainly represented by Dolichospermum (28.1%), 
over the remaining bacterial classes, mainly represented by 
Gamma pr oteobacteria and Alpha pr oteobacteria. Besides Dolic hos- 
permum , the other c y anobacteria w er e detected with r elativ e 
abundances w ell belo w 0.3% and w er e r epr esented b y Microc ys- 
tis aeruginosa , Tyc honema bourrell yi (r eported as Microcoleus bourrell yi 
in the GTDB taxonomy), and picoc y anobacteria ( Synechococcus la- 
ustris and Cyanobium usitatum ; Cabello-Ye v es et al. 2018 ). Exceed-
ngl y r ar e r eads included Dolic hospermum spp., A phanizomenon spp.,
lanktothrix spp., and Cuspidothrix issatschenkoi . 

MAGs r ecov er ed fr om the binning of the contigs included r epr e-
entatives of the classes found by MetaPhlan, mostly belonging to
amma pr oteobacteria and Alpha pr oteobacteria ( Table S4 ). Rep-
 esentativ es of the first group included Acidovorax and Rubrivivax ,
hile the second group included Tagaea , Rhabdaerophilum and Sph-

ngorhabdus . No genes involved in the biosynthesis of cyanotoxins
nd GEO were found in any of the identified bacterial contigs. 

The whole set of raw contigs, including those unbinned and
ot included in any MAGs and those with a length < 1000 bp ex-
luded from the binning procedure were analysed for the pres-
nce of MC, ATX, STX, and CYN, as well as GEO-encoding genes.
or anatoxin-a, anaC and anaF were identified with sequences of
13 and 346 bp, r espectiv el y, showing 100% similarity to the cor-
esponding genes in the anatoxin-a-producing Tychonema bourrel- 
yi B0820 isolated from Lake Garda (Salmaso et al. 2023 ). In ad-
ition to the sequences including the MITE insertion (pr e vious
ection), further fr a gments of mc yB ( ∼200 bp) and mc yE (around
70 bp) were identified in other contigs not included in the MAGs
ith pident 95%–100% to uncultured c y anobacteria and Microc ys-

is . Conv ersel y, no other fr a gments of the sxtA , cyrJ, and geoA genes
ere identified in the entire contig set, except for geoA identified

n Dolichospermum FEM_B0920. 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
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unctional annotation of D. lemmermannii FEM_B0920 by Bakta
nd/or PGAP identified a tetracycline resistance protein, class C,
nd the m ultidrug r esistance pr otein MexB. After pr otein BLAST,
he sequences sho w ed 100% QC and up to 100% and 99.6% sim-
larity to the MFS transporter (Pasqua et al. 2019 ) of several An-
baena/Dolichospermum species and efflux RND transporter perme-
se subunit (Nappier et al. 2020 , Hw engw ere et al. 2022 , Aguiló-
icolau et al. 2023 ), r espectiv el y. KEGG annotation found one or-

holog (K17836) associated with the beta-Lactam resistance (Bush
013 ). No AMR genes were identified by ABRicate in the D. lemmer-
annii FEM_B0920 and in the complete set of ra w contigs , using

he adopted thresholds for minimum identities and co verage . 

iscussion 

he meta genomic anal ysis of a surface sample collected during
 c y anobacterial bloom identified in Lake Garda in late summer
020 allo w ed to confirm the nature of the or ganism r esponsible
or the episode and to functionall y c har acterize the population.
he analyses allo w ed to clarify the phylogenomic position of D.

emmermannii in relation to other species of the same genus and
DA group and to interpret the adaptive ecological traits in re-

ation to the range of primary and secondary metabolites poten-
iall y pr oduced b y the population inv olved in the bloom. 

nvironmental conditions during the bloom 

. lemmermannii blooms in the lake district south of the Alps were
rst recorded in Lake Garda at the turn of the 1980s and 1990s.
r aduall y, blooms also a ppear ed in the other large and dee p lak es
outh of the Alps, namely Lakes Iseo , Como , Ma ggior e, and Lugano
Callieri et al. 2014 , Funari et al. 2014 ). In Lake Garda, the whole set
f microscopic and genetic analyses carried out since the 1990s
onfirmed the presence of a unique Nostocales in the c y anobac-
erial communities involved in the blooms (Salmaso et al. 2015b ,
apelli et al. 2017 ). 

The long-term historical colonization of D. lemmermannii in Lake
ar da w as investigated b y direct counting of subfossil akinetes

dentified from sediment cores and by estimating the nature and
bundance of filaments germinated from subfossil viable akinetes
y light microscope and genetic analyses (Salmaso et al. 2015a ).
he application of this complementary approach allo w ed to iden-
ify the onset of colonization around the mid-1960s, when the
ake sho w ed a shift fr om ultr a-oligotr ophy / oligotr ophy to oligo-

esotrophy (Milan et al. 2015 ). 
The analysis of long-term limnological data collected in Lake

arda since the 1990s showed that D. lemmermannii filaments
l ways de v eloped during the warmest months, with tempera-
ures > 15 ◦C and abundances generally < 40 mm 

3 m 

−3 in the layer
 −20 m. Bloom formation during summer and early autumn was
av oured b y high temper atur es, high water stability and calm
eather (Salmaso et al. 2015b ). Given the extremely low biomass
f Dolichospermum in the epilimnetic layer, blooms were caused
y the r a pid upward movement and accumulation of filaments
o w ar ds the surface, rather than by in situ growth. The develop-

ent of this species during the warmest months coincided with
he periods of minimum availability of dissolved nitrogen concen-
r ations, whic h wer e gener all y < 100–150 μg N L −1 . These condi-
ions were the same as those recorded during the bloom observed
n September 2020. In particular, the low concentrations of SRP
nd TP ( < 5 and < 10 μg P L −1 , r espectiv el y) pr ecluded the de v elop-
ent of high phytoplankton biomasses in the first 20 m, whereas
he low DIN concentrations (below 50 μg N L −1 ) recorded in the
rst 10 m would indicate a state of nitrogen limitation, potentially
av ouring heteroc ytous nitrogen-fixing c y anobacteria (Schindler
t al. 2016 , Maberly et al. 2020 , Chorus and Spijkerman 2021 ). Due
o the low biomass associated with surface blooms and the strong
onstraints imposed by low nutrient concentrations on cyanobac-
erial de v elopment in the e pilimnion, these e pisodes have been
ermed “oligotrophic blooms” (Salmaso et al. 2015b and r efer ences
herein). 

axonomic position within the Dolichospermum 

pecies group 

enomic analyses were performed using Dolichospermum gen-
ra and species classified by the GTDB initiativ e, whic h uses a
tandardized microbial taxonomy based on genome phylogeny,
ith genomes obtained from NCBI RefSeq (Reference Sequence
atabase) and GenBank (Parks et al. 2022 ). The GTDB taxon-
my is based on genome trees inferred from aligned concate-
ated sets of single-copy marker proteins for Bacteria and Ar-
haea and ANI comparisons, while the LPSN (List of Prokaryotic
ames with Standing in Nomenclature) (Parte et al. 2020 ) is used
or nomenclatur al r efer ence and to establish naming priorities
nd nomenclature types. In this respect, the phylogenomic and
NI compar ativ e a ppr oac hes used to define ADA groups (species)
re similar to those used by the GTDB, and the two classifica-
ions provide comparable results in defining clades . T he use of
enomic-based a ppr oac hes is the onl y objectiv e way to disen-
angle a legacy of names adopted by different laboratories to
lassify Nostocales. Consistent with the GTDB a ppr oac h (P arks
t al. 2020 ), there is a convergence of opinion on the possibil-
ty of homogenizing and updating the species names of Nosto-
ales included in the same clades and ADA groups (Österholm
t al. 2020 , Dreher et al. 2021 ). In this direction, the GTDB taxon-
m y re presents an important conceptual and practical step, but
t is open to updates, as species r epr esentativ es ar e r e-e v aluated
ith each GTDB release. At present, the main limitations are due

o the poor r epr esentation in the taxonomic databases (Interna-
ional Nucleotide Sequence Database Collaboration, and GTDB)
f se v er al well-documented genomes of species of Nostocales
and c y anobacteria in gener al), whic h still r epr esents an obsta-
le to the correct determination of species of difficult attribu-
ion (e.g. Woodhouse et al. 2024 ) and to the completion of the
DA taxonomy based on the adoption of genomic criteria. In
ddition, most genomes were obtained from only a few coun-
ries , which ma y ha v e intr oduced a geogr a phical bias into the r e-
ults of the taxonomic and annotation analyses. For example, al-
hough well c har acterized, the ADA-4 clade, whic h included se v-
ral species of Aphanizomenon flos-aquae Ralfs ex Bornet and Fla-
ault, was reclassified under the name Dolichospermum flosaquae

n the GTDB taxonomy. At the same time, the available Dolichos-
ermum flos-aquae genomes in the NCBI database were included,
ccording to the genomic criteria, in three different clades (i.e.
olichospermum sp000312705/AD A-2, D . heterosporum /AD A-3 and D .
lanctonicum /ADA-1). These two species are validly published ac-
ording to the International Code of Botanical Nomenclature ,
av e differ ent mor phologies (Komár ek 2013 ) and ar e ca pable of
r oducing a differ ent r ange of toxins (Bernard et al. 2017 ). Further-
ore, the ADA7 at the extreme end of the tree (Fig. 2 ) is composed

f two benthic strains originating from the br ac kish waters of the
altic Sea, questioning their inclusion in the genus Dolichospermum

see Österholm et al. 2020 ). Clarification of the taxonomic posi-
ion of Dolichospermum within this classification scheme requires
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better cov er a ge of the constituent genomes. Similar consider- 
ations a ppl y to the other groups in the tree, including the 
ADA-1 clade, which, as already suggested by Driscoll et al.
( 2018 ) and Dreher et al. ( 2021 ), could be split into two distinct 
species/subspecies, consistent with the discrimination of the two 
sets of genomes originally classified under D. planctonicum and D.
circinale (Komárek 2013 ). 

The two D. lemmermannii genome assemblies classified in the 
NCBI taxonomy (FEM_B0920 and CS-548) sho w ed high genomic 
similarity (ANI b > 0.96) with a large group of Dolichospermum 

and Anabaena species, which are collectively grouped within the 
Dolichospermum sp000312705 taxon defined in the GTDB taxonomy 
and within the ADA-2 gr oup. Ov er all, the r esults would suggest a 
relationship between the taxa r epr esented in this group and D.
lemmermannii . 

Functional annotation 

The two photosystems and their associated reactions, the reduc- 
tive pentose phosphate cycle, the TCA cycle and gl ycol ysis may be 
considered the major core pathways that characterize c y anobac- 
terial metabolism. Other more specific metabolic pathways are 
differ entiall y pr esent in c y anobacteria and closely associated with 

selectiv e tr aits that pr omote c y anobacterial gro wth and bloom 

formation (Cao et al. 2020 ). In this regard, in the FEM_B0920 MA G ,
specific traits were associated with phenological and physiologi- 
cal c har acteristics of bloom-forming Nostocales. 

Related to photosynthetic processes, the presence of genes en- 
coding phycoc y anin and allophycoc y anin, whic h absorb far-r ed 

and r ed-or ange light, is consistent with the de v elopment of the 
D. lemmermannii population in the surface epilimnetic waters of 
Lake Garda (Salmaso et al. 2015b ). Phycoerythrin is mostly found 

in species that use the green-y ello w region of the spectrum in low- 
light deeper waters and in species forming metalimnetic layers 
(Knapp et al. 2021 ). 

Carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur are 
the six bulk macronutrients (CHNOPS) sustaining life (Fagerbakke 
et al. 1996 , Remick and Helmann 2023 ). Among the CHNOPS ele- 
ments, N and P are often present at low environmental concentra- 
tions and r equir e tar geted cellular transporters for their uptake 
(Reynolds 2006 , Yang et al. 2022 ). Similarly, under high photosyn- 
thetic activity and high pH conditions, CO 2 and HCO 3 

− decrease 
in favour of CO 3 

2 −, which is not directly utilized by microalgae,
leading to C-limited conditions (Stumm and Morgan 1996 , Wetzel 
2001 ). 

The presence of nitrogen fixation genes in the FEM_B0920 
genome suggested the potential ability of the D. lemmermannii pop- 
ulation to fix atmospheric nitrogen. Although the current practice 
for computational prediction of N fixation is based on the pres- 
ence of the nifH and/or nifD genes (Dos Santos et al. 2012 ), it was 
suggested that the presence of a minimum set of six genes en- 
coding structural and biosynthetic components , i.e . NifHDK and 

NifENB, should be verified, as in the FEM_B0920 MA G . At the ultra- 
structur al le v el, the potential for N-fixation was confirmed by the 
identification of the complex of genes encoding heterocyte glycol- 
ipids (Garg and Maldener 2021 , Pérez Gallego et al. 2023 ). The pres- 
ence of heterocytes in the filaments of Dolic hospermum observ ed 

in Lake Garda is quite common, see, e.g. Fig. S3 in Salmaso et al.
( 2015b ), but their quantitative estimation was never performed in 

the sample collected in this or pr e vious blooms. Giv en the evolu- 
tionary establishment and success of nitrogen fixation in bacteria,
the physiological and competitive benefits are likely to outweigh 

the ener getic costs. Ne v ertheless, while experimental measur e- 
ents have assessed quantifiable rates of N-fixation in se v er al
akes at different levels of environmental nitrogen (Natwora and 

heik 2021 , Marcarelli et al. 2022 , Ehrenfels et al. 2023 ) and nitro-
en and CO 2 concentrations (Kramer et al. 2024 ), no experimental
vidence has been collected by performing nitrogen fixation as- 
ays in Lake Garda. On the other hand, in addition to exogenous
nor ganic (nitr ate, nitrite and ammonium) tr ansporters, the abil-
ty for or ganic nitr ogen uptake was identified in the FEM_B0920

A G , suggesting the potential scavenging of additional sources
f N compounds during the nutrient-poor summer period. Var- 
ous types of amino acids, ur ea, putr escine and spermidine are
ommon organic nutrient sources produced by the planktic com- 
unity that can be used by microorganisms as a source of car-

on and nitrogen. The elevated dissolved organic nitrogen levels 
bserved in Lake Superior during the blooms of D. lemmerman- 
ii , coupled with a decrease in nitrate, indicated that nitrogen
pecies conversion and cycling may have played a significant role
n maintaining the blooming population (Sterner et al. 2020 , Sheik
t al. 2022 ). In Lake Gar da, due to the typically lo w epilimnetic mi-
roalgal biomass observed during the summer months, the con- 
ribution of the external organic nutrient sources remains to be
uantified. 

The presence of genes for the potential acti ve uptak e of P and
icarbonates is similarly indicative of adaptations to low-nutrient 
onditions during the summer months and blooms. In bacteria,
he synthesis of the Pst phosphate transport system is promoted
nder low P-concentrations, as demonstrated in Nostoc punctiforme 
ariot under P-starvation conditions (Hudek et al. 2016 ). The Pho
 egulon is r esponsible for sensing envir onmental phosphate le v-
ls and is ther efor e critical in r egulating ada ptiv e r esponses to P
imitation, particularl y giv en its activity under low-P conditions
Santos-Beneit 2015 , Zhang et al. 2024 ). Additional sources of P
ould potentially be provided by the uptake of organophosphorus 
ompounds , e .g. phosphonates (Xiao et al. 2022 ), although known
enes involved in subsequent mineralization after uptake (such 

s CP lyase; phnJ , K06163) were not identified in the FEM_B0920
A G . As only a few c y anobacterial species possess genes encoding
-P lyase, the mineralization of phosphonate by the phycosphere 
ommunity was described as an additional mechanism enabling 
rganic phosphorus scavenging (Zhao et al. 2023 ). 

Fiv e differ ent inor ganic carbon uptake systems hav e been iden-
ified in different model c y anobacteria (Hagemann et al. 2021 ).
he cmpABCD cluster in the FEM_B0920 MAG encodes an ATP-
inding cassette tr ansporter involv ed in HCO 3 

− uptake (Maeda et
l. 2000 , Koropatkin et al. 2007 ). This operon is part of the CCMs
n c y anobacteria, potentiall y mitigating the decr ease in CO 2 when
H is pr ogr essiv el y higher than 8. Inorganic carbon transporters
llow high le v els of HCO 3 

− to accumulate inside cells, especially
hen free CO 2 is very low, and the cells are mainly consuming
icarbonate from the medium. When accumulated into the cell,
icarbonate penetrates into carboxysomes, where it is dehydrated 

o CO 2 in proximity to RubisCO (Burnap et al. 2015 ). 
Sulfur is an essential component of the amino acids cysteine

nd methionine and an essential constituent of se v er al cellular
ofactors (Scott et al. 2007 ). Sulfur limitation reduces c y anobacte-
ial growth, alters the cellular ultrastructure and exerts inhibitory 
ffects on photosynthesis (Kharwar et al. 2021 ). In addition to sul-
ate, the uptake of organosulfur compounds like alkanesulfonates 
s an additional or alternative sulfur source. Once inside the cell,
he sulfonate group is converted to inorganic sulfate or sulfite by
pecific enzymes such as alkanesulfonate monooxygenase ( ssuD ; 
04091) in the FEM_B0920 genome. Induction of high-affinity 
ulfate transporters is only activated under sulfate deficiency 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae117#supplementary-data
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Kharw ar et al. 2021 , Kharw ar and Mishra 2024 ). Accor ding to
e ynolds ( 2006 ), unlik e C, N and P, sulphur is usually in excess
 elativ e to phytoplankton r equir ements, and sulfate normall y sat-
rates the S-uptake of algae down to concentrations of 4.8 mg
O 4 

2 −. In Aphanothece ( Anacystis ) nidulans P. Richter, Utkilen et al.
 1976 ) and Green and Grossman ( 1988 ) reported half-saturation
onstants for sulfate uptake of 0.75 and 1.35 μM, indicating that,
or this species, the transport of SO 4 

2 − could be limited at low con-
entrations down to ca. 0.1 mg L −1 . 

Along with the presence of several transporters targeting
r owth micr oelements, the pr esence of se v er al complete or nearl y
omplete modules associated with the biosynthesis of cofactors
nd vitamins r epr esented a crucial factor in ensuring a wide range
f metabolic processes in a wide range of changing environmental
onditions (Romine et al. 2017 , Żyma ́nczyk-Duda et al. 2022 , Shah
t al. 2024 ). 

The surface bloom of D. lemmermannii was controlled by the
iosynthesis of gas v esicles, whic h is mediated by se v er al gvp
enes (Walsby 1994 , D’Alelio et al. 2011 , Hill and Salmond 2020 ),
ome of which have been identified in the FEM_B0920 genome. Un-
er calm conditions and with a high rate of gas vesicle formation,
. lemmermannii filaments can r eac h upw ar d v ertical v elocities of
p to 0.7–0.9 m h 

−1 (Walsby et al. 1991 ), thus explaining the sud-
en formation of scums. Under these conditions, with high solar
 adiation and O 2 av ailability, high pr oduction of ROS can se v er el y
amage the functionality of cells (He and Häder 2002 ), making the
 emov al of ROS via enzymatic reaction a k e y mitigating selective
actor. 

MR 

he absence of ARGs in the Dolichospermum bloom may be related
o the oligotrophic status of the lake. In the same lake district,
i Cesare et al. ( 2024 ) reported extremely low concentrations of
ntibiotics and other pharmaceuticals in the oligotrophic Lake
a ggior e . T he presence of ARGs in the Dolichospermum genome, as

ndicated by Bakta or KEGG, would r equir e further analysis, con-
idering a larger number of samples to be e v aluated. This is par-
icularl y r ele v ant as a study of 862 high-quality c y anobacterial
enomes r e v ealed a high div ersity of ARGs, especiall y in Nosto-
ales, which had the highest number of species with ARGs (67 out
f 301) (Timms et al. 2023 ). 

onventional and emerging secondary 

etabolites 

he absence of gene clusters or single genes encoding MCs and
TX in the D. lemmermannii population that caused the Lake Garda
loom in 2020 fully confirmed pr e vious studies carried out on sev-
r al str ains isolated fr om Lake Garda and other large lakes south
f the Alps (Salmaso et al. 2015b , Capelli et al. 2017 , Cerasino et
l. 2017 ). The FEM_B0920 genome contained short fr a gments of
c yD and mc yE with a MITE insertion (Fewer et al. 2011 ); their
resence could indicate inactivation of the mcy gene cluster by
enetic r earr angement, but pr oper anal ysis of this topic would r e-
uire dedicated and complete analyses of a re presentati ve n um-
er of genomes. 

The low concentrations of ATX detected in the bloom of D. lem-
ermannii in Lake Gar da w er e pr esumabl y pr oduced by T. bourrel-

 yi , whic h until now was the onl y ATX pr oducer isolated in Lake
arda (Shams et al. 2015 , Cerasino and Salmaso 2020 , Salmaso et
l. 2023 ). This was confirmed by the identification of anaC and anaF
equences in the complete set of contigs, with 100% similarity to
yc honema bourrell yi . 
Se v er al gene r egions potentiall y involv ed in the biosynthesis of
econdary metabolites have been identified in the D. lemmermannii
EM_B0920 genome. GEO is a w ell-kno wn terpene volatile com-
ound produced by a wide range of bacteria and c y anobacteria

n terrestrial and aquatic environments giving soil and water an
arthy odour. Although not toxic to humans via drinking water at
nvir onmentall y r ele v ant concentr ations, GEO can lead to a loss of
onsumer confidence in water quality (Akcaalan et al. 2022 , Man-
anelli et al. 2023 ). In this work, GEO encoding genes were detected
n ADA-1 and ADA-3, and partly in ADA-2. 

Some NRPs can be classified as emer ging c hemical contami-
ants , i.e . compounds that are not generally monitored and not
ubject to regulation, but which have the potential to have ad-
erse effects on human health and ecosystems (Parida et al. 2021 ,
orin-Crini et al. 2022 ). Among these, anabaenopetins are a fam-

ly of cyclic hexapeptides that have been identified in a large num-
er of c y anobacteria (Sterner et al. 2020 , Monteiro et al. 2021 ,
reher et al. 2023 , Zastepa et al. 2023 ). Congeners of APs have
een shown to have inhibitory activity against phosphatases and
roteases, but their potential effects on human health remain
o be e v aluated (Gkelis et al. 2015 , Monteiro et al. 2021 ). Among
RPs, sc ytoc yclamides are laxaphycins discovered in Scytonema
ofmannii (Heinilä et al. 2020 ). Sc ytoc yclamides and laxaphycins
ave shown significant antifungal activity, usually coupled with
ytoto xic acti vity (Fewer et al. 2021 ), as well as toxicity against
he crustacean Thamnocephalus platyurus (Darcel et al. 2021 ). Var-
axin is a new NRPS aeruginosin-type inhibitor of human trypsins
Heinilä et al. 2022 ). A congener of this metabolite sho w ed inhi-
ition of human prometastatic trypsin-3, making varlaxin a po-
ential lead molecule for drug de v elopment (Heinilä et al. 2022 ).
his BGC sho w ed a br oad pr esence in the Dolic hospermum genomes

data not shown), although it was detected in strain FEM_B0920
ith a very low similarity value. 
Among RiPPs, c y anobactins ma y be in volved in the competition

etween strains or act as antimicrobial agents against bacteria
Nowruzi and Porzani 2021 ). Mycosporine-like amino acids (MAAs)
r e pr oduced by a v ariety of or ganisms to pr otect a gainst ultr avio-
et (UV) damage (Chen et al. 2021 ). Although still contr ov ersial (Hu
t al. 2015 ), the presence of MAAs was related to the protection
 gainst UV r adiation during high solar irr adiances (D’Agostino
t al. 2016 , Yang et al. 2018 , Geraldes et al. 2020 , Jacinavicius et
l. 2021 ), such as those experienced during blooms (Zhang et al.
022 ). 

yanotoxins and other encoding genes in 

olichospermum species 

he distribution of genes encoding c y anotoxins, APs and GEOs
ho w ed a w ell-distinguishable pattern in each ADA clade, sug-
esting a substantial relationship between genome identities
ithin an individual species and the biosynthesis of these sec-
ndary metabolites . T his is in a gr eement with the r esults of
sterholm et al. ( 2020 ). Genes or gene clusters encoding STX
nd CYN in Dolichospermum were investigated by Ledreux et
l. ( 2010 ), D’Agostino et al. ( 2020 ), and Halary et al. ( 2023 ),
nd by Dreher et al. ( 2022 ), respectively, while genes encod-
ng ATX were also investigated by Wood et al. ( 2007 ) and
antala-Ylinen et al. ( 2011 ). Studies on MC-producing strains

ncluded, among others, Rouhiainen et al. ( 2004 ) and Dreher
t al. ( 2019 ). 

The ability to potentially synthesize specific c y anotoxins in spe-
ific phylogenomic clades has important implications for the ex-
ected impacts and potential risks associated with the de v elop-
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ment of ADA species. Ne v ertheless, the v ery limited geogr a phi- 
cal areas of origin of the genomes (in particular AD A-1/ D . circinale ,
AD A-4 and AD A-6) and/or the under-r epr esentation of genomes in 

some ADA groups could introduce a bias in the re presentati veness 
of the results. 

Obtaining reliable information on the potential of microor- 
ganisms to synthesize active biomolecules using genome mining 
tec hniques r equir es anal yses to be performed on genomes that 
are as complete and uncontaminated as possible. When applied 

to fr a gmented or poor-quality genome assemblies, genome an- 
notation tools can produce inconstant results (Skinnider et al.
2020 ). In this respect, while genome mining may provide a re- 
markable screening tool and an essential guide to assess the 
potential of specific c y anobacterial populations to synthesize a 
range of harmful compounds, a complete risk assessment proce- 
dure should always consider the inclusion of chemical analytical 
techniques. 

From genes to functions: extending the 

char acteriza tion of functional traits and 

competiti v e adaptations 

The analysis of the genetic c har acteristics of c y anobacteria al- 
lows accessing explicit information on general metabolic path- 
ways and specific ada ptiv e and competitiv e physiological ca pa- 
bilities proper of particular groups or species/strains morpholog- 
ically similar or undistinguishable but with different genetic and 

functional c har acteristics. Fr om an ecological point of vie w, this 
r epr esents a considerable step able to integrate and substantially 
widen the functional c har acterization of c y anobacteria and phy- 
toplankton based on structural morphometric and morphological 
traits like, among others, cell size and sha pe, arr angement of cells,
pr esence of m ucila ge and gas v esicles (B-Bér es et al. 2024 ). Besides 
common functional traits represented by the central metabolism 

of photosynthetic c y anobacteria, a fe w distinctiv e and ada ptiv e 
traits contributed to defining the factors promoting algal blooms 
in oligotrophic en vironments , including the presence of several 
high- and low-affinity transporters for macr o-, micr onutrients,
and organic compounds; the possession of a gene pool for nitro- 
gen fixation; the ability to control vertical position; adaptations to 
r emov e r eactiv e oxygen species produced during photosynthesis; 
the ability to produce MAAs involved in UV protection of cells ex- 
posed to high irradiances. All these traits delineate the set of com- 
petitive functions that D. lemmermannii can potentially express in 

oligotrophic lakes. 

Conclusions 

Cyanobacterial blooms pose a potential risk to human and envi- 
ronmental health and function. A reliable assessment of the risks 
associated with massive population development or physical 
accumulation of potentially toxigenic c y anobacteria requires 
a compr ehensiv e assessment of the gene pool r esponsible for 
c y anotoxin production and metabolomic profiling. Ho w ever,
tar geted anal ysis of individual c y anotoxins r equir es specific,
separ ate labor atory pr otocols for both pol ymer ase c hain r eaction 

and later Sanger sequencing, as well as individual metabolite 
c har acterization. In addition to being time-consuming and costly,
this a ppr oac h is gener all y dir ected to w ar ds the analysis of con- 
ventional c y anotoxins, without taking into account the high 

metabolomic diversity of c y anobacteria and thus ignoring other 
bioactive molecules and potential sources of risk. In this context,
the determination of the draft genomes of the c y anobacterial 
nd bacterial consortium provides rapid indications of both the 
axonomic nature of the populations living in aquatic ecosystems 
nd their functional profile, with a compr ehensiv e anal ysis r e-
uiring a unique HTS run combined with bioinformatic analyses.
he application of this approach to a D. lemmermannii bloom in
ake Garda allowed to e v aluate the taxonomic position of this
pecies within the GTDB and ADA classification schemes, iden- 
ifying a clear cluster including D. lemmermannii within ADA-2,
ut with still many uncertainties in the definition of the whole
DA classification system due to many gaps in the coverage of
pecies genomes in NCBI and GTDB. Genome mining allo w ed the
iscovery of a number of genes encoding specialized functions 
 ele v ant to bloom-forming heterocytous Nostocales and a set
f secondary metabolites pr e viousl y unknown in populations of
his species de v eloping in the southern Alpine lake district. In
ddition to their taxonomic and ecological r ele v ance, the r esults
av e mana gement implications by c hallenging the completeness
f analyses obtained using con ventional approaches . In this
ontext and considering that the functional analyses of genomes 
rovide information on the presence and potential expression 

f genes, the results obtained should also be considered as an
ssential guideline to better address analytical efforts in the 
 hemical anal ytical determination of metabolites of interest for
otential effects on human health and the c har acterization of
ompounds of pharmaceutical interest. 
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