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Abstract 

Plasmids are one of the key drivers of microbial adaptation and e volution. Howe ver, their diversity and role in adaptation, especially in 

extr eme envir onments, r emains largel y unexplor ed. In this study , we aimed to identify , c har acterize , and compare plasmid sequences 
originating from samples collected from deep-sea hydrothermal vents located in Arctic Mid-Ocean Ridges. To achieve this, we em- 
ploy ed, and benc hmarked thr ee r ecentl y dev eloped plasmid identification tools—PlasX, GeNomad, and PLASMe—on meta genomic 
data from this unique ecosystem. To date, this is the first direct comparison of these computational methods in the context of data 
fr om extr eme envir onments. Upon r ecov er y of plasmid contigs, we performed a m ultiappr oach anal ysis, focusing on identifying tax- 
onomic and functional biases within datasets originating from eac h tool. Next, w e implemented a majority voting system to identify 
high-confidence plasmid contigs, enhancing the r elia bility of our findings. By analysing the consensus plasmid sequences, we gained 

insights into their di v ersity, ecological r oles, and adapti v e significance. Within the high-confidence sequences, we identified a high 

abundance of Pseudomonadota and Campylobacterota , as well as multiple to xin–antito xin systems. Our findings ensure a deeper un- 
derstanding of how plasmids contribute to shaping micr obial comm unities li ving under extr eme conditions of hydr othermal v ents, 
potentiall y uncov ering nov el adapti v e mechanisms. 

Ke yw or ds: Ar ctic dee p-sea hydr othermal v ent; metaplasmidome; plasmid; plasmid classification; plasmid identification; thermophile 
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Introduction 

Plasmids, small circular DNA molecules capable of horizontal 
gene tr ansfer, ar e k e y dri v ers of micr obial ada ptation and e volu- 
tion (Ochman et al. 2000 , Tokuda and Shintani 2024 ). While most 
often associated with the spread of antibiotic resistance, their 
broader ecological roles are increasingly recognized, and they in- 
clude conferring ada ptiv e featur es (also nov el metabolic pr oper- 
ties), resistance to metals and host–microbe interactions (Galetti 
et al. 2019 , Alav and Buckner 2023 , Gomathinayagam and Kodi- 
veri Muthukaliannan 2024 ). Most research to date has focused on 

plasmids in mesophilic organisms , lea ving these in extreme envi- 
r onments significantl y understudied. This bias is e vident in ma- 
jor databases, such as plasmid database PLSDB, where over 50% 

of the nearly 60 000 deposited sequences originate from just five 
gener a ( Esc heric hia , Klebsiella , Enterococcus , Salmonella , and Staphylo- 
coccus ) (version 2023_11_03_v2) (Schmartz et al. 2022 ). In contrast,
a focused r e vie w of liter atur e and databases identified only 174 
and 526 plasmid sequences from thermophiles and psychrophiles,
r espectiv el y, highlighting the need for expanded r esearc h efforts 
in these understudied groups. 

Deep-sea hydr othermal v ents (DSHVs) r epr esent a unique ex- 
tr eme habitat. Char acterized by minimal light, high pr essur e, tem- 
Recei v ed 26 June 2024; revised 4 September 2024; accepted 12 September 2024 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess on behalf of FEMS. This
Commons Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), whic
medium, provided the original work is properly cited.
er atur es r anging fr om 2 ◦C to 350 ◦C, as well as highl y v ariable
hemical compositions and energy sources (Haase et al. 1995 ,
eng et al. 2021 ). Compared to other extreme en vironments , such
s polar regions , deserts , salt pans , or hot springs , deep-sea en-
ir onments ar e also m uc h mor e isolated (Mullineaux et al. 2018 ).
hile the influx and efflux of genetic information in DSHVs is lim-

ted, plasmids have been isolated from those remote communities 
Lossouarn et al. 2015 ). In general, plasmids found in extreme en-
ironments tend to carry genes that dir ectl y benefit the survival
f their host in given en vironments . For example , plasmids identi-
ed from polar environments can carry genes responsible for re-
istance to cold and UV radiation, as well as heavy metals and
ther toxic compounds, which pose the gr eatest thr eat in this en-
ir onment (Dzie wit and Bartosik 2014 , Ciok et al. 2018 , Makowska-
awieruc ha et al. 2024 ). Similarl y, plasmids isolated fr om DSHVs
ay carry genes encoding enzymes which could be attributed to

daptation to DNA damage at high temperatures (Makarova et al.
002 , Majerník et al. 2004 , Lossouarn et al. 2015 ). Ho w e v er, due to
he scarcity of r efer ence data, man y plasmid-borne genes, espe-
ially originating from extreme habitats, still remain poorly anno- 
ated, hindering a compr ehensiv e understanding of their ecologi- 
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h permits unrestricted reuse, distribution, and reproduction in any 
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Studying DSHV ecosystems is inher entl y c hallenging due to
ifficulties in sample collection and the inability to cultivate
an y micr oor ganisms under labor atory conditions (Martin y 2019 ,

chultz et al. 2023 ). Since this makes it difficult to obtain
lasmid DNA dir ectl y fr om envir onmental samples, alternativ e,
nrichment-based methods have been proposed. In one of them,
icrobes coming from environmental samples are used to inoc-

late selective media, and the resulting cultures can be used to
solate plasmid DNA (Gor ec ki et al. 2021 ). Another method, which
 as emplo y ed to collect samples analysed in this study, utilizes

n situ enrichment using cultivation chambers (Kaeberlein et al.
002 , Bollmann et al. 2007 ). While effective, it is important to re-
ember that these methods introduce a “planned bias,” since only
 r elativ el y small portion of envir onmental micr obes may be suc-
essfull y cultiv ated (Dziurzynski et al. 2023 ). 

In order to reduce this bias, many recent studies have emplo y ed
hotgun meta genomics, whic h, in theory, should provide unbi-
sed information about all environmental DNA found within a
iven sample (Hedlund et al. 2014 , Gómez-Silva et al. 2019 ). Un-
erstandabl y, this a ppr oac h intr oduces its own c hallenges. Most
otabl y, r ecov ery of plasmids from WGS sequencing data is espe-
iall y difficult, giv en their smaller length and abundance (Fritz et
l. 2019 , Mendes et al. 2023 ). This pr oblem is exacerbated e v en fur-
her for plasmids coming from marine environments (Meyer et al.
022 ). 

Addressing the challenges of plasmid identification from
eta genomic data, r ecent adv ances in computational biology

nd artificial intelligence have led to development of several
ovel plasmid identification tools. In the span of last year, three
ew plasmid classifiers have been introduced, each promising

mpr ov ed accur acy and pr ecision. PlasX, cr eated by Yu et al.
 2023 ), utilizes a logistic r egr ession model tr ained on a lar ge-scale
ataset, pr oviding impr ov ed r ecall and pr ecision. GeNomad, a hy-
rid pipeline by Camargo et al . ( 2023 ), combines nucleotide se-
uence classification using an IGLOO-based encoder with custom
arker gene identification, outperforming many existing tools in

heir benchmarks (Sourkov 2020 , Camargo et al. 2023 ). Notably,
lasX was the second-best tool in almost all benchmarks pre-
ented in the GeNomad pa per. Lastl y, PLASMe, intr oduced by Tang
t al . ( 2023 ), le v er a ges a natur al langua ge pr ocessing-inspir ed a p-
r oac h, tr eating pr otein sequences as vocabulary for transformer
odels tailored to specific bacterial orders. To date, a direct com-

arison of these tools has not been conducted. 
In this study, we aim to identify, c har acterize, and com-

are plasmid sequences derived from 14 environmental samples
ollected from DSHVs located in the Arctic Mid-Ocean Ridges
AMOR). By benchmarking the performance of PlasX, GeNomad,
nd PLASMe on this unique dataset, we aim to e v aluate their
iases and effectiveness in identifying plasmids from a com-
lex, understudied envir onment. Furthermor e, we seek to gain

nsights into the diversity, ecological roles, and adaptive signifi-
ance of plasmids in these extremophilic microbial communities,
ontributing to a deeper understanding of their contributions to
cosystem function and evolution. 

aterials and methods 

ample collection and processing, DNA 

xtraction, and sequencing 

 total of 14 samples were collected from hydrothermal vents at
MOR, located in the Norwegian–Greenland Sea ( Table S1 ). Four
er e fr om the Loki’s Castle Vent Field, one from the Soria Moria
ent field, and nine from in situ enrichments at the Bruse vent field
Stokke et al. 2020 , Vulcano et al. 2022 ). Following the sampling,

etagenomic DN A w as isolated and sequenced as pr e viousl y de-
cribed (Stokke et al. 2020 , Vulcano et al. 2022 ). Sequencing was
erformed in two batches, using the Illumina MiSeq (300 bp;
amples M1-5, M10-14) and NovaSeq (150 bp; M19-21, M34)
latforms. 

ioinforma tic anal ysis 

uality control and assembly 

ollowing the sequencing, obtained data was processed and as-
embled using either Qia gen CLC Genomics Workbenc h (v11;
iSeq samples) or fastp (v 0.23.2) (Chen et al. 2018 ), with
EGAHIT v1.2.9 (Li et al. 2016 ). Only contigs over 500 bp were con-

idered for further analysis. 

lasmid identification 

ollowing assembly, contigs longer than 500 bp were used as in-
ut for three different plasmid identification tools. First, GeNo-
ad v1.7.4 was used in end-to-end mode with the following

ags: –enable-score-calibration –disable-find-proviruses –cleanup . Each
ask was given 40 CPU threads and 60 Gb of RAM (Camargo et
l. 2023 ). Next, data for the PlasX pipeline were preprocessed
y anvi’o, and plasmid contigs were identified by running the
earc h_de_novo_f amilies and predict commands with default param-
ters (Eren et al. 2021 , Yu et al. 2023 ). Similarly, the tasks were as-
igned with the same computational r esources. Finall y, PLASMe
as used with the unified transformer ( -u T rue ) (T ang et al. 2023 ).
fter pr ediction, r esults fr om all thr ee tools wer e filter ed based on
core assigned to each contig. Only contigs with score ≥0.7 (where
 is a c hr omosome and 1 is a plasmid) were marked as plasmid
ontigs. 

ajority voting system for plasmid contigs selection 

he set containing plasmid contigs remaining after filtering was
hen further refined using a majority voting system. Intersections
etween results of each tool were calculated via a custom Python
cript. Singletons (i.e. contigs only found in output of one tool)
ere classified as unlikely to be plasmids, and contigs found in

ntersections of two or all three tools were designated as high-
onfidence plasmid contigs. 

har acteriza tion of identified plasmid contigs 

haracterization was performed for all potential plasmid contigs,
.e both singletons and contigs from set intersections. All analy-
es were performed for contigs longer than 500 bp, except for tax-
nomic classification with Kr aken2, whic h was performed using
ll contigs. 

axonomic annotation 

axonomy was assigned to predicted plasmid contigs us-
ng two a ppr oac hes. First, the contigs wer e annotated using
raken2 (v.2.1.3) with Standard database (r e v. 2023_04_13, ob-
ained from https:// benlangmead.github.io/ aws-indexes/ k2 ), us-
ng the –report-minimizer-data and –minim um-hit-gr oups 3
a gs, as r ecommended by Lu et al . ( 2022 ) and Wood et
l. ( 2019 ). Next, the contigs were annotated using MMseqs2
v. 92d8cc375ea4cc4784e17150d10e0f9dc8004491) easy-taxonomy
 orkflo w (Steinegger and Söding 2017 ). The r efer ence database
sed was the NCBI NR database (r e v. 2023_02_20), obtained using
he MMseqs2 databases w orkflo w. Both tools w ere assigned 40 CPU
ores and 120 Gb of RAM per task. 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
https://benlangmead.github.io/aws-indexes/k2
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Functional annotation 

Functional annotation of genes found on predicted plasmid con- 
tigs was performed using the eggNOG-mapper v2 suite (v2.1.12),
utilizing Prodigal for gene calling and DIAMOND for protein align- 
ment (Hyatt et al. 2010 , Huerta-Cepas et al. 2019 , Buchfink et al.
2021 , Cantala piedr a et al. 2021 ). The emapper command was run 

with default parameters, using the contigs as an input (–itype 
metagenome). 

Identification of genes with adaptation value 
In order to identify genes carrying ada ptiv e function, coding se- 
quences (CDS) within each plasmid contig were predicted using 
Pyrodigal (v3.3.0)—a Python library binding to Prodigal (Hyatt et 
al. 2010 , Larralde 2022 ). 

Genes with ada ptiv e v alue wer e identified fr om the r esults ob- 
tained from the eggNOG-mapper tool. The results were parsed,
looking for genes assigned a specific KO number, gene name,
GO term, as well as via text search within function descriptions.
All filtering steps were performed using custom-made Python 

scripts. 

Identification and description of mobilization for conjugal 
transfer, replication, and mating pair formation proteins 
Identification and classification of mobilization for conjugal 
tr ansfer (MOB), r eplication (REP), and mating pair formation (MPF) 
proteins within plasmid contigs was performed using MOB, REP,
and MPF protein databases from the MOB-suite utility (Robertson 

and Nash 2018 ). Those databases were used to create diamond 

databases ( makedb ), and to search the genes of plasmid contigs 
using diamond blastp . Output data was then filtered using custom 

Python scripts, selecting hits with at least 50% sequence identity 
and 70% bidirectional coverage ( pident qcovhsp and qcovhsp from 

–outfmt 6 accor dingly). Afterw ar ds, only one database hit per pro- 
tein (with lo w est e-value) was selected. 

Identification of ncRNA 

Identification of ncRNA’s was performed using the Rfam database 
v14.10 and Infernal v 1.1.5 (Nawr oc ki and Ed d y 2013 , Kalvari et al.
2017 ). First, the covariance model database was created from the 
Rfam source files using cmpress . Next, cmscan was used to iden- 
tify RNA sequences within plasmid contigs, using curated cut- 
offs ( –cut_ga ) and other options recommended in the Rfam tu- 
torial: –rf am –nohmmonl y –clanin Rf am.clanin –oskip –fmt 2 -o out- 
put.txt –tblout table.txt Rfam.cm input.fasta ( https://rfam.github.io/ 
rfam-tutorials/). 

Pairwise similarity analysis 
Analysis of pairwise similarity between plasmid contigs was car- 
ried out using Sourmash v.4.8.8 (Pierce et al. 2019 ). First, con- 
tigs signatures were generated via sourmash sketch with k-mer 
size of 31 and scale value of 1000 ( -p k = 31, scaled = 1000 ).
Next, the signatur es wer e compar ed with sourmash compare and 

visualized with sourmash plot , using default options for both 

commands. 

Semiautomatic annotation of selected plasmid contigs 
Selected plasmid contigs were first automatically annotated with 

Bakta (database version 2024–01–19) (Schwengers et al. 2021 ).
Next, the annotations were manually validated using a combina- 
tion of blastp from the NCBI BLAST + suite and HHpred from the 
MPI Bioinformatics Toolkit webserver (Camacho et al. 2009 , Zim- 
mermann et al. 2018 ). 
esults and discussion 

election of sequencing platform has a major 
mpact on assembly outcomes 

amples containing bacterial DN A w er e isolated fr om m ultiple
ent fields located in the AMOR in the Norwegian–Greenland Sea 
Fredriksen et al. 2019 ). Sampling sites wer e c har acterized by dif-
er ent temper atur es, v arying fr om 10 ◦C (sample M4) to 72 ◦C–75 ◦C
samples M5, M11, M19, and M21). Most of the samples were col-
ected fr om hydr othermal sediments (M4, M10–14, M19–21, and

34) or barite chimneys (M1–M3). Sample M5 was the only one
solated from a white smoker. Full metadata concerning the sam-
les can be found in Table S1 . 

Following sample collection and processing, DNA isolated from 

nvironmental samples was sequenced in two separate batches,
esulting in two datasets: MiSeq and No vaSeq. T he MiSeq dataset
omprised samples M1–M5 and M10–M14 ( n = 10), which were se-
uenced using the MiSeq platform in 2 × 300 bp mode . T he No-
aSeq dataset included samples M19–M21 and M34 ( n = 4), se-
uenced using the NovaSeq platform (2 × 150 bp). 

The assembly results revealed notable differences between the 
wo datasets . T he No vaSeq samples yielded a higher a v er a ge to-
al contig length (443 966 701 bp) compared to the MiSeq sam-
les (345 176 277 bp), despite ha ving fewer contigs on a v er a ge

59 742 versus 116 663) (Fig. 1 ). This suggests that the NovaSeq
latform generated higher-quality data, resulting in longer con- 
iguous sequences . T he most striking difference was observed in
he av er a ge contig length, with the NovaSeq dataset having more
han twice the length of the MiSeq dataset (7576 versus 3468).
his could be due to the superior quality of NovaSeq data, and/or
 coincidentally occurring low number of repeated regions, that 
sually make it difficult to assemble long sequence contigs from
horter reads (Kusmierek and No w ak 2018 ). 

Ho w e v er, it is important to note that two samples—M13 (MiSeq)
nd M19 (NovaSeq)—had the smallest total contig lengths. This 
bservation is particularly surprising for sample M19, given that 
he NovaSeq datasets generally produced higher quality data. This 
ould be attributed to various factors, such as the quality and
uantity of the input DNA, the presence of contaminants, or the

nherent complexity of the microbial communities in these spe- 
ific samples. A detailed description of assembl y r esults can be
ound in Table S2 . 

Ov er all, samples obtained from the vent fields at AMOR repre-
ent a diverse range of microbial communities adapted to various
hermal conditions—fr om moder ate to extr eme . T he use of two
ifferent sequencing platforms, MiSeq and Nov aSeq, intr oduced 

 significant bias in assembly quality. The NovaSeq dataset seems
o be superior, with longer contiguous sequences and higher mean
ontig lengths. Ho w e v er, the pr esence of outliers with lo w er as-
embly quality in both datasets highlights the need for cautious
nter pr etation of the data. 

ach plasmid identification tools introduces its 

wn taxonomic and functional biases 

he three plasmid identification tools emplo y ed in this study—
eNomad, PLASMe, and PlasX—yielded varying numbers of plas- 
id contigs from 14 environmental samples. GeNomad marked 

he highest number of contigs assigned as plasmids–2350, fol- 
o w ed b y PlasX (2215), and PLASMe (604) (Fig. 2 A). Ov erla p be-
ween the results of each tool was calculated based on inter-
ection anal ysis, namel y by matc hing contig names. Remarkabl y,
nly 12 contigs were consistently designated as plasmid by all
hree tools (Fig. 2 A). T his hea vily underlines the importance of tool

https://rfam.github.io/rfam-tutorials/
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
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Figure 1. Comparison of assembly results between environmental samples in relation to sequencing platforms. (A) Comparison of the total contig 
length. (B) Comparison of the mean contig length. 

Figure 2. (A) Venn dia gr am showing the intersection of results of all three plasmid classification tools. (B) Proportion of plasmid contigs identified 
within each sample by each tool. 
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election for plasmid pr ediction, as eac h tool has its own
trengths, weaknesses and biases. GeNomad and PlasX generated
esults that seem to be more similar, sharing the highest num-
er of contigs among all groups (149). This contrasts with results
f PLASMe, which only shared 34 contigs with GeNomad and 10
ith PlasX. Ho w e v er, it is important to note that this tool identi-
ed a m uc h smaller number of plasmid contigs compared to the
ther two. 

The number of plasmid contigs identified by each tool varied
r eatl y acr oss the 14 environmental samples (Fig. 2 B). Ov er all,
amples M1–M3 had the highest number of plasmid contigs iden-
ified. On a per-tool basis, GeNomad identified the highest num-
er of plasmid contigs in samples M2 (664) and M1 (397), while
LASMe and PlasX found the most plasmid contigs in samples M2
151 for PLASMe, 335 for PlasX) and M3 (95, 294 accordingly). Inter-
stingl y, all thr ee tools consistentl y identified the fe west plasmid
ontigs in sample M13 (GeNomad: 14, PLASMe: 1, and PlasX: 48),
ith the exception of PlasX, where sample M13 was the second

east abundant after sample M19 (45). This consistency may in-
icate that these samples ma y ha ve an inherently lo w er plasmid
ontent compared to other samples, or that the plasmid contigs
resent in these samples are particularly difficult to identify us-

ng the emplo y ed tools, either due to their design or the r efer ence
ata used during the training process. 
election of taxonomic classifiers matters 
o determine the taxonomic origin and potential host of the plas-
id contigs, two separate classifiers were used and compared to

nd the optimal r esult. While corr ect taxonomic annotation of
lasmid sequences is very difficult, given that they often differ in

r operties suc h as GC-content and k-mer composition fr om their
ost, e v en a low-le v el assignment can be gr eatl y beneficial (Aytan-
ktug et al. 2022 ). For example, determining whether the plasmid
riginates from bacteria or archaea, can be crucial for its later

nalysis and annotation. 
Tw o tools w er e initiall y selected for taxonomic anal ysis:

raken2 and MMseqs2. To determine which one performs bet-
er, all > 5000 contigs identified by three plasmid classifiers were
ssigned taxonomy (Fig. 3 ). First, we classified the samples using

raken2, using the standard database. Overall, the tool performed

ell, assigning the lowest taxonomic rank (species) to over 38%
f all sequences. Sur prisingl y, onl y 55.8% of all sequences were
lassified at the kingdom le v el. On the other hand, MMseqs2 with

he NR database seemed to fare much better at higher taxonomic
e v els . T he tool assigned a kingdom to 94.4% of all contigs, also
utperforming kraken2 at the phylum le v el (62.3% v ersus 48.2%).
t lo w er taxonomic le v els, the percenta ge of classified sequences
r opped significantl y, r eac hing less than 10% at the species le v el.
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F igure 3. P er centage of all plasmid contigs, which were assigned a taxonomic ID on each level of taxonomy. 
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Given the nature of samples analysed in this study, which came 
from an understudied environment, we believe that the high per- 
centage of low-level annotations provided by Kraken2 may be 
false. Additionally, since determining the highest ranks , i.e . king- 
dom and phylum, has the highest impact on downstream anal- 
ysis, and given that MMseqs2 seemed to outperform Kraken2 on 

these le v els, we decided to use MMseqs as classification tool of 
choice for further analyses . Furthermore , it must be noted that 
true plasmid–host association is very hard to determine using 
solely bioinformatic tools, and usually requires the use of labo- 
r atory tec hniques, suc h as Hi-C sequencing (e.g. Calderón-Fr anco 
et al. 2023 ). 

Biggest taxonomic differences between tools are reflected in 

ar c haeal diversity 

We analysed the differences in taxonomic composition of plas- 
mid contigs indicated by each plasmid classification tool. In gen- 
eral, contigs originating from bacteria seem to dominate in most 
en vironments , regardless of tools used. The exception seems to 
be sample M13, where both GeNomad and PlasX detected a large 
proportion of contigs later classified as archaeal (Fig. 4 ). This 
aligns well with pr e vious amplicon data, whic h also sho w ed Ar- 
chaea as the most abundant in this sample, and with the results 
fr om MAG-based meta genomic stud y (unpublished) (Stokk e et al.
2020 ). 

Gener all y, the r esults of taxonomic classification of selected 

contigs seems to be consistent across tools . T he data is dominated 

by bacteria from Gamma , Delta , and Epsilonproteobacteria classes,
e v en though the proportion of hits vary between tools. Notably,
Flavobacteria have only been observed in GeNomad output, while 
PLASMe was the only tool to identify contigs classified as Bacilli.
Ov er all, GeNomad detected the most phyla not found in results 
of other tools (22), follo w ed b y PlasX (10) and PLASMe (6). Interest- 
ingly, PlasX identified a high proportion of Anaerolineae —members 
f the Chloroflexi phylum often found in marine sediments (Blaze-
ak and Schippers 2010 ) ( Fig. S1 ). 

One of the most important differences between the resulting 
atasets is the minuscule presence of archaeal data in PLASMe
utput. T his ma y be due to the r efer ence dataset used to tr ain
he tool, as it consisted exclusiv el y of bacterial data (Tang et al.
023 ). 

egree of similarity between proteins from the 
istinguished plasmid contigs and the r efer ence plasmids 
aries between tools 
o gain a better understanding of which plasmid contig dataset 
how the gr eatest degr ee of similarity to known plasmids, we com-
ared the proteins found on plasmid contigs identified by PlasX,
LASMe, and GeNomad to proteins found on plasmids deposited 

n the PLSDb database. For each protein found within our datasets,
e reported five best hits to the proteins from PLSDb. Next, we
nalysed the density of hits based on mean cov er a ge between
uery and subject sequence, as well as % identity. 

Our anal ysis r e v ealed that while the gener al tr ends ar e similar
etween datasets, there are some notable differences. Overall, a 
igh percentage of all hits sho w ed very high identity and cov er a ge,
specially for hits from GeNomad and PLASMe (Fig. 5 ). Practically
o hits were identified near the origin of the density plot, indicat-

ng that all sequences sho w ed at least a low similarity to known
equences. Inter estingl y, for PlasX r esults, the highest density of
its is located between 30% and 50% of identity, while k ee ping over
0% cov er a ge. Additionall y, a localized maximum can be seen for
its with > 99% cov er a ge and identity. This could suggest that this
ool was able to detect contigs containing not only the conserved
lasmid core, but also the novel genetic load. 

Furthermor e, while r esults of searc h for GeNomad and PLASMe
atasets are located mostly within 80% + coverage range, a sig-
ificant proportion of hits for proteins originating from PlasX- 

dentified plasmids contigs sho w ed cov er a ge below 75%. 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data


6 | FEMS Microbiology Ecology , 2024, Vol. 100, No. 10 

Figure 4. Proportion of plasmid contigs classified into each taxonomic kingdom for each environmental sample. 

Figure 5. Distribution of identity and mean cov er a ge of hits between proteins identified on plasmid contigs and proteins from the PLSDb database. For 
each query protein, the top five hits ( diamond -k 5 ) were reported. 
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ontent of plasmid contig datasets varies between tools on 

unctional level 
nother very important aspect of biological data, especially for
etagenomic datasets, is its functional composition. In order to

etermine what kind of functional modules and traits can be
ound within plasmid contigs identified by each classifier, we em-
lo y ed m ultiple tools, eac h tar geting a differ ent aspect of the
etagenome. 
First, we used eggNOG-mapper to get an in-depth understand-

ng of the general function of each gene found on plasmid contigs.
he first set of information that was of gr eat inter est, was annota-
ion with COG categories. A COG category was assigned to 87.0%,
8.6%, and 90.8% of all protein CDS for GeNomad, PLASMe, and
lasX contigs, r espectiv el y (Fig. 6 ). Furthermor e, 67.3%, 71.1%, and
6.3% of all CDS were assigned a category other than S (Poorly
haracterized), meaning that at least their general function is
nown. This result suggests that plasmid contigs selected by PlasX
how the greatest similarity to known sequences, or that their
ontent is the most similar to data in the COG database. On the
ther hand, GeNomad had the highest proportion of Unclassified
nd Poorl y Char acterized pr oteins, suggesting a “less conserv a-
iv e” a ppr oac h. As mentioned before, both results can be beneficial
hen working with data from extreme en vironments , as a more
onserv ativ e a ppr oac h can guar antee a lar ger pr oportion of True
ositiv es, wher eas an opposite a ppr oac h can lead to discovery of
o vel sequences . 

On COG category le v el, genes involv ed in categories L (DNA
 eplication, r ecombination, and r epair), K (tr anscription), and P
inor ganic ion tr ansport and metabolism; GeNomad and PLASMe)

r I (lipid transport and metabolism; PlasX) were most common.
iven the type of data—plasmid contigs—this result was desired.

n gener al, pr oteins involv ed in DNA metabolism are not only es-
ential for plasmid functioning but are also most conserved and
est described. High abundance of genes involved in transcription
ay be interesting, since they are not so commonly found on plas-
ids . T his could be attributed to presence of prophage regions, ge-

etic load of the plasmids, or contamination with c hr omosomal
equences. Similarl y, pr esence of pr oteins r esponsible for tr ans-

ort and metabolism of either inorganic ions or lipids is expected
n plasmid sequences, as they can provide a significant adapta-
ional adv anta ge. On the other hand, pr oteins fr om categories A,
, B, and Z wer e onl y found in less than fiv e copies for all datasets.
The most striking difference between three analysed datasets

as observed for the category D—cell cycle control, cell divi-
ion, and c hr omosome partitioning. For GeNomad and PLASMe
atasets, pr oteins fr om this category constituted about 1.5% of all
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Figure 6. COG types and categories assigned to genes found within contigs classified as plasmid per each classification tool. Annotations for COG 

categories are as follows: J: translation, ribosomal structure, and biogenesis, A: RNA processing and modification, K: transcription, L: replication, 
recombination and repair, B: chromatin structure and dynamics, D: cell cycle control, cell division, and c hr omosome partitioning, Y: nuclear structure, 
V: defense mechanisms, T: signal transduction mechanisms, M: cell wall/membrane/envelope biogenesis, N: cell motility, Z: cytoskeleton, W: 
extr acellular structur es, U: intr acellular tr affic king, secr etion, and v esicular tr ansport, O: post-tr anslational modification, pr otein turnov er, and 
c ha per ones, C: ener gy pr oduction and conv ersion, G: carbohydr ate tr ansport and metabolism, E: amino acid tr ansport and metabolism, F: nucleotide 
transport and metabolism, H: coenzyme transport and metabolism, I: lipid transport and metabolism, P: inorganic ion transport and metabolism, Q: 
secondary metabolites biosynthesis, transport, and catabolism, R: gener al function pr ediction onl y, and S: function unknown. 
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pr oteins, wher eas for PlasX the percentage was 5.5%. This could 

be attributed to contamination of the dataset with c hr omosomal 
data, but also to presence of proteins responsible for plasmid par- 
titioning and maintenance. Further analysis of the D category 
r e v ealed that most proteins were classified as tyrosine recom- 
binases ( Fig. S2 ). Inter estingl y, while 133 of those proteins were 
found in the PlasX dataset, only five were identified in GeNomad 

data, and none were present in PLASMe plasmid contigs. 
Additionall y, 54 pr oteins marked as “involved in c hr omosome 

partitioning” were identified in PlasX data. The difference was not 
as great as for recombinases, with GeNomad also outputting plas- 
mid contigs containing 22 proteins with the same classification.
Again, PLASMe did not contain any such proteins. Overall, this 
anal ysis r e v ealed that PlasX sho w ed a significant bias to w ar ds cer- 
tain pr oteins fr om the COG D category, especially xerC and xerD 

site-specific tyr osine r ecombinases, and pr oteins involv ed in c hr o- 
mosome partitioning. GeNomad results were more moderate and 

did not show any significant trends in terms of COG category D 

proteins. PLASMe dataset contained the least proteins from this 
category (12), compared to other tools (144 for GeNomad and 406 
PlasX), but r elativ e count did not differ significantl y fr om GeNo- 
mad (1.28% versus 1.61%), and can be attributed to overall smaller 
number of plasmid contigs. 

Yet again, because of the nature of the dataset analysed in this 
study it is hard to determine whether the biases described above 
ar e a r esult of contamination or nov elty. Pr esence of site-specific 
tyr osine r ecombinases is usuall y corr elated with integr ation of 
pr opha ges into sequences, whic h can ha ppen in an y part of the 
genome . T his hypothesis could be supported by the results of tax- 
onomic analysis, as PlasX was the tool with the highest number of 
contigs classified as vir al. Similarl y, pr oteins involv ed in c hr omo- 
some partitioning can be responsible for c hr omosome partition- 
ing, or may be mis-annotated, and in fact be involved in plasmid 

partitioning systems . T his is quite lik ely, gi ven the similarity be- 
tween both types of pr oteins. Inter estingl y, PLASMe output does 
not contain most of the proteins described abo ve . T his could be a 
sign of high precision of the tool, as proteins that ar e likel y found 

on c hr omosomes ar e not found in this dataset. On the other hand,
typical plasmid proteins, lik e parA, to xin–antito xin systems, and 

plasmid maintenance proteins are also absent from this dataset,
which could indicate lo w er recall of this tool. 
Next, we performed identification of RNAs found on plasmid 

ontigs identified by all three classifiers . T he classification was
arried out using the Rfam database with Infernal, using cutoff
alues set by Rfam curators when creating families. Initial anal-
sis r e v ealed a wide array of ncRNAs found in all three datasets.
or all tools, tRNAs were the most abundant type of RNA. Addi-
ionall y, RNAI, an element typicall y found on ColE1 -like plasmids,
as also identified in all three datasets, although only in one copy

Helmer-Citterich et al. 1988 ). Interestingly, a multitude of group II
atal ytic intr ons was also found in eac h tools’ output—including
ener al (Intr on_gpII) and specific hits (gr oup-II-D1D4-1,3,6). Fi-
all y, arc haeal small subunit ribosomal RNA was also found in
ll datasets (Fig. 7 ). 

Ov er all, ther e wer e no significant differ ences in r esults of
ear ch betw een datasets, except for CRISPR-DR elements, found
n large abundance in GeNomad data, and to some extent in PlasX,
ut not in PLASMe. Inter estingl y, both arc haeal and bacterial lar ge
ubunit ribosomal RN A w as identified in PLASMe and GeNomad
ata, but not PlasX. 

For GeNomad, CRISPR RNA dir ect r epeat element 2 was almost
s abundant as tRNA (62 hits and 63 hits, r espectiv el y), suggest-
ng that the tool may be biased to w ar ds contigs containing this
lement. CRISPR dir ect r epeats wer e the third most abundant el-
ment for PlasX, with 14 hits. Further anal ysis r e v ealed that the
 epeats ar e located on six contigs, two carrying only one copy, one
ith two copies, and contigs with 11, 27, and 34 copies. Further
nal ysis r e v ealed no Cas genes located on these contigs. Ho w e v er,
as and CRISPR-related proteins were identified on other plasmid 

ontigs originating from the same environment, indicating that 
orking systems could be present in vivo (for example, sample
11, containing a contig with 34 DRs, also contained cas1 , cas2 ,

nd cas6 proteins, as well as other CRISPR-r elated pr oteins). Hav-
ng considered this information, as well as the fact that the plas-

id contigs come from metagenomic assemblies and may not be
omplete, it is nearly impossible to determine if the systems are
n fact functional or not, especially without a ppl ying labor atory
xperiments. 

Finally, we decided to identify typical plasmid proteins, in- 
olved in MOB, MPF, and REP. For this, we utilized MOB-suite
atabases (Robertson and Nash 2018 ). Initial analysis revealed a

ow number of proteins belonging to any of the groups ( Fig. S3 ). 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
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F igure 7. Heatmap sho wing the count of RN As identified within data originating fr om eac h plasmid identification tool. Identification was performed 
using Rfam database and Infernal. 
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First, we scrutinized the MOB proteins. We were able to identify
r oteins fr om fiv e differ ent MOB gr oups (F , H, P , Q, and V), but only
ne of them (P) was identified in all three datasets. Overall, the
ost MOB proteins were identified in GeNomad dataset (18), while

LASMe had the same number as PlasX (10), despite a m uc h lo w er
ount of contigs in output dataset. The only MOB type identified
n all datasets was MOBP. 

Next, the protein group which sho w ed the most striking
iffer ences—MPF pr oteins . T his group was the most numerous.
gain, GeNomad had the most hits (69), follo w ed b y PlasX (44)
nd PLASMe (6). Onl y thr ee types of MPF proteins were found—F,
, and unknown—with MPF-F and MPF-T being found in all three
atasets, albeit in m uc h lo w er counts within the PLASMe output.

Results of REP analysis were scattered, with no protein cluster
athering more than four hits from one tool. Overall, the results of
his anal ysis ar e quite sur prising. Giv en the fact that a total of over
000 plasmid contigs wer e anal ysed, obtaining 225 hallmark plas-
id genes is appalling. Once again, this result can be attributed to
any factors. Most likely includes database bias, lack of reference

ata, and incompleteness of contigs (i.e. a full plasmid sequence
an be split into multiple parts, out of which only one will con-
ain a REP system). Ne v ertheless, further anal ysis would hav e to
e conducted in order to determine what partitioning and mobi-
ization systems can be found in the micr obial comm unities of the
MOR ridge. 

har acteriza tion of majority voting plasmid 

ontigs 

n order to address the discrepancies between the results of all
hree tools and remove their respective biases, a majority vot-
ng system was used to determine contigs that have a maximally
igh probability of actually originating from plasmid DNA. Con-
igs classified as plasmid by at least two out of three tools were
elected, resulting in a dataset containing 205 plasmids, with 12
f them being selected by all three tools . T hese high-confidence
lasmids present a valuable resource for an in-depth analysis
f the taxonomic, functional, and metabolic diversity within the
MOR micr obial comm unities. Sur prisingl y, 41 contigs carrying
allmark plasmid genes (MOB, REP, or MPF) identified with MOB-
can were not included in this set. Ho w e v er, most of the hits were
f poor quality, and as such, those contigs were not further con-
idered. A series of analyses analogous to that performed before-
and using datasets fr om thr ee plasmid classification tools was
erformed. First, we looked into the taxonomic classification and
iv ersity between envir onments. Next, we scrutinized the func-
ional and adaptational value of the plasmid contigs in question,
ighlighting their role in adaptation to extreme conditions. Finally,
e tried to fund similarities to plasmid sequences available in
ublic databases. 

igh-confidence plasmid contigs vary in size and GC 

ontent 
ypicall y, plasmids r ange in size fr om ar ound 700 bp to 400 kb,
ith some (e.g. mega-sized plasmids in Alphaproteobacteria ) r eac h-

ng over 1 Mb in size (Thomas and Summers 2008 , Dziewit et al.
014 , Ciok et al. 2016 , Fr a ge et al. 2016 ). Plasmid contigs identified
ia majority voting varied in size from 611 bp to 251 kb, staying
ithin r easonable r ange for pr edicted plasmids. Av er a ge length
as 18.1 kb, while median length was 3740 bp (Fig. 8 A). While

his could potentially be a result of mostly small plasmids being
resent in the environment, it is more likely a result of fragmenta-
ion of sequences. Mean GC content of all 205 plasmid contigs was
8.37%, but a more detailed analysis revealed that most plasmids
ave a GC content of either around 30% or 60%. Since GC con-
ent of sequence is usually linked with temperature of the envi-
onment (higher temperatures mean higher GC content), we also
nalysed how the GC content changes based on the temperature
f the sampling site (Hu et al. 2022 ) (Fig. 8 B). For environments
ith the highest temper atur e (75 ◦C), a peak was observed at ∼65%
C content. As the temper atur e dr opped, the height of this peak
tarted dropping, while a second peak, located at ∼30% GC con-
ent started a ppearing, incr easing in size, r eac hing its maxim um
t 20 ◦C. This clearly showcases how temper atur e affects the GC
ontent of plasmid contigs. 

axonomy of plasmids from DSHVs is biased toward 

seudomonadota and Campylobacterota 

ne of the most important c har acteristics of plasmid sequences
s their taxonomy, or association with the host. Ho w e v er, it’s cru-
ial to remember that plasmids are mobile and may be exchanged
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Figure 8. (A) Histogram of sequence length. (B) Ridge plots displaying GC content by environment in plasmids from majority voting dataset. For GC 

content plots , en vironments M4, M10, and M12 were excluded, as they contained two or less plasmid contigs. 
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between hosts. To determine the taxonomy of plasmid contigs se- 

lected via majority v oting, w e applied the same methodology as 
before, using MMseqs2 easy-taxonomy module with NR database 
as r efer ence. Initial anal ysis r e v ealed that ov er 96% of all plasmid 

contigs were classified within any taxonomic rank. The percent- 
a ge dr opped r a pidl y with decr easing r ank, with 75% plasmid con- 
tigs classified at phylum le v el, 58% at class le v el, down to 9% at 
species le v el ( Fig. S4 A). In general, the dataset is dominated heav- 
ily by Bacteria , with only one out of 205 sequences classified as 
Archaeal. The annotation of this sequence only reached the phy- 
lum r ank—Euryarc haeota . Furthermor e, se v en sequences wer e not 
assigned to any Kingdom, and 193 plasmid contigs were classi- 
fied as Bacterial. Classification of all bacterial plasmid contigs on 

phylum le v el can be seen on panel B of Fig. S4 . 

The most abundant phyla were Pseudomonadota and Campy- 
lobacterota . On family level, Burkholderiaceae were observed the 
most fr equentl y, with 29 plasmid contigs assigned to this r ank.
The next most abundant family was Arcobacteraceae , with five ob- 
servations . T his family is unique within the Campylobacterota phy- 
lum, as it is found in an unusually wide range of en vironments ,
including vents at AMOR (Fera et al. 2004 , Urich et al. 2014 , Dahle 
et al. 2015 , Stokke et al. 2015 , Steen et al. 2016 ). One of the species 

within this family, Arcobacter sulfidicus , produces filamentous sul- 
fur, which may indicate its pivotal role in formation of white sul- 
fur mats, useful in anchoring microbes to rocky surfaces affected 

b y flo w of hydrothermal fluids (Wirsen et al. 2002 ). Other families 
known to metabolize sulfur, namely Sulfurimonadaceae and Chro- 
matiaceae were also identified (Hubas et al. 2013 , Han and Perner 
2015 ). Other than that, plasmid contigs were classified as originat- 
ing from families Methylococcaeae (two contigs), Enterobacteriaceae 
(one), Paracoccaceae (one), Roseobacteraceae (one), and Wenzhouxian- 
gellaceae (one). 

Ov er all, we belie v e that the r esults pr esented ar e in line with 

the fundamental role of sulfur species in forming and nourish- 
ing the bacterial communities found in deep-sea environments 
(Urich et al. 2014 , Dahle et al. 2015 , Stokke et al. 2015 , Steen 

et al. 2016 ). Another fact that must be considered is the rel- 
ativ el y low percentage of successfully classified sequences, es- 
pecially at lo w er taxonomic le v els . T his stems from the under- 
r epr esentation of data fr om extr eme envir onments in public 
atabases, as well as lack of experimental data confirming their
axonomy. 

lasmids may provide a plethora of functional advantages 
o their hosts 
o gain an insight into the metabolic functions of plasmid con-
igs, we analysed the presence and relative abundance of pro-
eins within each COG category, as well as looked into specific
ategories to r e v eal what evolutionary advantages they may pro-
ide. Similar to results coming from each plasmid classifier, plas-
id contigs selected via majority voting system were enriched 

ith genes from COG categories L, K, and P (replication, recom-
ination, and r epair; tr anscription; inor ganic ion tr ansport and
etabolism, r espectiv el y), suggesting that, a part fr om functions

elated to plasmid maintenance and transmission, functionality 
elated to utilization of novel, inorganic energy sources is the most
nriched within plasmid contigs (Fig. 9 ). 

In order to determine the exact functionality carried by 
lasmid-encoded proteins, we next analysed the output of 
ggNOG-mapper in terms of both Pfam hits and KEGG hits. For
oth categories, if a protein was annotated with more than one
D, the IDs were split and treated as separate entries. 2575 pro-
eins, originating from 205 plasmid contigs, were assigned 3875 
onov erla pping Pfams and 2728 KEGG KO terms. 

Ov er all, most abundant protein families (i.e. Pfams) identified
n the majority voting plasmid dataset wer e r elated to pha ge bi-
logy and tr ansmembr ane tr ansport. Specificall y, we identified 73
its to pha ge integr ases (PF00589) and 29 hits to their N-terminal
AM-like domain (PF02899), as well as 32 r esolv ases (PF00239),
ften encoded within Tn 3 -like transposons (Heffron et al. 1979 ).
n terms of tr ansmembr ane tr ansport and substr ate binding, we
dentified a wide range of domains, with the LysR substrate bind-
ng domain (PF03466) having the most hits (47). This domain
an have a critical role in ensnearing substrates available in the
nvironment, including amino acids, sugar phosphates, organic 
cids, metal cations and many more (Matilla et al. 2022 ). Poten-
ial role of plasmids in acquisition of substrates from the en-
ironment can be further confirmed by the presence of numer-
us copies of domains involved in transport of various substrates,
ncluding ABC transporters (PF00005, 43 hits), major facilitator 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
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Figure 9. COG categories assigned to genes found within contigs classified as plasmid by at least two classification tools. Annotations for COG 

categories are as follows: J: translation, ribosomal structure and biogenesis, K: transcription, L: replication, recombination, and repair, D: cell cycle 
control, cell division, and c hr omosome partitioning, V: defense mec hanisms, T: signal tr ansduction mec hanisms, M: cell wall/membr ane/env elope 
biogenesis, N: cell motility, U: intracellular trafficking, secretion, and vesicular transport, O: post-translational modification, protein turnover, 
c ha per ones, C: ener gy pr oduction and conv ersion, G: carbohydr ate tr ansport and metabolism, E: amino acid tr ansport and metabolism, F: nucleotide 
transport and metabolism, H: coenzyme transport and metabolism, I: lipid transport and metabolism, P: inorganic ion transport and metabolism, Q: 
secondary metabolites biosynthesis, transport, and catabolism, and S: function unknown. 
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uperfamily (MFS) members (PF07690, 40 hits; PF05977, 4 hits;
F06779, and 4 hits), ACR famil y membr ane pr oteins (PF00873,
2 hits), and binding-protein-dependent transport system mem-
ers (PF00528, 30 hits). Additionall y, man y r egulatory domains
ere found as well, such as the regulatory helix-turn-helix protein

r om LysR famil y, matc hing the LysR substr ate-binding domain (55
its, PF00126); 34 general response regulator domains (PF00072),
nd more. We also identified domains responsible for binding and
ransport of metals (such as CopB and copper oxidases; ChrB, and
ther c hr omate tr ansporters), m ultiple 2Fe–2S ir on–sulfur clus-
er binding domains (fer2, fer4_4,12,14), conjugal transfer pro-
eins ( tr aCEFGHLN ), DNA meth ylases and pol ymer ases, and m ulti-
le DDE tr ansposases. Ov er all, w e w ere able to identify 589 unique
omains, and 421 proteins were not assigned any Pfam domain. 

Despite basing on the same input dataset, the results of KEGG
O annotations present a different functional landscape com-
ared to Pfam. Here, by far the most numerous annotation be-

ongs to partitioning pr oteins (K03496–c hr omosome partition-
ng protein–42 hits; and K03497–ParB chromosome partitioning
rotein–24 hits) and chemo- and aerotaxis proteins (K03406–
ethyl-accepting c hemotaxis pr otein–20 hits; K03776–aer otaxis

ece ptor–16 hits; K05874–methyl-acce pting c hemotaxis pr otein
, serine sensor receptor–17 hits; and K05875–methyl-accepting
 hemotaxis pr otein II, aspartate sensor r eceptor–12 hits). On the
ther hand, some similarities were retained, such as presence of
opper transport and resistance proteins (K17686, K07156, and
07233), MFS proteins (K08191, K03535, K08225, and K08369), and
onjugal tr ansfer pr oteins (K12056–K12072). Her e, the number of
roteins with no database ID assigned was much higher compared
o Pfam, as 1429 proteins were not matched with any KEGG KO,
nd the rest were assigned 310 unique KO numbers. 

hoice of sequencing platform significantly affects 
utcomes of functional annotation 

hile differ ences observ ed between differ ent sources of annota-
ion (Pfam v ersus KEGG) ar e not dr asticall y big, they are much

ore noticeable when comparing annotations between sam-
les originating fr om differ ent sequencing platforms. Namely, the
umber of unique Pfam and KEGG annotations assigned to pro-
eins originating from each environment, is much higher for No-
 aSeq samples compar ed to MiSeq data ( Fig. S5 ). This is especially
ignificant for samples M2 and M3, which, despite containing a
igh number of plasmid contigs (62 for M2, highest of all sam-
les, and 27 for M3, third highest), have a much smaller propor-
ion of unique database IDs within them. Samples M4, M10, M12,
nd M14 only contain a minimal number of plasmid contigs (2, 2,
, and 4, r espectiv el y). 

While differences in environmental diversity could contribute
o variations in annotation, the results from section "Selection of
equencing platform has a major impact on assembly outcomes"
uggest that sequencing methodology plays a significant role. The

igher quality and quantity of data produced by No vaSeq ma y al-
ow for mor e compr ehensiv e assembl y and annotation of plasmid
equences, r e v ealing a gr eater div ersity of functional genes. Con-
 ersel y, the shorter, potentiall y fr a gmented assemblies obtained
rom MiSeq data may limit the detection and characterization
f certain plasmid-borne genes, leading to an underestimation
f functional diversity. Ho w ever, the observed variability within

iSeq samples suggests that the inherent plasmid content and
omm unity structur e within these envir onments could also con-
ribute to the observed differences. 

In conclusion, the functional analysis of high-confidence plas-
id contigs from DSHVs r e v ealed a div erse arr ay of genes in-

olved in various metabolic processes. While core plasmid func-
ions lik e re plication, transcription, and inorganic ion transport
er e enric hed, the pr esence of numer ous genes r elated to pha ge
iology, including integrases and resolvases, suggests complex in-
eractions between plasmids and phages in this ecosystem, pos-
ibl y inter play between these elements leading to formation of
lasmid-like pr opha ges or integr ation of pha ges within plasmids
r exchange of genetic modules . T his interpla y ma y be crucial
or plasmid maintenance, horizontal gene transfer, and the ac-
uisition of nov el ada ptiv e tr aits. The abundance of genes re-

ated to tr ansmembr ane tr ansport and substr ate binding further

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
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indicates a pivotal role of plasmids in facilitating nutrient up- 
take and adaptation to the unique geochemical conditions of hy- 
dr othermal v ents. Notabl y, a significant pr oportion of pr oteins 
lacked annotations in both the Pfam and KEGG databases, high- 
lighting the understudied nature of this environment and the po- 
tential for novel gene functions yet to be discov er ed. It is also im- 
portant to acknowledge that the observed functional profiles may 
be influenced by the biases of the individual plasmid classifiers,
eac h potentiall y favoring certain types of plasmids based on their 
training data and algorithms. 

In-depth analysis of 12 plasmid contigs selected 

by all tools 

The last step in analysis of plasmid data obtained from tested 

metagenomic samples was to take an indepth look at 12 plasmid 

contigs selected by all three tools used in the study. All of the se- 
quences can be found in supplementary file F1 . Plasmid contigs 
contained within this dataset should have a maximally high like- 
lihood of being actual plasmids/fr a gments of plasmids . T he first 
step in this analysis was to compare the plasmid contigs to deter- 
mine their similarity, and potentially find clusters of similar plas- 
mids. In order to do so, we used k-mer-based tool sourmash (Pierce 
et al. 2019 ). Results sho w ed that the 12 plasmids formed two clus- 
ters of size four, containing nearly identical sequences (estimated 

J accar d similarity index equal to 1). For the remaining four con- 
tigs, no similarity to any other plasmid contig from this dataset 
was found (Fig. 10 A). Notabl y, plasmid contigs whic h formed clus- 
ters 1 and 2, originated from environments M19, M20, M21, and 

M34, sequenced using the NovaSeq platform; and only three plas- 
mids in this dataset originated from MiSeq data. Once again, the 
importance of sequencing platform selection and its effect on re- 
sults of downstream analyses is provided. 

Plasmid contigs from cluster 1 provide chromate and 

super oxide r esistance 
The cluster 1 contained contigs M19_ctg_14 464, M20_ctg_158 526,
M21_ctg_2756, and M34_ctg_74 242, each 22 261 bp long, and with 

GC content of 64.86%. Each contig contained 29 protein CDS. Bas- 
ing on the results of MMseqs2 taxonomic analysis, the contigs 
were classified into Pseudomonadota phylum. A blastn search 

confirmed very high similarity ( > 99% identity and coverage) to 
plasmids originating from other members of this phylum , namely 
Ralstonia strains, although the target sequences were much longer 
(190–340 kb). Linear map of the plasmid contig M19_ctg_14 464 as 
a r epr esentativ e of all four contigs found within this cluster can 

be seen in Fig. 10 (B). 
The next step was to perform functional annotation of CDS,

which was carried out using HHpred. First, we tried to identify 
hallmark plasmid genes. Unfortunately, no REP, MOB, or MPF genes 
were identified within the sequences. Similarly, GeNomad, which 

uses a custom database of hallmark plasmid genes, also identified 

no such features. Despite that, the contig did contain two poten- 
tiall y inter esting modules. First, a tr ansposon-like module, con- 
taining 4 genes (coordinates 5585–7327 bp), containing an inte- 
gron gene cassette protein, a transposase, a prophage protein and 

site-specific DNA recombinase SpoIVC A/DNA in vertase PinE. T he 
functionality and exact role of this module is hard to determine,
as the annotations for proteins in this element were of low quality.
Second, a c hr omate-r esistance module was identified. This mod- 
ule encodes six proteins, including a periplasmic adaptor subunit 
of RND efflux tr ansporter, CzcA famil y RND efflux transporter,
two c hr omate r esistance pr oteins, and a super oxide dism utase.
ogether, these proteins have a potential to form a fully func-
ional c hr omate-r esistance mec hanism, whic h includes r educ-
ion, binding and transport of chromate. Interestingly, a similar 
enetic module was reported by Branco et al. ( 2008 ). In their work,
he authors describe an operon of analogous structure and con-
rm its function in c hr omate and superoxide resistance. Further-
ore, the element described in their w ork w as located within the

nOtChr transposable element, similar to how the c hr omate r esis-
ance genes identified in this work are located near a transposase
ene. Another two genes, potentially involved in metal resistance 
re located both upstream and downstream—a periplasmic heavy 
etal sensor, and a MFS tr ansporter. A putativ e nucleotidyltr ans-

erase, follo w ed b y a putati ve to xin of the MNT–HEPN system was
lso found. Upon further analysis the n ucleotid yltransferase pro-
ein sho w ed similarity to mtnA aden yl yltr ansfer ase, further sug-
esting the completeness of this to xin–antito xin system (Yao et al.
020 ). 

luster 2 plasmid contigs contains a genomic island related 

o phosphate transport and arsenate metabolism 

he second identified cluster, marked on Fig. 10 (A) with color
r een, gr oups m uc h lar ger contigs. Contigs M19_ctg_253 676,
21_ctg_589 898, and M34_ctg_74 039 are 131.5-kb long, while 

ontig M20_ctg_136 670 is about 1 kb longer, i.e. 132.6 kb. The ad-
itional fr a gment, not found in other contigs, contains two pre-
icted genes. GC content was identical for all four contigs at
9.9%. Taxonomic classification of these contigs placed them in 

he Burkholderiaceae family. Unlike with cluster 1, a blastn analy-
is sho w ed no significant similarity betw een the plasmid contigs
rom this cluster and sequences from the NT database. 

Akin to cluster 1, the first goal of analysis of this set of plas-
id contigs was to identify hallmark plasmid genes . T his time ,

he identification was successful. Most notably, genes responsible 
or plasmid partitioning ( parAB ) and conjugation ( virB- like) were
ound, cementing the origin of those sequences as plasmid. A full
ist of 10 genes marked as hallmark by GeNomad can be found
n Table S3 . Furthermore, manual analysis of nearby loci revealed
he presence of more MPF-related genes, hinting that the system
ould be complete. A highly interesting feature of distinguished
lasmid contigs is a putative genomic island, located near the end
f the contig (Fig. 10 C). Downstream, the island is delimited by two
S 21 -like elements encoding a transposase and a helper ATPase.
ollowing these, a pstSCAB and phoUB genes are present, constitut-
ng a high affinity and velocity phosphate transport system along
ith its regulator (Shinagawa et al. 1983 , Yuan et al. 2006 ). Addi-

ionally, the genomic island, as observed based on localized drop
n GC content, contains a series of ars genes ( arsR , arsI , arsR , and
rsH ), follo w ed b y a MFS transporter, forming a structure similar
o that described by Muller et al. ( 2007 ), although the presence
f two ar sR -lik e r egulatory pr oteins is uncommon. Those genes
ould provide a critical adv anta ge to the host of this plasmid, by
nabling As r espir ation. Zhang et al . ( 2023 ) pr ov ed that they may
lay a pivotal role in metabolism of micr oor ganisms found in deep
ea cold seep sediments, as well as global carbon and nitrogen cy-
ling. Compar ed to mec hanisms described in this study, the mod-
le is missing genes responsible for As(V) reduction and oxidation
ethylation of As(III). 
Other than that, various other enzymatic proteins were iden- 

ified, including, but not limited to aldeh yde deh ydrogenase, as-
artate carbamoyltr ansfer ase, and c hemotaxis pr otein, putativ el y
r oviding v arious metabolic adv anta ges to host cell (Sc halk et al.
009 , Lipscomb and Kantrowitz 2012 , Shortall et al. 2021 ). Notably,
he quality of annotation of this plasmid contig was r elativ el y low,

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
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Figure 10. (A) Heatmap showing pairwise similarity between 12 plasmid contigs, basing on estimated Jaccard similarity. (B) Linear map of the plasmid 
contig M19_ctg_14 464, with features classified into general categories. Arrows indicate predicted genes. For genes with multiple potential 
classifications, the most specific was selected. (C) Schematic representation of the putative genomic island identified on plasmid contigs from the 
cluster 2. (D) Linear r epr esentation of plasmid contigs M5_ctg_35 674, M1_ctg_9871, M20_ctg_28 5425, and M2_ctg_57 032. The DNA-modifying enzymes 
category includes integr ases, r ecombinases and DNA pol ymer ase. 
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ith 46 out of 144 genes found within the plasmid marked as hy-
othetical proteins. 

mall plasmid contigs encode many toxin–antitoxin 

ystems suggesting their selfish nature 
ther than the eight plasmid contigs, forming clusters 1 and 2,
hic h wer e described abov e, four unique, nonclustering plasmid

ontigs were identified as well. Representation of all four contigs
an be seen on panel D of Fig. 10 . 

First, contig M5_ctg_35 674 with 50.48% GC content, was de-
cribed. Taxonomic classification indicated the LCA of this se-
uence as order Enterobacteriales . The length of this sequence
quals 5.6 kb, and only eight predicted genes were identified
ithin it. Among these, three proteins were marked as hy-
othetical. We also identified a site-specific DNA recombinase
poIVC A/DNA in vertase PinE, ino virus-type Gp2 protein and two
elix-turn-helix domains containing proteins. Ho w ever, the most
otable is the presence of heat shock protein C (HSP C) and RNAI
cRNA sequences . T he latter indicates the plasmid is a ColE1-like
 eplicon, while the pr esence of a HSP pr otein could pr ovide a sig-
ificant environmental ad vantage, gi ven that sample M5 was col-

ected from an environment with temperatures reaching 72 ◦C. 
Next, contig M1_ctg_9871—a 5.9-kb sequence with 15 predicted

enes and 40.73% GC content, was distinguished. The low GC
ontent, especiall y compar ed to other plasmids, can be some-
ow explained, as sample M1 was collected from an environment
ith the lo w est temper atur e (20 ◦C). The contig was onl y classi-
ed as bacterial. Among the identified 15 genes, se v er al toxin–
ntitoxin related proteins were found, including two complete
o xin–antito xin systems ( cddAB and hicAB ) and two TA-related
r oteins ( higA famil y addiction module antidote pr otein and type
I to xin–antito xin system PemK/MazF famil y). Additionall y, a pair
f v apC ribonuclease, whic h is a toxin in the v apBC system, and pu-
ati ve (anti)to xin pr otein, located in the upstr eam ORF, was iden-
ified. The putativ e pr otein sho w ed moder ate similarity to m ul-
iple toxin and antitoxin pr oteins fr om type II systems, and it
ould form another TA system within this plasmid. There is also
 pol ymer ase beta-like pr otein and a n ucleotid yltr ansfer ase, both
f which can be involved in base excision repair of DNA (Krokan
nd Bjørås 2013 ). Presence of such a system could gr eatl y benefit
he host, provided that DNA damage is frequently occurring in the
nvironment. 

Plasmid contig M20_ctg_285 424 is the smallest of 12 selected
ontigs within this dataset. It also has the lo w est GC content
f just 27.65%, while it originates fr om a moder atel y hot envi-
onment (50 ◦C). The contig is 3.1 kb long and only encodes four
r otein-CDS, two of whic h ar e hypothetical pr oteins . T he other
wo are a replication protein and vbhA antitoxin of the vbhAT
o xin–antito xin system. 

Finally, plasmid contig M3_ctg_57 032, is another small se-
uence (5.1 kb) containing only four open r eading fr ames. Among
hose, two ar e integr ases, one pr otein is a HTH-domain containing
rotein with unknown function, and the final one is a hypothetical
rotein. Based on the genetic content of this sequence, it is pos-
ible that it is not a plasmid, despite being selected by all three
ools . P ossibly this is a fragment of a larger replicon. 

onclusions 

n this study, we explored the diversity and ecological roles of
lasmids in DSHVs located at AMOR in the Norwegian–Greenland
ea—a unique and understudied environment. We first analysed
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the impact of the choice of sequencing platform and concluded 

that it significantly impacted the assembly and subsequent func- 
tional annotation of plasmid contigs , with No vaSeq data provid- 
ing greater resolution and uncovering a wider range of functional 
div ersity compar ed to HiSeq data. 

Next, our compar ativ e anal ysis of thr ee state-of-the-art plas- 
mid identification tools (PlasX, GeNomad, and PLASMe) re- 
v ealed significant differ ences in taxonomic composition, degr ee 
of similarity to known plasmids and functional content between 

datasets originating from each classifier. Each tool exhibited dif- 
fer ent str engths and biases, likel y deriv ed fr om div erse method- 
ologies and r efer ence datasets used during their de v elopment. 

GeNomad identified the highest number of plasmid contigs and 

sho w ed a “less conserv ativ e” a ppr oac h, as e videnced by the higher 
pr oportion of poorl y c har acterized and unclassified pr oteins . T his 
suggests that GeNomad could perform better when working with 

no vel sequences , for example originating from extreme environ- 
ments. Ho w e v er, it also demonstrated a potential bias to w ar d con- 
tigs containing CRISPR elements, which warrants further investi- 
gation. 

PlasX exhibited the greatest similarity to known sequences and 

COG database entries, suggesting a more conservative approach, 
yet it identified a number of sequences similar to GeNomad. The 
tool identified a high proportion of proteins involved in cell cycle 
control, cell division, and chromosome partitioning, particularly 
site-specific tyrosine recombinases and proteins involved in chro- 
mosome partitioning. While this could be attributed to contami- 
nation with c hr omosomal data, it may also indicate the presence 
of pr opha ge r egions or plasmid partitioning systems. 

PLASMe identified a significantly lo w er number of plasmid con- 
tigs compared to GeNomad and PlasX, displaying high precision 

by excluding pr oteins typicall y found on c hr omosomes. Howe v er,
the absence of c har acteristic plasmid genes, such as parA, toxin–
antitoxin systems, and plasmid maintenance systems, indicates 
a lo w er r ecall. Additionall y, PLASMe’s output was notabl y lac k- 
ing in arc haeal div ersity, most likel y due to the exclusiv el y bac- 
terial r efer ence dataset used in its training. To mitigate the afore- 
mentioned biases, we created a high-confidence plasmid dataset, 
obtained through a majority voting approach, which unveiled a 
div erse arr ay of genes involved in core plasmid functions, phage 
inter actions, nutrient acquisition, and str ess r esponse . T his func- 
tional landsca pe r eflects the complex inter play between plasmids 
and their microbial hosts in the extreme conditions of deep-sea 
vents, suggesting an essential role for plasmids in facilitating 
ada ptation and surviv al. The pr esence of numer ous poorl y anno- 
tated or novel genes underscores the vast untapped genetic po- 
tential of this unique ecosystem. Notabl y, man y plasmid contigs 
were equipped with to xin–antito xin systems, responsible for de- 
pendence of cell survival on a mobile genetic element, which high- 
lights the role of “selfish DNA” within the studied extreme envi- 
ronments. 

Ov er all, our findings contribute to a deeper understanding of 
plasmid ecology in DSHVs, r e v ealing the importance of consider- 
ing both biological and methodological factors when investigating 
these complex microbial communities . T he observed functional 
diversity highlights the potential for plasmids to drive adapta- 
tion and evolution in extreme en vironments , offering valuable in- 
sights into the ecological roles of these mobile genetic elements.
Further r esearc h, including experimental v alidation of pr edicted 

gene functions, will be crucial for unr av eling the full extent of 
plasmid-mediated processes in these ecosystems. Additionally, 
the de v elopment of r efined plasmid identification tools specifi- 
call y tailor ed to c hallenging meta genomic datasets fr om extr eme 
nvironments will enhance our ability to compr ehensiv el y c har-
cterize the (meta)plasmidome and uncover its hidden features. 
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