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Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene
therapy trials are in progress to address the urgent unmet need for this patient population. We performed a
comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August
2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodys-
trophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-
linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2
gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy
trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight
disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy
delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use
of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to
clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model
studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies
include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonu-
cleotide approaches. We outline adverse events associated with each modality focusing specifically on genotox-
icity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis
and immune responses. The data presented in this review show that gene therapy, while promising, requires
systematic monitoring to account for the precarious disease biology and the adverse events associated with new
technology.

Introduction manifestations can be highly variable even for patients with the same
leukodystrophy, disease severity is often inversely correlated with age at

Leukodystrophies are heritable, progressive disorders that predomi- disease onset. The most severe forms present in infancy with rapid pro-

nantly affect the white matter of the central nervous system (CNS). As a
group, the overall incidence is one in approximately 7600 live births [1].
All leukodystrophies affect myelin, the insulation around nerves that
enables rapid communication between neurons. Pathologic processes
destroy existing myelin (demyelination), trigger abnormal myelin
deposition (dysmyelination), or prevent myelin deposition (hypomyeli-
nation) in the CNS and/or peripheral nervous system (PNS) during
development [2]. Currently, more than 50 disorders are classified as
leukodystrophies, and this number continues to grow. Mortality is 34%
with an average age at death of 8.2 years [1]. While clinical
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gression to neurologic devastation and death.

Treatment approaches vary based on pathogenesis, but most fall into
one of four categories: 1) enzyme replacement therapies replace the
missing or defective enzyme; 2) substrate reduction therapies reduce the
buildup of the (often toxic) compound that cannot be adequately
metabolized; 3) cell therapies replace diseased cells with healthy allo-
geneic cells or corrected autologous cells; 4) gene therapies functionally
replace the missing or defective gene. In this review, we focus on gene
therapies that have reached clinical trials as we aim to understand studies
needed to enable leukodystrophy trial readiness. Prior leukodystrophy

Received 11 June 2024; Received in revised form 22 August 2024; Accepted 22 August 2024
1878-7479/© 2024 Published by Elsevier Inc. on behalf of American Society for Experimental NeuroTherapeutics. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:feichler@mgb.org
www.sciencedirect.com/science/journal/18787479
www.sciencedirect.com/journal/neurotherapeutics
https://doi.org/10.1016/j.neurot.2024.e00443
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neurot.2024.e00443

J. Metovic et al.

reviews focus on cellular mechanisms [3] and available clinical trials [4].
Here, we present an updated and comprehensive review of all gene
therapy clinical trials for leukodystrophy patients in the context of
disease-specific pathophysiology and preclinical studies.

Classification and cellular mechanisms underlying the pathogenesis of
leukodystrophies

The definition of leukodystrophies has evolved significantly with ad-
vances in next generation sequencing, magnetic resonance imaging (MRI),
and molecular biology techniques that together have informed a more
nuanced understanding of pathophysiology [3,5,6]. In 2017, van der
Knaap and Bugiani [2] proposed a new classification system that grouped
leukodystrophies into five categories related to pathologic changes and
pathogenic mechanisms (Fig. 1, Table 1). Myelinopathies arise from de-
fects in oligodendrocytes or myelin structure. They are further sub-
categorized as disorders of hypomyelination, demyelination, and myelin
vacuolization which disrupts myelin integrity. Leuko-axonopathies stem
from defects in neurons and their axonal processes. Astrocytopathies and
microgliopathies  disrupt neuroinflammation and CNS repair.
Leuko-vasculopathies develop from pathologic processes within the small
blood vessels of the brain [2]. Some pathologically relevant CNS cell types,
such as microglia, can derive from hematopoietic stem cell precursors with
important implications for therapeutic development.

Pathogenic mutations in leukodystrophy genes affect integral cellular
functions involved in recycling (peroxisomal and lysosomal metabolism),
energy production (mitochondrial electron transport), structural integrity
(of myelin, cytoskeleton, extracellular matrix, blood brain barrier (BBB),
etc.), and protein synthesis (messenger ribonucleic acid (mRNA) tran-
scription and translation), among others. Understanding these pathogenic
mechanisms (Fig. 2) is critical in designing successful gene therapies.

Therapeutic modalities for gene delivery

The therapeutic efficacy of gene therapies relies heavily on the
efficient delivery of nucleic acid to the nucleus. Viral-mediated gene
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delivery is predominantly used in clinical trials today for its high effi-
ciency and relative safety. The delivery route also impacts therapeutic
efficacy and differs for different leukodystrophies and target cell types.
In CNS targeting, the need to traverse the BBB is a fundamental
obstacle. In the healthy CNS, astrocytes, pericytes, endothelial cells,
and other cell types contributing to BBB structural integrity work
together to create a controlled and dynamic microenvironment that
maintains BBB integrity and CNS homeostasis [7]. While the integrity
of a healthy BBB can impede delivery of gene therapy, pathologic
neuroinflammation can disrupt the BBB and alter the pharmacokinetics
of viral vector penetration of the CNS [8]. For most CNS disorders
(Table 2), common routes of delivery for CNS-targeted gene therapies
include ex vivo delivery to hematopoietic stem cells (HSCs) [9] and in
vivo delivery directly to the CNS [10] through intravenous (IV), intra-
cerebral (IC), and/or intrathecal (IT) injections. In the following sec-
tion, we discuss the different modalities of gene therapy in greater
detail.

Ex vivo hematopoietic stem cell-directed gene therapy

Ex vivo HSC-directed gene therapy provides gene replacement to
peripherally mobilized HSCs, after which the corrected cells are returned
to the patient through autologous hematopoietic stem cell trans-
plantation (HSCT) (Fig. 3, left panel). Recombinant lentiviral (LV) vec-
tors have undergone multiple generations of engineering to enhance
safety and efficiency of HSC-directed gene delivery [11] and they are the
viral vector of choice for ex vivo HSC-directed gene therapy.

Much of the data supporting HSC-directed ex vivo gene therapy derive
from allogeneic HSCT in the forms of bone marrow transplantation and
umbilical cord blood transplantation (UCBT). Over the last few decades,
allogeneic HSCT has become the standard of care for many leukodystro-
phies [12-21]. It effectively provides gene replacement in the CNS by
engrafting donor-derived monocytes as healthy microglia-like cells in the
CNS to correct pathologic neuroinflammation mediated by diseased
microglia [22,23]. This therapeutically targets CNS disease through the
more easily accessible hematopoietic system. For leukodystrophies suc-
cessfully treated with allogeneic HSCT, there is strong support for ex vivo
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Fig. 1. A classification system for leukodystrophies based on cellular mechanisms and pathophysiology, adapted from van der Knaap and Bugiani [2]. This is not a

comprehensive list of the leukodystrophies.
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Table 1
List of common leukodystrophies, their associated genes, inheritance, and pathophysiology.
Disease Gene affected/cell Inheritance  Gain or Loss Pathophysiology Predominant cell
type of Function type(s) affected
MYELIN DISORDERS
Demyelination
X-linked adrenoleukodystrophy ABCD1 XLR LOF Impaired transport of very long chain fatty ~ Oligodendrocytes,
acids into the peroxisome neurons
Metachromatic leukodystrophy ARSA AR LOF Impaired lysosomal sulfatide metabolism Oligodendrocytes,
microglia
Globoid cell leukodystrophy GALC AR LOF Impaired metabolism of Oligodendrocytes
galactosylsphingosine in the lysosome
Cerebrotendinous xanthomatosis CYP27A1 AR LOF Impaired cholesterol metabolism Oligodendrocytes
Hypomyelination
Pelizaeus Merzbacher disease PLP1 XLD GOF Accumulation of mutant PLP1 in the Oligodendrocytes
endoplasmic reticulum
Pelizaeus Merzbacher like-disease GJc2 AR LOF Impaired gap junction formation and cell-  Oligodendrocytes,
cell communication astrocytes
Myelin vacuolization
Canavan disease ASPA AR LOF Impaired lysosomal metabolism of N- Oligodendrocytes
acetylaspartic acid
Cx32-related Charcot-Marie-Tooth disease GJBI XLR LOF Impaired stabilization of myelin structure,  Oligodendrocytes
impaired calcium signaling
ASTROCYTOPATHIES
Alexander disease GFAP AD GOF Toxic accumulation of mutant GFAP, Astrocytes
impaired intermediate filament formation
Megalencephalic leukoencephalopathy with MILC1 AR LOF Abnormalities of cell junctions, impaired Astrocytes
subcortical cysts HEPACAM AR/AD astrocyte-astrocyte communication
Vanishing white matter disease EIF2B1; EIF2B2; AR LOF Abnormal messenger RNA translation, Astrocytes,
EIF2B3; EIF2B4; impaired cellular stress response oligodendrocytes
EIF2B5
Aicardi-Goutieres syndrome ADAR AR/AD LOF Abnormal nucleic acid metabolism Astrocytes,
RNASEH2A AR LOF OR abnormal immune system activation oligodendrocytes
RNASEHZ2B AR LOF
RNASEH2C AR LOF
SAMHD1 AR LOF
ATREX1 AR/AD LOF
IFIH1 AD LOF
Oculodentodigital dysplasia GJA1 AD/AR LOF Abnormal connexin 43 structure, Astrocytes,
irreversible gap junction closure oligodendrocytes
LEUKOAXONOPATHIES
TUBB4A-related leukodystrophy TUBB4A AD GOF Impaired formation and stability of Neurons,
microtubules oligodendrocytes
Hypomyelination with congenital cataract FAM126A AR LOF Abnormal myelin synthesis Neurons
Gangliosidosis GM1 GLB1 AR LOF Impaired lysosomal metabolism of Neurons,
gangliosides oligodendrocytes
Gangliosidosis GM2 HEXA AR LOF Impaired lysosomal metabolism of Neurons
HEXB AR gangliosides
Pol-III related disorders POLR3A AR LOF Impaired assembly and function of RNA Neurons,
POLR3B AR polymerase III oligodendrocytes
Hypomyelination with brainstem and spinal cord ~ DARSI AR LOF Impaired aspartyl-tRNA synthetase Neurons
involvement and leg spasticity function
Leukoencephalopathy with brainstem and spinal DARS2 AR LOF Impaired aspartyl-tRNA synthetase Neurons, astrocytes
cord involvement and lactate elevation function in mitochondria
Giant axonal neuropathy GAN AR LOF Impaired ubiquitin-proteosome function, Neurons
impaired neurofilament degradation
MICROGLIOPATHIES
CSF1R-related leukoencephalopathy CSFIR AD LOF (HIS) Impaired auto-phosphorylation of CSF1R Microglia
AR LOF tyrosine kinase and microglial function
Polycystic lipomembranous osteodysplasia with TYROBP AR LOF Abnormal microglial and osteoclast Microglia
sclerosing leukoencephalopathy (Nasu-Hakola TREM2 AR LOF activation
disease)
VASCULOPATHIES
Cerebral autosomal dominant arteriopathy with NOTCH3 AD GOF Impaired function and survival of vascular ~ Vascular smooth
subcortical infarcts and leukoencephalopathy smooth muscle cells muscle cells
Cerebral autosomal recessive arteriopathy with HTRA1 AR LOF Abnormal TGFf signaling, abnormal Vascular smooth
subcortical infarcts and leukoencephalopathy angiogenesis muscle cells

Abbreviations: AD: autosomal dominant; AR: autosomal recessive; GOF: gain of function; HIS: haploinsufficiency; LOF: loss of function; XLD: X-linked dominant; XLR: X-

linked recessive.

HSC-directed gene therapy approaches even when animal disease models
do not exist.

Unlike allogeneic HSCT, ex vivo LV-mediated gene therapy drives
supraphysiologic gene expression in transduced autologous HSCs and
their progeny. For some leukodystrophies, supraphysiologic gene
expression can enhance the therapeutic efficacy of HSCT [24], but for

others, supraphysiologic gene expression may have unforeseen cytotoxic
effects that preclude its clinical use [25,26]. For leukodystrophies that
fall into the former category, ex vivo HSC-directed gene therapy can
replace allogeneic HSCT and eliminate two critical disadvantages
inherent to allogeneic HSCT: the search for a compatible donor and the
complications associated with chronic immunosuppression.
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Fig. 2. Molecular and cellular mechanisms disrupted by leukodystrophy pathophysiology in the setting of the brain tissue microenvironment. Abbreviations: 4H:
Hypomyelination with hypogonadotropic hypogonadism and hypodontia or POL-III related disorders; X-ALD: X-linked adrenoleukodystrophy; GLD: Globoid cell
leukodystrophy; MLD: Metachromatic leukodystrophy; TSD: Tay-Sachs disease; SD: Sandhoff disease; ADLD: Autosomal dominant leukodystrophy; CD: Canavan
disease; ALSP: Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (CSF1R-related leukoencephalopathy); PMD: Pelizaeus-Merzbacher dis-
ease; AxD: Alexander disease; CADASIL: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

Although LV-mediated gene delivery is a powerful tool, there are
important limitations and drawbacks to consider. The most important
limitation is genomic integration of LV vectors [27]. While stable inte-
gration allows for long-term gene expression, integration-related inser-
tional mutagenesis at cancer-associated loci can have significant
oncogenic potential [28], especially at high transduction efficiencies that
result in high vector copy number per transduced cell.

Another major limitation is the nine kilobase (kb) packaging size of
LV vectors. Although this enables packaging of larger genes, it also limits
diffusivity in the extracellular matrix and reduces CNS biodistribution
with in vivo delivery. This is especially limiting in larger animal models
and humans [29]. While some preclinical studies show increased CNS
distribution with targeted LV envelope engineering [30], these vectors
have not yet reached clinical trials. Thus, LVs are predominantly used for
ex vivo delivery, enabling a cell-based gene therapy product for the
leukodystrophies.

In vivo central nervous system-directed gene therapy

CNS-directed in vivo gene therapy targets primary CNS disorders by
directly transducing neurons and other CNS cell types (Fig. 3, middle
panel). The overwhelming majority of CNS-directed in vivo gene de-
livery is mediated by recombinant adeno-associated virus (AAV) vec-
tors. AAV is a single-stranded DNA parvovirus with a diverse array of
naturally occurring and engineered serotypes. By pairing the AAV2
genome with capsids from different serotypes, it is possible to greatly
enhance CNS transduction by targeting neurons (AAV9 [31-34],
AAVrh.10 [35,36]) and oligodendrocytes (AAV-Olig001 [37],
AAVhu68 [38]). Other important CNS-specific AAV capsid features
include: 1) BBB penetrance, which allows less invasive IV delivery of

CNS-targeted gene therapies [39,40]; 2) retrograde and anterograde
axonal transport [41,42], which increases CNS transduction and targets
leuko-axonopathies; and 3) non-human primate vector origin, which
overcomes pre-existing human AAV immunity. Recombinant AAV se-
rotypes specific to each clinical trial will be discussed in greater detail
in the ensuing sections.

A major limitation of existing AAV capsids is their inability to
transduce microglia efficiently. Although recent publications have made
progress in microglial tropism [43], these technologies have not yet been
approved for clinical use. Currently, HSC-directed gene therapy remains
the most efficient way to target microgliopathies by allowing corrected
monocyte-derived microglia to populate the CNS.

The promoter is another important factor to consider when designing
AAV vectors for gene therapy. Some promoters induce supraphysiologic
and ubiquitous transgene expression [44,45]. Others have lower
expression levels but may have other desired features, such as smaller
size, which facilitates accommodation of larger transgenes without
exceeding the 4.7 kb AAV packaging limit [46].

Compared to LV vectors, AAV vectors are classically considered to
be much safer gene delivery vehicles. Instead of integrating into the
human genome, AAV mediates long-term gene expression mainly by
persisting in episomal form [47], which at least in theory reduces the
risk for genotoxicity. However, there are three primary disadvantages
associated with AAV-mediated gene therapy: 1) the limited 4.7 kb AAV
packaging capacity, 2) pre-existing anti-AAV antibody titers that have
already excluded up to 20% of patients from receiving life-saving
therapy [48], and 3) immunotoxicity associated with high dose AAV
administration, which necessitates treatment with immunosuppressive
medications [49].
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Table 2
Overview of existing gene therapy clinical trials for primary leukodystrophies.
Trial ID # Patients Intervention/Treatment Targeted Patient Population Phase Start date -
Enrolled completion date
Metachromatic leukodystrophy
NCT01560182 20 IV HSC-directed LV gene therapy (arsa-cel) Pre-sx or early sx LI or EJ MLD Phase 1/2 2010-2025
NCT03392987 10 IV HSC-directed LV gene therapy (arsa-cel) Pre-sx or early sx LI or EJ MLD Phase 2 2018-2028
NCT04283227 6 IV HSC-directed LV gene therapy (arsa-cel) Pre-sx or early sx LJ MLD Phase 3 2022-2031
NCT02559830 50 IV HSC-directed LV gene therapy Age of symptom onset <16 yrs, non-  Phase 1/2 2015-2025
end stage MLD
NCT03725670 10 IC LV gene therapy All MLD patients with abnormal Not reported 2018-2020
bMRI
NCT01801709 5 IC AAV gene therapy (AAVrh.10cuARSA) Early-onset MLD ages 6 mo to 5 yrs Phase 1/2 2014-2029
X-linked adrenoleukodystrophy
NCT01896102 32 IV HSC-directed LV gene therapy (eli-cel) Active CALD ages <17 yrs Phase 2/3 2013-2021
NCT03852498 35 IV HSC-directed LV gene therapy (eli-cel) Active CALD ages <17 yrs Phase 3 2019-2024
NCT02698579 67 IV HSC-directed LV gene therapy (eli-cel) Having received eli-cel in parent Long term follow-up 2016-2037
study
NCT02559830 50 IV HSC-directed LV gene therapy Age of symptom onset <16 yrs, non-  Phase 1/2 2015-2025
end stage X-ALD
NCT03727555 10 IC LV gene therapy All symptomatic X-ALD patients, Not reported 2018-2020
NFS>1
NCT05394064 16 IT AAV9 gene therapy (SBT101) All AMN patients able to ambulate Phase 1/2 2022-2029
Globoid cell leukodystrophy
NCT04693598 6 IV CNS-directed AAVrh.10 gene therapy EI GLD patients, received allogeneic Phase 1/2 2021-2024
(FBX-101) HSCT
NCT05739643 12 IV CNS-directed AAVrh.10 gene therapy Infantile GLD patients, received Phase 1/2 2023-2025
(FBX-101) allogeneic HSCT
NCT06308718 25 IV CNS-directed AAVrh.10 gene therapy All patients who received FBX-101 Long term follow-up 2024-2029
(FBX-101)
NCT04771416 24 ICM AAV.Hu68 gene therapy (PBKR03) EI GLD patients ages 1-9 mo old Phase 1/2 2022-2030
Canavan disease
NCT04833907 24 ICV AAV gene therapy (rAAV-Olig001- CD patients <60 mo old Phase 1/2 2021-2024
ASPA)
NCT04998396 18 IV AAV9 gene therapy (BBP-812) CD patients <30 mo old Phase 1/2 2021-2028
NCT05317780 1 IV and ICV dual-route AAV gene therapy Single 6-mo-old male CD patient Single-patient investigational 2022- N/A
(AAV9-CB6-ASPA) new drug
Giant axonal neuropathy
NCT02362438 21 IT AAV9 gene therapy (scAAV9/JeT-GAN) GAN patients >3 years old Phase 1 2015-2030
GM2 gangliosidoses
NCT04669535 11 Intrathalamic and ICM gene therapy (AXO- TSD or SD patients between 6 moand  Phase 1 2021-2024
AAV-GM2) 12 yrs old
Alexander disease
NCT04849741 73 IT ASO (ION373) AxD patients between 2 and 65 years Phase 1/2/3 2021-2025
old
Pelizaeus-Merzbacher disease
NCT06150716 24 IT ASO (ION356) Male PMD patients between 2 and 17 Phase 1b 2023-2028

yrs old

Abbreviations: ASO: antisense oligonucleotides; AxD: Alexander disease; bMRI: brain magnetic resonance imaging; CALD: cerebral adrenoleukodystrophy; CNS: central
nervous system; EI: early infantile; EJ: early juvenile; GAN: giant axonal neuropathy; GLD: globoid cell leukodystrophy; HSC: hematopoietic stem cell; IC: intracranial;
ICM: intra-cisterna magna; ICV: intracerebroventricular; IT: intrathecal; IV: intravenous; LI: late infantile; LV: lentivirus; MLD: Metachromatic leukodytrophy; mo:
months; PMD: Pelizaeus-Merzbacher disease; SD: Sandhoff disease; Sx: symptomatic; TSD: Tay-Sachs disease; X-ALD: X-linked adrenoleukodystophy; yrs: years.

Antisense oligonucleotides

Beyond viral vectors, antisense oligonucleotide (ASO) therapy is
another form of gene therapy that is predominantly used to modify gene
expression at the ribonucleic acid (RNA) level (Fig. 3, right panel). ASOs
are synthetic, short, and single-stranded oligodeoxyribonucleotides or
oligoribonucleotides that bind to transcribed mRNA via complementary
“antisense” base pairing [50,51]. In doing so, ASOs alter pre-mRNA
splicing, mRNA stability, mRNA translation, and RNA-protein in-
teractions [12-14]. There are currently two ASOs in clinical trials for
Alexander disease and Pelizaeus-Merzbacher disease, leukodystrophies
with toxic gain-of-function mutations. ASOs targeting these disorders
downregulate expression of the mutant proteins by suppressing mRNA
expression.

Gene therapy clinical trials for leukodystrophies

Within the leukodystrophies, there are active gene therapy clinical
trials for metachromatic leukodystrophy, adrenoleukodystrophy, globoid
cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2
gangliosidoses, Alexander disease, and Pelizaeus-Merzbacher disease

(Table 2). Here, we provide a brief overview of the pathophysiology and
clinical features for each leukodystrophy. Then we present the seminal
preclinical gene therapy studies and the existing clinical trials derived
from these studies. Because many gene therapies share a similar profile of
serious adverse events, we postpone discussion of adverse events to the
next section.

Metachromatic leukodystrophy

Pathophysiology and clinical presentation

Metachromatic leukodystrophy (MLD) is an autosomal recessive
lysosomal storage disorder that presents in patients who have a defi-
ciency in arylsulfatase A (ARSA) activity. ARSA hydrolyzes sulfatides,
and accumulation of sulfatides in MLD destabilizes myelin and impairs
oligodendrocytes and Schwann cells, thereby causing a demyelinating
leukodystrophy of the CNS and PNS [52,53].

MLD is clinically classified according to age at disease onset: late in-
fantile onset (<2.5 years), juvenile onset (2.5-16 years), and adult onset
(>16 years) variants [53]. Patients with higher residual enzyme activity
are more likely to have milder disease while patients with no or minimal
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ARSA activity have more severe disease. Late-infantile MLD patients
experience rapidly progressive clinical deterioration involving develop-
mental regression, spastic quadriparesis, loss of fine motor control and
communication, blindness, deafness, seizures, and death around five to
eight years. Juvenile onset MLD initially manifests with psychiatric,
cognitive, learning, and attentional problems, followed by spasticity and
weakness related to upper motor neuron dysfunction. Patients often live
for years in a vegetative state with supportive care. Adult-onset MLD
initially presents with psychosis, depression, mood swings, and other
neuropsychiatric abnormalities. Over many years, patients experience
periods of relative disease stability followed by episodes of exacerbation
involving loss of motor skills, bowel and bladder control, speech, and
cognition. Death typically occurs 20-30 years after initial diagnosis.

Lentivirus-mediated HSC-directed gene therapy

Preclinical studies. The therapeutic success of allogeneic HSCT [24,54,55]
prompted the first preclinical ex vivo HSC-directed LV-mediated gene
therapy study [56] in an MLD mouse model that recapitulates the
biochemical features of human MLD with some parallels in neuropath-
ologic findings and a milder disease phenotype [57]. By transplanting
syngeneic transduced donor MLD mouse HSCs into lethally irradiated
MLD recipient mice, this seminal study provided proof-of-concept for the
therapeutic viability of ex vivo HSC-directed gene therapy by showing: 1)
sustained bone marrow engraftment of donor HSCs with supra-
physiologic ARSA activity; 2) multilineage hematopoietic reconstitution
with transgene-expressing progeny cells; 3) CNS and PNS engraftment of
donor-derived cells; and 4) amelioration of the biochemical, neuro-
pathologic, and clinicobehavioral features of murine MLD [56]. Inter-
estingly, the degree of clinical efficacy for ex vivo LV-ARSA gene therapy
appeared to be proportional to the degree of LV-mediated ARSA over-
expression. A follow-up study showed that ARSA produced by donor
monocyte-derived microglia-like cells could correct neighboring
ARSA-deficient neurons and glia [58] through a physiologic lysosomal
enzyme trafficking process known as cross-correction [59].

Clinical trials. Following two open-label, non-randomized phase 1/2
human clinical trials with expanded access for atidarsagene autotemcel
(arsa-cel) (NCT01560182, NCT03392987), this approach received
FDA approval in 2024. Arsa-cel is an ex vivo HSC-directed LV-mediated
gene therapy for pre-symptomatic late-infantile, presymptomatic ju-
venile, and early symptomatic juvenile MLD patients. Interim data
analysis at three years of median follow-up time showed biochemical
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disease correction with persistent supraphysiologic ARSA activity in
peripheral blood mononuclear cells (PBMCs). Persistent physiologic
ARSA activity in the cerebrospinal fluid (CSF) was indirect evidence
for CNS engraftment of donor cells. Treated patients had significantly
fewer demyelinating lesions on brain MRI compared to the natural
history cohort. This was associated with improvements in gross motor
function, increased event-free survival, and normalization or near-
normalization of cognitive performance and verbal skills [60-62]. At
a median follow-up of 6.76 years, 25/26 treated patients continued to
have preserved ambulation [63]. In contrast, 50% of untreated late
infantile MLD patients lose their ability to walk a year after symptom
onset [64]. Arsa-cel is now being evaluated in a clinical trial for
late-juvenile MLD patients (NCT04283227).

Despite these exciting data, not all MLD patients had positive out-
comes in the clinical trials. Two early juvenile MLD patients with pre-
existing mild cognitive or gait difficulties died shortly after gene ther-
apy infusion due to rapid disease progression. This lends further support
to previously published data in allogeneic HSCT suggesting that the
presence of pre-treatment neurologic symptoms is a predictor of poor
treatment outcomes [13,14,65]. The availability of a disease-modifying
therapy will help implement newborn screening, which will in turn
facilitate early diagnosis and gene therapy administration in the pre-
symptomatic phase, thereby giving patients the best chance for maximal
therapeutic effect.

The short follow-up period for arsa-cel limits its direct comparison to
allogeneic HSCT outcomes. Published data suggest a trend toward
improved survival, motor function, and cognitive function for patients
receiving arsa-cel [12,13,24]. Autopsy studies for MLD patients who
received allogeneic HSCT confirmed the presence of CNS donor
monocyte-derived microglia-like cells and found evidence of remyeli-
nation despite a surprising lack of CNS cross correction [21,66].
Although there are no published autopsy data for MLD patients who
received arsa-cel, the pre-clinical murine studies [56,58] suggest that
CNS cross-correction is exclusively associated with LV-mediated supra-
physiologic ARSA expression. Thus, transduced donor cell-mediated
cross-correction of neuronal and glial cells may be responsible for the
observed improved clinical outcomes of arsa-cel. Additional studies will
be needed to test this hypothesis.

A similar ex vivo HSC-directed LV-mediated gene therapy is being
conducted in China for all MLD patients with disease onset <16 years
(NCT02559830). Unlike the clinical trials presented above, this clinical
trial targets symptomatic MLD patients, and presymptomatic disease is
an exclusion criterion. No published data are available for this trial.
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LV-mediated CNS-directed gene therapy

LV-mediated gene therapies are limited by lack of widespread CNS
biodistribution due to large viral particle size and resulting low diffu-
sivity within the extracellular space. This limitation is less apparent in
mice due to their small brain size. Intracerebral LV-ARSA prevented local
hippocampal neuropathology in MLD mice, which corresponded to a
small but significant reduction in learning impairment [67]. Since as
little as 5% residual ARSA activity can prevent symptomatic MLD [68,
69], there is a clinical trial in China studying CNS-directed LV-ARSA gene
therapy for MLD patients (NCT03725670). However, no trial-related
data have been published to date.

AAV-mediated CNS-directed gene therapy

One limitation of HSC-directed gene therapy is the inevitable delay
between gene therapy infusion and CNS engraftment. This explains the
observed 12- to 24-month delay between allogeneic HSCT and any
measurable clinical therapeutic benefit [55]. This also explains why more
advanced MLD patients derive no benefit from allogeneic HSCT. Direct IC
gene therapy could facilitate rapid supraphysiologic transgene expres-
sion in the CNS and potentially arrest CNS demyelination without delay.

Preclinical studies. Following up on promising preclinical studies using the
older generation AAV5 serotype [70,71], Piguet et al. directed a single
AAVrh.10-ARSA injection targeting the right striatum in MLD mice, which
resulted in widespread supraphysiologic ARSA activity in the ipsilateral
hemisphere and low but detectable ARSA expression in the contralateral
hemisphere [35]. While behavioral data for MLD mice treated with AAVr-
h.10-ARSA are lacking, treatment with AAV5-ARSA at the presymptomatic
stage improved motor function [71]. Compared to AAV5, AAVrh.10
showed wider supratentorial transduction, increased transgene expression,
and cross correction of neighboring oligodendrocytes [35]. This justified
the translation of IC AAVrh.10-ARSA gene therapy to clinical trial.

Clinical studies. Despite the promising preclinical efficacy data in mice
and the favorable biodistribution and biosafety data of the AAVrh.10-
ARSA vector in nonhuman primates (NHPs) [72], an open-label, sin-
gle-arm, monocentric phase 1/2 trial to evaluate the safety and efficacy
of IC AAVrh.10-ARSA administration (NCT01801709) showed no clin-
ical benefit for presymptomatic or early-symptomatic MLD patients [73].

The failure of this clinical trial is unexpected and unexplained. However,
there are a few possible contributors to consider. Human brains have a
volume of around 1400 c¢m® [741, whereas adult mouse brains average
around 2 cm® [75]. The 700-fold difference in brain sizes may have resulted
in inadequate viral transduction, CNS biodistribution, and cross correction
of brain cells critical for disease modification. Follow up toxicity studies in
NHPs identified parenchymal neuroinflammation with microglial activa-
tion and CNS infiltration of lymphocytes and monocyte-derived micro-
glia-like cells at a dose of 1.3 x 10! viral genomes (vg) per injection site for
both AAVrh.10-ARSA and empty (non-transgene-encoding) AAVrh.10
vectors [76]. The higher dose used in the clinical trial (3.3 x 10! vg/site)
exceeds the toxic dose and the lower dose (8.3 x 100 vg/site) is higher than
the identified maximal safe dose (2.4 x 10° vg/site). In MLD pathophysi-
ology, abnormal microglial activation precedes myelin destruction [77].
AAV-related neuroinflammation may further decompensate an intrinsically
vulnerable microglial population and precipitate and/or accelerate MLD
disease progression. This paradoxical AAV-mediated acceleration of path-
ologic microglial activation with associated lymphocytic infiltration has
been previously reported in a different leukodystrophy mouse model with
progressive disease-associated neuroinflammation [78].

X-linked adrenoleukodystrophy
Pathophysiology and clinical presentation

X-linked adrenoleukodystrophy (X-ALD) is a demyelinating peroxi-
somal disorder that classically presents in boys and men with hemizygous
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mutations in the ATP-binding cassette subfamily D member 1 (ABCDI)
gene. ABCDI encodes adrenoleukodystrophy protein (ALDP), a trans-
porter for very long-chain fatty acids (VLCFAs) to the peroxisome where
they undergo p-oxidation [79]. There are two neurologic phenotypes
associated with X-ALD, cerebral ALD (CALD) and adrenomyeloneurop-
athy (AMN). CALD is a severe demyelinating phenotype in the brain that
develops in 35% of X-ALD boys <10 years old. Boys with CALD present
with visual and auditory processing difficulties, loss of communication,
personality changes, spastic quadriparesis, tube feeding dependence,
urinary and fecal incontinence, and seizures. Death typically occurs two
to five years after symptom onset. AMN is the most common X-ALD
phenotype characterized by an insidious progression of spinal cord and
peripheral nerve demyelination. Patients with AMN present in their
20s-30s with progressive spastic paraparesis, sensory loss, neurogenic
bladder, and sexual dysfunction. Around 45% of AMN patients eventu-
ally develop CALD [80,81].

How ABCD1 deficiency causes a demyelinating phenotype in CALD is
poorly understood, although it is thought to involve a pathologic positive
feedback loop driven by VLCFA accumulation, which damages tissue,
increases oxidative stress, and promotes neuroinflammation [79].
Neuropathologic analysis of brain tissue from CALD patients shows evi-
dence of a pathologic process initiated by microglial activation and
apoptosis and ending with a confluent necrotic white matter lesion with
no remaining oligodendrocytes, myelin, or axons [82].

Lentivirus-mediated HSC-directed gene therapy

Preclinical studies. There is no animal model of CALD, precluding pre-
clinical studies of therapeutic efficacy. Instead, preclinical studies used
human LV-ABCDI transduced HSCs to show successful human HSC
engraftment in the bone marrow [83] and CNS [84] of nonobese dia-
betic/severe combined immunodeficient recipient mice. These studies
provided proof-of-concept for HSC-directed LV-ABCD1 gene therapy,
directly enabling clinical trials. It is important to recognize that the lack
of an animal CALD model did not hinder the clinical translation of this
therapeutic approach to patients in need. Instead, clinical translation was
supported by the success of allogeneic HSCT in the same disease context.

Clinical studies. Building on the therapeutic success of allogeneic HSCT
[15,16,85,86], four CALD boys with no HLA-compatible HSC donors un-
derwent the first ex vivo LV-ABCDI gene therapy. These patients initially
experienced clinical stabilization and discontinuation of active demyelin-
ation starting 14-16 months after gene therapy infusion, but three of the
four patients eventually experienced severe neurologic decompensation in
the setting of disease progression [87,88]. The eventual disease progres-
sion was attributed to low viral genome copies and low ALDP expression.
Since then, there have been larger phase 2/3 and long-term follow-up
clinical trials in the United States (NCT01896102, NCT03852498,
NCT02698579), as well as a small phase 1 clinical trial in China
(NCT02559830) to assess clinical efficacy and safety of LV-ABCD1 gene
therapy. We review data derived from the US clinical trials as there are no
published data available from the Chinese trial.

The US clinical trials for elivaldogene autotemcel (eli-cel) enrolled
boys <17 years who presented with early symptomatic CALD, defined as
radiologic Loes score 0.5 to nine [89] and clinical neurologic functional
scale (NFS) score <1 [90]. Presymptomatic X-ALD boys were excluded as
it is impossible to predict which patients will develop the CALD pheno-
type. Fifteen of the 17 patients included in the interim analysis were alive
without major functional disabilities or clinical symptoms with a median
follow-up time of 29.4 months. Twelve treated patients had stable MRI
findings without progression and two had increasing Loes scores with
relative preservation of the NFS score. The results of this initial interim
analysis [91] were largely confirmed in a subsequent interim analysis
with 32 treated CALD patients [92]. Despite the strong clinical and im-
aging evidence for disease stabilization and biochemical evidence for
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ABCDI1 transgene expression at a level twice as high as the initial French
clinical trial [88], there was no decrease in plasma VLCFA levels. This is
consistent with the known lack of correlation between VLCFA levels and
disease severity [93]. Further, it suggests that <25% median restoration
of ALDP expression in monocytes and macrophages is not enough to
reduce plasma VLCFAs, although it is enough to rescue CNS disease.
Based on these data, treatment of a focal CNS lesion is not contingent on
restoration of VLCFA levels in plasma.

Of the two patients who died in the study, one experienced rapid
disease progression immediately after eli-cel administration, possibly
due to advanced disease pre-infusion given the expected 12-month
period of disease progression between eli-cel administration and dis-
ease stabilization. The other patient was withdrawn from the study due
to disease progression on imaging, and he unfortunately succumbed to
complications related to a second allogeneic HSCT that was deemed
unrelated to eli-cel administration. We discuss insertional mutagenesis in
the eli-cel gene therapy trial in detail in a subsequent section.

LV-mediated intracerebral-directed gene therapy. There is an ongoing Chi-
nese clinical trial studying CNS-directed LV-mediated gene therapy for
CALD patients (NCT03727555), although no trial-related data have been
published to date. The same limitations for CNS-directed LV adminis-
tration we previously discussed for MLD apply to CALD.

AAV-mediated intrathecal-directed gene therapy. AMN is the most common
X-ALD phenotype and the myeloneuropathic component affects both
men and women [94]. There is a large clinical need and no available
treatments targeting AMN. Single dose IT delivery of AAV9-ABCD1 in the
mouse model of AMN [31] results in widespread transduction of neurons,
astrocytes, vascular endothelial cells, and some microglia in the spinal
cord. Importantly, the dorsal root ganglion, a major contributor to the
progression of sensory abnormalities afflicting patients with AMN [95],
is transduced, although there is no reduction of VLCFA accumulation
[31]. A subsequent study of AAV9-ABCDI1 targeting the intra-
cerebroventricular (ICV) CSF space showed correction of neuropatho-
logic abnormalities and functional motor improvement in AMN mice
[96]. Importantly, IT administration of AAV9 vectors transduced the
spinal cord and several brain regions with high efficiency in NHPs [97],
demonstrating clinical translatability.

Clinical studies. A phase 1/2 randomized, blinded, dose-escalation study of
IT delivery of SBT101 (AAV9-ABCD]) is enrolling independently ambu-
lating adult men between 18 and 65 years old who have clinical evidence
of AMN (NCT05394064). Dose selection was informed by murine and NHP
biodistribution studies that were translated to human patients based on
relative volumes of CSF [98]. Intrathecal administration of AAV-mediated
gene therapy could lower the risk for adverse events by requiring much
lower doses of AAV (1.0 x 10'* to 3.0 x 10'* vg/person) compared to
systemic IV administration (as high as 3.0 x 10 vg/kg [99]). There are no
interim data for SBT101 published to date.

Globoid cell leukodystrophy

Pathophysiology and clinical presentation

Globoid cell leukodystrophy (GLD) is a demyelinating leukodystro-
phy that presents in patients with autosomal recessive mutations in the
GALC gene. GALC encodes galactosylceramidase (GALC), the lysosomal
enzyme that hydrolyzes the metabolite, galactosylsphingosine, also
known as psychosine [100]. Psychosine forms as a cytotoxic byproduct of
myelin synthesis and accumulates primarily in the lipid rafts of oligo-
dendrocytes, where it alters oligodendrocyte membrane architecture
[101] and induces apoptosis of oligodendrocytes and Schwann cells
[102]. The subsequent breakdown of myelin triggers a neuro-
inflammatory response with microglial and astrocytic activation as well
as CNS infiltration of peripheral monocytes. The accumulation of
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phagocytosed myelin debris in microglia leads to the formation of the
pathognomonic giant nucleated “globoid cells.” Cytotoxic psychosine
accumulation is directly responsible for the clinical manifestations of
GLD, independent of GALC deficiency [103]. In recent years, various
important subcellular processes, including autophagy [104], extracel-
lular vesicular trafficking [105], and a-synuclein pathology [106,107]
have been implicated in GLD pathophysiology.

GLD is clinically classified based on age of onset: early infantile (0-13
months), late infantile (13-36 months), juvenile (3-16 years), and adult
(>16 years). Early infantile GLD presents with irritability, feeding diffi-
culties, optic atrophy, severe spasticity, posturing, and seizures with
rapid culmination in death. Late infantile patients develop abnormal gait
and visual difficulties, followed by spastic quadriparesis, seizures, tem-
perature instability, and intermittent apneas. On average, patients suc-
cumb six years after presentation. Juvenile GLD similarly affects multiple
domains, but disease progression occurs more slowly. Adult-onset GLD
presents with motor and sensory polyneuropathies, mood alterations,
cognitive slowing, and neuropsychiatric manifestations in addition to
spasticity, upper motor neuron pattern weakness, and scoliosis over time.
The clinical course and prognosis for adults are highly variable [108].
Psychosine accumulation is toxic to peripheral nerves, and a demyelin-
ating peripheral neuropathy is a common and early clinical finding in
GLD patients of all ages [109]. Allogeneic HSCT is currently the standard
of care but must be completed in the presymptomatic or early symp-
tomatic stages of disease to be effective [19].

AAV-mediated intravenous gene therapy

Preclinical studies. Recombinant AAV capsids that cross the BBB like
AAVrh.10 [110] enable IV delivery of CNS-targeted gene therapies.
Although IV delivery is generally not as efficient at transducing the CNS as
direct IC delivery, IV delivery does not require general anesthesia and is a
much less invasive procedure. GLD mice treated with IV AAVrh.10-GALC
had a modest lifespan extension with supraphysiologic levels of GALC
activity in the CNS and PNS [111]. The limited therapeutic efficacy of gene
therapy, previously reported for other multiple older generation AAV se-
rotypes [112-114], is due at least in part, to persistent pathologic neuro-
inflammation in the CNS of GLD mice [78]. The presence of AAV
exacerbates GLD-associated microglial activation and induces an
AAV-targeted lymphocytic infiltration that significantly limits the thera-
peutic potential of AAV-mediated monotherapy. Interestingly, HSCT
drastically reduces both disease-associated and AAV-related neuro-
inflammation [78,115], and together with gene therapy, produces a syn-
ergistic increase in GLD murine lifespan [114,116] that is significantly
more than that achieved with AAV monotherapy even at a tenfold higher
dose [117]. This synergy has been confirmed in a preclinical study of IV
AAVrh.10-GALC and HSCT combination therapy for canine GLD [118].

Clinical studies. There are two phase 1/2 non-blinded and non-
randomized dose escalation clinical trials for IV delivery of FBX101, an
AAVrh.10-mediated gene therapy for GALC replacement, in GLD patients
who have already had allogeneic HSCT in the form of UCBT. The initial
study (NCT04693598) is enrolling early infantile GLD patients only,
whereas the second study (NCT05739643) expands patient eligibility to
include early and late infantile GLD patients. Interim analysis for the first
two treated patients reported increased plasma and CSF GALC activity,
improvements in gross motor function, and normalized white matter in
treated GLD patients compared to healthy controls [119]. A follow up
trial (NCT06308718) is underway to assess the long-term efficacy of
FBX-101 over three years.

AAV-mediated intra-cisterna magna gene therapy

Preclinical data. The cisterna magna is the CSF-filled space dorsal to the
medulla and caudal to the cerebellum. Single injection delivery of
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AAVhu68, an engineered AAV9-derived capsid, to the cisterna magna in
NHPs increased CNS transduction of the brain and spinal cord compared
to lumbar IT delivery [120]. Treatment of GLD dogs with intra-cisterna
magna (ICM)-delivery of AAVhu68-GALC resulted in supraphysiologic
GALC activity in the cerebellum and at least physiologic levels in other
CNS areas. Treated GLD dogs had decreased neuroinflammation, mini-
mal psychosine accumulation, preserved myelination, restoration of
brainstem auditory evoked responses, and normalized nerve conduction
velocities (NCVs) [38]. Abnormal NCVs are a pathologic manifestation of
human GLD that remains uncorrected with allogeneic HSCT, resulting in
progressive peripheral neuropathy with significant functional impair-
ment [20,121]. Correction of this deficit would significantly improve
quality of life for GLD patients.

Clinical studies. A phase 1/2 clinical trial for ICM delivery of AAVhu68-
GALC gene therapy (NCT04771416) was initiated in February 2022.
However, this clinical trial was halted by the sponsor in early 2023 due to
changes in the company strategy. There are no published data associated
with this clinical trial.

Canavan disease

Pathophysiology and clinical presentation

Canavan disease (CD) is an autosomal recessive leukodystrophy that
presents in patients with biallelic mutations in the ASPA gene. ASPA
encodes aspartylacylase (ASPA), which catalyzes the hydrolysis of N-
acetylaspartic acid (NAA) to aspartate and acetate. Acetate is an impor-
tant metabolite for myelin formation [122] and abnormal accumulation
of NAA promotes oligodendrocyte cell death [123]. However, how this
eventually causes myelin vacuolization and spongy degeneration of the
brain remains unknown.

CD presents in the first six months of life with hypotonia, head lag,
and macrocephaly. Over time, hypotonia evolves into spasticity and pa-
tients develop vision loss, seizures, sleep disturbances, irritability, startle
response, tonic spasms, fevers of unknown origin, and feeding difficulties
[124]. Without treatment, most patients die before age ten. For a small
subset of patients, the phenotype is milder with some degree of intel-
lectual impairment, and the disease progression is slower [125].

AAV-mediated intracerebroventricular gene therapy

Preclinical studies. Most AAV serotypes with CNS tropism primarily
transduce neurons, albeit with varying efficiency. Since CD primarily
affects oligodendrocytes, CNS-directed AAV-mediated gene therapy with
primary neuronal transduction has limited clinical efficacy [126,127]. To
target oligodendrocytes, a new AAV capsid with oligodendrocyte-specific
tropism, AAV/Oligl, was engineered through capsid shuffling [128].
Although AAV/Oligl has limited traversal of the BBB [128], direct ICV
administration of AAV/Oligl-ASPA resulted in widespread preferential
transduction of oligodendrocytes primarily in the subcortical white
matter. This translated to improved motor function [129] in an
ASPA-deficient murine model of CD [123]. Clinical translation of the
AAV/0ligl vector would be a major advance in treating myelinopathies.

Clinical studies. A phase 1/2 clinical trial is currently enrolling CD pa-
tients 3 months-60 months of age in an open-label sequential cohort
study to assess the safety and efficacy of ICV-directed AAV/Oligl-ASPA
gene therapy (NCT04833907). There are currently no published interim
data analyses for this trial.

AAV-mediated intravenous gene therapy
Preclinical studies. IV delivery of AAV9-ASPA to CD mice restored 50%

physiologic ASPA activity in the brain, confirming successful CNS
transduction [110]. Fifty percent restoration of CNS ASPA activity is
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sufficient for therapeutic effect, as there is a dramatic 27-fold increase in
median lifespan in IV AAV9-ASPA treated CD mice compared to un-
treated CD mice. Despite the lifespan prolongation, there is incomplete
restoration of motor function. This is a common therapeutic limitation
for gene therapies with multiple possible contributing explanations,
including incomplete CNS transduction and/or biodistribution, inade-
quate cell-specific transduction, and nonphysiologic gene expression.
Technologic improvements in gene delivery in the past 20 years have
already made remarkable progress in addressing these limitations for CD
[130] and other leukodystrophies, and many newer advancements are in
preclinical development.

Clinical studies. A phase 1/2 clinical trial for BBP-812 is currently
enrolling CD patients under 30 months of age in an open-label sequential
cohort study to evaluate the safety and efficacy of IV AAV9-ASPA gene
therapy (NCT04998396). Interim data for four treated patients showed
robust NAA reductions in urine, CSF, and brain, with initial suggestions
of clinical stabilization [131]. A follow-up open-label, expanded-access
clinical trial (NCT05317780) enrolled one CD patient for dual route IV
and ICV administration of AAV9-ASPA, with subsequent reduction in CSF
NAA accumulation, increase in CNS remyelination, progress in neuro-
development, and reversal of cortical blindness. Although it is difficult to
draw conclusions from an n = 1 study, these data provide hope for future
dual route gene therapy delivery modalities.

Giant axonal neuropathy

Pathophysiology and clinical presentation

Giant axonal neuropathy (GAN) is an autosomal recessive leuko-
axonopathy that affects patients with mutations in the GAN gene. GAN
encodes the gigaxonin protein [132], which is a subunit of E3 ubiquitin
ligase that regulates intermediate filament (IF) turnover [133].
Loss-of-function GAN mutations result in pathologic IF aggregation in
neuronal axons of the CNS and PNS.

Affected patients classically present in infancy or early childhood
with distal-predominant sensorimotor peripheral axonal neuropathy and
proximal motor weakness. CNS manifestations include developmental
delay, cerebellar and pyramidal signs, cranial nerve abnormalities, and
seizures [134-136]. Non-neurologic manifestations include kinky hair
and long eyelashes [135], precocious puberty [137], skin abnormalities
[138,139], gastrointestinal problems [140,141], diabetes [142], and
renal tubular acidosis [138]. Most patients succumb to the disease in the
third decade in the setting of respiratory failure [143]. A subset of pa-
tients with milder GAN phenotypes do not have CNS manifestations or
kinky hair [144].

AAV-mediated intrathecal gene therapy

Preclinical studies. Several in vitro preclinical studies have demonstrated
significant reductions in IF aggregation in GAN patient-derived fibro-
blasts [34,145,146] and induced pluripotent stem cell-derived motor
neurons [147] after treatment with gene replacement therapy. These
data precipitated preclinical studies in two different GAN mouse models
[148,149]. ICM administration of AAV9-GAN leads to efficient CNS
transduction with supraphysiologic GAN expression. This correlated with
near complete, 50%, and 66% clearance of IF aggregation in the striatum,
cortex, and dorsal root ganglia, respectively. Treated GAN mice showed a
modest but significant improvement in motor function [34]. The
observed magnitude of behavioral improvement may have been limited
by the very modest deficits in untreated GAN mice [148].

Transgenic GAN expression was driven, not by the commonly used
CAG promoter, but by the short JeT promoter to permit packaging of the
entire GAN coding sequence into the AAV vector. JeT mediates transgene
expression at 25% of CAG-mediated transgene expression levels [46],
which is acceptable given low physiologic GAN expression under healthy



J. Metovic et al.

conditions [150]. This is a useful strategy for gene replacement of other
similarly large genes with low physiologic expression.

Clinical studies. A phase 1 open-label non-randomized IT dose escalation
study for AAV9-GAN has enrolled 14 patients with a median follow-up
time of 68.7 months (range 8.6-90.5 months) [151]. Four doses of
AAV9-GAN were administered in this dose escalation study. Patients
receiving the lowest dose did not experience any significant improve-
ment in sensorimotor neuropathy, but patients receiving the three higher
doses showed significant improvements in motor function and/or neu-
ropathy severity scores. There was evidence of increased sensory nerve
action potential amplitudes across the median and ulnar nerves, which
persisted for 6-24 months, indicating successful reversal of sensory
neuropathy. Interestingly, the degree of improvement did not correlate
with escalating doses. Possible explanations include: 1) the treatment
groups were not large enough to detect significant differences, 2) there is
a maximum viral dose above which therapeutic efficacy plateaus or di-
minishes, and/or 3) clinical efficacy of viral-mediated gene delivery
correlates not with gene dosage but with other factors such as area of CNS
distribution or primary targeted cell type. Additional studies will need to
be done to test these hypotheses.

GM?2 gangliosidoses

Pathophysiology and clinical presentation. GM2 gangliosidoses are a group
of leuko-axonopathies characterized by deficient degradation of GM2
gangliosides. Affected patients have mutations in the subunits of N-
acetyl-p-hexosaminidase (Hex) isoenzymes or in their cofactor, GM2
activator protein. We focus on isoenzyme deficiencies in this review, as
they are the targets for current gene therapy approaches. Biallelic mu-
tations in HEXA, which encodes the a subunit, cause Tay-Sachs disease
(TSD); biallelic mutations in HEXB, which encodes the p subunit, cause
Sandhoff disease (SD) [152]. Toxic accumulation of GM2 gangliosides
primarily occurs in neurons and triggers neuronal apoptosis [153,154]
through calcium dyshomeostasis in the endoplasmic reticulum [155].
The mechanisms by which neuronal cell death drive myelin deficiency
and hypomyelination remain unknown but are likely related to non-cell
autonomous effects of the oligodendrocyte-axon unit.

Clinically, GM2 gangliosidoses are classified based on age of onset.
Patients with the acute infantile variant have the most severe clinical
course, presenting at three to six months of age with acute neurologic
deterioration characterized by weakness, hypotonia, hyperreflexia,
developmental regression, vision impairment, exaggerated startle
response, seizures, and death before five years of age. Most patients have
a cherry red macula on fundoscopic exam [156,157]. The subacute ju-
venile variant presents with developmental regression at two to five years
old, followed by spasticity, loss of ambulation, loss of speech, seizures,
and progressive brain atrophy, resulting in death by mid-adolescence
[158]. Patients with the late-onset variant present in their teenage
years or young adulthood. In addition to gait dysfunction and dysarthria,
these patients develop neuropsychiatric manifestations and peripheral
neuropathy [159]. Patients with SD but not TSD also have systemic
disease manifestations, including hepatosplenomegaly, cardiomegaly,
macroglossia, and skeletal abnormalities [152].

AAV-mediated intrathalamic gene therapy

Preclinical studies. Because Hex subunits o and f§ dimerize, simultaneous
co-expression of both o and p subunits in a stoichiometrically balanced
ratio is necessary for optimal production of recombinant Hex in gene
replacement approaches for TSD and SD [160-162]. Experimental gene
therapies for TSD and SD are studied using the murine SD model, which
has a severe phenotype that more accurately mimics the human disease
course than the murine TSD model [163,164]. A single hemispheric
striatal injection of AAV-HEXA/AAV-HEXB significantly extended
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lifespan from four months to over six months [165] in SD mice. However,
these mice developed severe unilateral motor deficits due to insufficient
correction of the untreated hemisphere. In contrast, bilateral striatal in-
jections extended the median lifespan to >400 days in SD mice, and dual
route striatal and cerebellar injections nearly normalized median lifespan
to ~700 days [166]. These data provided proof-of-concept to advance
this therapeutic strategy to clinical trials.

Widespread CNS-directed delivery of AAV-mediated gene therapy to
large animals remains a challenge due to larger brain sizes. The thalamus
is the relay station of the brain, and thalamic targeting of gene therapy
increases CNS biodistribution through anterograde [167] and retrograde
[168] axonal transport. In the feline SD model, bilateral thalamic
AAV1-mediated gene therapy significantly extended feline lifespan and
improved gait [169]. However, treated cats mounted an AAV-directed
humoral response against the AAV1 capsid. To evade pre-existing anti-
bodies, the HEXA and HEXB transgenes were packaged into the neuro-
tropic AAVrh.8 capsid [169,170]. AAVrh.8-mediated gene therapy
targeting the bilateral thalami and deep cerebellar nuclei effectively
corrected biochemical abnormalities, prevented demyelinating lesions,
and improved clinical function in SD cats [169,171,172]. Further,
bi-thalamic AAVrh.8-mediated gene therapy in a sheep model of TSD
[173,174] was comparably effective [175,176].

Clinical studies. There is an ongoing phase 1 AAVrh.8-mediated clinical
trial for patients with TSD and SD between six months and 12 years of age
(NCT04669535). Patients receive equimolar AAVrh.8-HEXA and AAVrh.8-
HEXB gene therapy (AXO-AAV-GM2) delivered to the bilateral thalami and
intrathecally. IT dosing is divided into ICM and thoracolumbar injections.
We review published data from the first two treated TSD patients [177].
The first patient (TSD-001) presented with infantile-onset TSD at five to six
months and received AXO-AAV-GM2 at 2.5 years old. Due to
disease-related destruction of the thalami, this patient did not receive
intrathalamic AAV, but instead received IT gene therapy only. This patient
had significantly impaired neurologic function with a CHOP-INTEND score
of 20 prior to treatment, which remained stable without further deterio-
ration 2.5 years after receiving gene therapy.

The second patient (TSD-002) was presymptomatically diagnosed
with TSD and had developed lower extremity weakness and a macular
cherry red spot when enrolled at six months of age. This patient was
treated at seven months of age with bilateral intrathalamic and divided IT
AXO-AAV-GM2. TSD-002 had minimal neurologic deficits prior to
treatment with a normal CHOP-INTEND score of 60. She experienced
temporary disease stabilization with continued CNS myelination on brain
MRI before experiencing disease progression starting six months after
treatment. She eventually lost the ability to sit or respond to audiovisual
stimuli, and she developed new seizures by 24 months of age.

For most leukodystrophies, treatment earlier in the disease course is
generally associated with improved outcomes, but the two TSD patients
published in this study do not follow this pattern. Moreover, the significant
disease progression in TSD-002, who received gene therapy immediately
after symptom onset, occurred despite the additional intrathalamic gene
therapy this patient received. The additional dose lowered post-gene
therapy GM2 ganglioside accumulation in the CSF. Correction of CSF
and serum HexA activity was minimal, with <1% physiologic HexA ac-
tivity in the serum and CSF for both patients, despite intrathecal AAV
administration. Although this is a case series with two patients, the results
raise some concerns about the sustained therapeutic efficacy of intra-
thalamic AAV administration for TSD and SD. Additional data will be
needed before any clinically meaningful conclusions can be drawn.

Alexander disease
Pathophysiology and clinical presentation

Alexander disease (AxD) is an autosomal dominant astrocytopathy
that presents in patients with monoallelic mutations in the GFAP gene.
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GFAP encodes glial fibrillary acidic protein (GFAP), the major IF in as-
trocytes. Mutant GFAP accumulation in astrocytes induces formation of
Rosenthal fibers (RFs) [178,179] and alters GFAP metabolism [180].
There is associated astrocyte activation [181], proteosome dysfunction
[182], impaired stress response [183], microglial activation [184],
lymphocytic infiltration [181], and cellular apoptosis [185,186]. The
exact mechanisms by which these pathologic processes induce cytotox-
icity and demyelination have not been fully elucidated.

There are two subtypes of AxD that are differentiated by brain im-
aging features and age of onset. Type I AxD is a rapidly progressive and
early-onset phenotype, characterized by a frontal-predominant demye-
linating leukodystrophy on imaging. Patients present with motor and
cognitive delays, seizures, megalencephaly, and paroxysmal deteriora-
tion. Type II AxD is characterized by atrophic white matter disease of the
brainstem, cerebellum, and spinal cord. It is an insidiously progressive
phenotype that can present at any age with upper motor neuron signs,
autonomic features, and ataxia manifesting as bulbar symptoms, palatal
clonus, and extraocular movement abnormalities. Later onset phenotypes
progress more slowly and patients with adult-onset AxD can survive for
>30 years after diagnosis [187,188].

Antisense oligonucleotide intrathecal gene therapy

Preclinical studies. ASOs treat gain-of-function GFAP mutations by sup-
pressing expression of the mutant protein [189]. ICV administration of
GFAP-targeting ASOs in two rodent AxD models reduced mutant GFAP
accumulation and reversed neuropathology [190,191]. In the AxD rat
model, which develops a robust clinical phenotype, presymptomatic ASO
administration prevented motor abnormalities, and ASO administration
five weeks after symptom onset incompletely reversed motor abnor-
malities. This is the first leukodystrophy gene therapy showing reversal
of disease progression after symptom onset [182].

Clinical studies. A randomized, double-blind, parallel-assignment phase
1/2/3 clinical trial for IT zilganersen, a GFAP-targeting ASO, is enrolling
AxD patients between two and 65 years old (NCT04849741). There is
also an open-label sub-study for AxD patients under two years old. Like
other CNS-targeted ASO clinical trials, the success of this trial will likely
depend on the efficiency of cell-specific GFAP knockdown and the bio-
distribution of zilganersen in the human brain [192]. There are no
published interim analyses.

Pelizaeus-Merzbacher disease

Pathophysiology and clinical presentation

Pelizaeus-Merzbacher disease (PMD) is a hypomyelinating leuko-
dystrophy presenting in patients with X-linked mutations in the PLPI1
gene. PLP] encodes myelin proteolipid protein (PLP) and DM20 through
an alternative PLP1 splice product. Together, PLP and DM20 comprise
60-80% of the total protein content in myelin [193]. The pathophysi-
ology of PLP1 mutations is heterogeneous due to the different types of
pathogenic mutations. Toxic gain-of-function PLP1 mutations include
gene duplications and mutations that disrupt protein folding. The
resulting pathologic protein accumulation in the endoplasmic reticulum
(ER) activates the ER stress response [194] and overwhelms the unfolded
protein response [195], triggering oligodendrocyte apoptosis [196]. This
results in the classic PMD clinical constellation of nystagmus, ataxia,
dystonia, spastic paraplegia, and cognitive delay. Death occurs in the
teenage years in the severe connatal form, but most patients with classic
PMD survive into adulthood [197].

Alternatively, patients with PLP1 null mutations do not have
nystagmus but present with a mild hereditary spastic quadriplegia (HSP).
More conserved amino acid substitutions in PLP1 are associated with
pure HSP, while less conserved mutations are associated with HSP with
CNS hypomyelination.
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Preclinical studies. PLP1 duplications occur in 70% of PMD patients
[198], and ASO-mediated reduction of PLP1 expression to physiologic
levels would, in theory, be curative. Further, the mild phenotype asso-
ciated with PLP1 null mutations implies a wide therapeutic window for
titration of PLP1 expression. ICV delivery of a PLP1-targeted ASO in a
faithful mouse model of PMD [199-201] partially corrected biochemical,
neuropathologic and behavioral deficits [202]. Of note, the incomplete
correction of nerve conduction velocity in ASO-treated mice may parallel
the peripheral neuropathy phenotype seen in patients with PLP1 null
mutations. Although treated mice continue to experience some limita-
tions in motor function, the 11-fold increase in lifespan demonstrates the
clear efficacy of this therapeutic approach. Near-normalization of
exploratory behaviors also suggests a significant improvement in quality
of life.

Clinical studies. An interventional trial to assess the safety, pharmacoki-
netics, and pharmacodynamics of IT ION356, an ASO targeting PLP1, is
currently enrolling male PMD patients between two and 17 years old
with a PLP1 duplication (NCT06150716). There are no interim data
published for this clinical trial.

Adverse events

Gene-based therapies have tremendous potential in changing the lives
of leukodystrophy patients. However, clinical efficacy must be assessed
in the context of therapy-related adverse events. Serious adverse events
(SAEs) specific to gene-based therapies most commonly arise from gen-
otoxicity and/or immuntoxicity. In this section, we discuss the patho-
physiology and treatment for these SAEs.

Genotoxicity

Recombinant lentivirus

Recombinant lentiviruses derive from retroviruses that randomly
integrate into the host genome. In the early 2000s, the FDA halted HSC-
directed gene replacement therapy for severe combined immunodefi-
ciency due to T cell leukemias that developed in six patients with
retroviral vector integration near proto-oncogenes [203-205]. Although
LVs are much safer than retroviruses, long-term transgene expression is
reliant on LV integration so insertional mutagenesis and oncogenesis
remain risks.

As of spring 2024, seven cases of myelodysplastic syndrome or acute
myelogenous leukemia have been reported among more than 70 boys
with childhood CALD treated with eli-cel to date [28,206]. Two patients
had LV insertion at the MECOM locus, a known susceptibility locus for
myeloid malignancies [207,208] and an inhibitor of cell cycle progres-
sion and differentiation of HSCs [209]. However, not all patients with
MECOM locus integrations have developed therapy-related myeloid
neoplasms (tMN), suggesting that there are likely additional oncogenic
factors at play that have yet to be identified.

Preclinical safety data in animal models failed to identify the MECOM
locus as a common integration site (CIS) in mice treated with LV gene
therapy. Further, there was no increased fitness for clones with identified
CISs after xenotransplantation into humanized Rag2~/"I12rg~/~ (Ragy)
mice [210]. These studies were likely limited by poor reconstitution of
the myeloid lineage in Ragy mice [211], which limits assessment of
oncogenic potential in myeloid precursor cells. Mutations in oncogenic
genes with a variant allele frequency (VAF) as low as 0.5% can give rise
to tMNs [212]. The clonal evolution and expansion of a myeloid subclone
at such low VAFs take time and may account for the observed one-to
two-year latency in tMN diagnosis after LV gene therapy. The short
12-week interval between HSCT and LV integration analysis in the mu-
rine preclinical study was likely insufficient to assess for oncogenic
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potential. Thus, close long-term monitoring of CALD patients after LV
gene therapy is critical.

Interestingly, there have been no cases of tMN in MLD patients who
received arsa-cel. There are significant differences in the LV constructs
between the two clinical trials, and additional studies are needed to
determine how differences in LV constructs, transgenes, HSCT pre-
conditioning regimens, and other factors may impact the oncogenic po-
tential of LV-mediated gene therapy.

Recombinant AAV

Recombinant AAV is classically known as a nonintegrating virus
that maintains long-term transgene expression by persisting in cells in
episomal form [213,214]. However, AAV genome integration does
occur, albeit at a much lower rate, in mice [215,216], dogs [217],
primates [218], and humans [219,220]. Integration in the murine
genome at the Rian locus induces hepatocellular carcinoma (HCC) in
mice [221,222]. Although the murine Rian locus is partially syntenic to
the human Rian locus, no AAV integrations in the human Rian locus
have been identified to date. Further, there are no reports of human
malignancies associated with AAV integration except one case of HCC
in a hemophilia B patient who was then found to have multiple other
coexisting risk factors for HCC [223]. Given the relatively short
follow-up time so far for most AAV clinical trials however, it is
imperative to continue close long-term monitoring of all patients
receiving AAV-mediated gene therapy.

Immunotoxicity

Recombinant lentivirus

Immunotoxic adverse events are triggered by immune activation
against the recombinant virus or the encoded transgene, both of which
can be identified as foreign by the patient’s native immune system. Ex
vivo delivery of LV to HSCs is a widely used delivery strategy that
minimizes immune responses and immunotoxic adverse events. The
arsa-cel MLD clinical trials reported six events of low-titer transient
antibodies against the ARSA transgene product with no impact on
pharmacodynamics or clinical outcomes [62]. There have been no
published reports of antibodies against the ABCD1 transgene product in
the eli-cel clinical trial [91], although continued monitoring will be
very important.

Recombinant AAV

Although AAV is classically known as a virus with low immunoge-
nicity, immunotoxicity is a concern for patients receiving high dose AAV-
mediated gene therapy. Thrombotic microangiopathy (TMA) is an SAE
that develops in the setting of an immunotoxic response to very high
doses of AAV >10'* vg/kg. Many IV AAV-mediated gene therapies in
clinical trials are in this high dose range [224-226].

TMA is an endothelial injury syndrome characterized by profound
thrombocytopenia due to hepatic platelet sequestration [227] and acute
liver injury of varying degrees of severity. The kidneys, pancreas, skin,
and heart can also be affected [228]. The pathophysiology of TMA is not
fully understood, but the complement system [229] is a primary medi-
ator of the immunotoxic response. Recombinant AAV activates the clas-
sical [230] and alternative [231] complement pathways, which induce
liver sinusoidal endothelial injury, formation of platelet microthrombi,
and hepatic platelet sequestration [227].

Due to the immunotoxic SAEs associated with high dose AAV
administration, all patients who receive AAV routinely receive steroids
for immunosuppression to prevent acute liver injury. However, steroids
alone do not prevent thrombocytopenia, complement activation, or
antibody formation [49]. Eculizumab, a monoclonal antibody against C5,
has successfully blocked the immunotoxic response associated with TMA
[232]. However, these studies were done for HSCT-associated TMA.
Additional studies will need to be done to assess therapeutic efficacy in
the context of AAV-associated TMA.
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Future directions

Over the last 20 years, gene therapies for leukodystrophies have
advanced beyond the preclinical realm and reached the clinical setting.
For many, the availability of these therapies is life changing. The field
continues to advance rapidly in the development of newer gene therapy
delivery technologies that creatively evade SAEs while maximizing the
potential to achieve a functional genetic “cure.” Areas that are being
actively researched include but are not limited to: 1) increasing CNS
transduction and biodistribution with bioengineered viral capsids [233];
2) improving CNS cell-specific targeting to microglia [234-236] to treat
primary and secondary microglial pathologies shared by many leuko-
dystrophies; 3) liver-detargeted capsids to minimize hepatotoxicity [237,
238]; 4) immune system evasion to expand treatment access to patients
who have pre-existing antibodies against viral vectors [239,240]; etc.
Further, the recent advent of precision genome editing enables targeted
editing of the native genomic DNA, which maintains physiologic
expression of corrected gene products and avoids cytotoxic adverse
events related to nonphysiologic gene dosing [241]. Although each of
these advances will need to be extensively evaluated for safety and ef-
ficacy prior to clinical translation, continued improvement in clinical
outcomes is now the reality for many leukodystrophies that were once
considered universally fatal and untreatable. Despite the progress,
vulnerability in the leukodystrophy population demands increased
attention. Adverse events specific to distinct classes of gene therapy are
increasingly recognized, and the impact of disease-specific pathophysi-
ology brings further unknowns. Ultimately, therapeutic benefits and risks
will need to be evaluated in a disease-specific context.
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