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Abstract

Plasmids are one of the key drivers of microbial adaptation and evolution. However, their diversity and role in adaptation, especially in
extreme environments, remains largely unexplored. In this study, we aimed to identify, characterize, and compare plasmid sequences
originating from samples collected from deep-sea hydrothermal vents located in Arctic Mid-Ocean Ridges. To achieve this, we em-
ployed, and benchmarked three recently developed plasmid identification tools—PlasX, GeNomad, and PLASMe—on metagenomic
data from this unique ecosystem. To date, this is the first direct comparison of these computational methods in the context of data
from extreme environments. Upon recovery of plasmid contigs, we performed a multiapproach analysis, focusing on identifying tax-
onomic and functional biases within datasets originating from each tool. Next, we implemented a majority voting system to identify
high-confidence plasmid contigs, enhancing the reliability of our findings. By analysing the consensus plasmid sequences, we gained
insights into their diversity, ecological roles, and adaptive significance. Within the high-confidence sequences, we identified a high
abundance of Pseudomonadota and Campylobacterota, as well as multiple toxin-antitoxin systems. Our findings ensure a deeper un-
derstanding of how plasmids contribute to shaping microbial communities living under extreme conditions of hydrothermal vents,
potentially uncovering novel adaptive mechanisms.
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Introduction

Plasmids, small circular DNA molecules capable of horizontal
gene transfer, are key drivers of microbial adaptation and evolu-
tion (Ochman et al. 2000, Tokuda and Shintani 2024). While most
often associated with the spread of antibiotic resistance, their
broader ecological roles are increasingly recognized, and they in-
clude conferring adaptive features (also novel metabolic proper-
ties), resistance to metals and host-microbe interactions (Galetti
et al. 2019, Alav and Buckner 2023, Gomathinayagam and Kodi-
veri Muthukaliannan 2024). Most research to date has focused on
plasmids in mesophilic organisms, leaving these in extreme envi-
ronments significantly understudied. This bias is evident in ma-
jor databases, such as plasmid database PLSDB, where over 50%
of the nearly 60000 deposited sequences originate from just five
genera (Escherichia, Klebsiella, Enterococcus, Salmonella, and Staphylo-
coccus) (version 2023_11_03_v2) (Schmartz et al. 2022). In contrast,
a focused review of literature and databases identified only 174
and 526 plasmid sequences from thermophiles and psychrophiles,
respectively, highlighting the need for expanded research efforts
in these understudied groups.

Deep-sea hydrothermal vents (DSHVs) represent a unique ex-
treme habitat. Characterized by minimal light, high pressure, tem-

peratures ranging from 2°C to 350°C, as well as highly variable
chemical compositions and energy sources (Haase et al. 1995,
Zeng et al. 2021). Compared to other extreme environments, such
as polar regions, deserts, salt pans, or hot springs, deep-sea en-
vironments are also much more isolated (Mullineaux et al. 2018).
While the influx and efflux of genetic information in DSHVs is lim-
ited, plasmids have been isolated from those remote communities
(Lossouarn et al. 2015). In general, plasmids found in extreme en-
vironments tend to carry genes that directly benefit the survival
of their host in given environments. For example, plasmids identi-
fied from polar environments can carry genes responsible for re-
sistance to cold and UV radiation, as well as heavy metals and
other toxic compounds, which pose the greatest threat in this en-
vironment (Dziewit and Bartosik 2014, Ciok et al. 2018, Makowska-
Zawierucha et al. 2024). Similarly, plasmids isolated from DSHVs
may carry genes encoding enzymes which could be attributed to
adaptation to DNA damage at high temperatures (Makarova et al.
2002, Majernik et al. 2004, Lossouarn et al. 2015). However, due to
the scarcity of reference data, many plasmid-borne genes, espe-
cially originating from extreme habitats, still remain poorly anno-
tated, hindering a comprehensive understanding of their ecologi-
cal roles.
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Studying DSHV ecosystems is inherently challenging due to
difficulties in sample collection and the inability to cultivate
many microorganisms under laboratory conditions (Martiny 2019,
Schultz et al. 2023). Since this makes it difficult to obtain
plasmid DNA directly from environmental samples, alternative,
enrichment-based methods have been proposed. In one of them,
microbes coming from environmental samples are used to inoc-
ulate selective media, and the resulting cultures can be used to
isolate plasmid DNA (Gorecki et al. 2021). Another method, which
was employed to collect samples analysed in this study, utilizes
in situ enrichment using cultivation chambers (Kaeberlein et al.
2002, Bollmann et al. 2007). While effective, it is important to re-
member that these methods introduce a “planned bias,” since only
a relatively small portion of environmental microbes may be suc-
cessfully cultivated (Dziurzynski et al. 2023).

In order to reduce this bias, many recent studies have employed
shotgun metagenomics, which, in theory, should provide unbi-
ased information about all environmental DNA found within a
given sample (Hedlund et al. 2014, Gémez-Silva et al. 2019). Un-
derstandably, this approach introduces its own challenges. Most
notably, recovery of plasmids from WGS sequencing data is espe-
cially difficult, given their smaller length and abundance (Fritz et
al. 2019, Mendes et al. 2023). This problem is exacerbated even fur-
ther for plasmids coming from marine environments (Meyer et al.
2022).

Addressing the challenges of plasmid identification from
metagenomic data, recent advances in computational biology
and artificial intelligence have led to development of several
novel plasmid identification tools. In the span of last year, three
new plasmid classifiers have been introduced, each promising
improved accuracy and precision. PlasX, created by Yu et al.
(2023), utilizes a logistic regression model trained on a large-scale
dataset, providing improved recall and precision. GeNomad, a hy-
brid pipeline by Camargo et al. (2023), combines nucleotide se-
quence classification using an IGLOO-based encoder with custom
marker gene identification, outperforming many existing tools in
their benchmarks (Sourkov 2020, Camargo et al. 2023). Notably,
PlasX was the second-best tool in almost all benchmarks pre-
sented in the GeNomad paper. Lastly, PLASMe, introduced by Tang
et al. (2023), leverages a natural language processing-inspired ap-
proach, treating protein sequences as vocabulary for transformer
models tailored to specific bacterial orders. To date, a direct com-
parison of these tools has not been conducted.

In this study, we aim to identify, characterize, and com-
pare plasmid sequences derived from 14 environmental samples
collected from DSHVs located in the Arctic Mid-Ocean Ridges
(AMOR). By benchmarking the performance of PlasX, GeNomad,
and PLASMe on this unique dataset, we aim to evaluate their
biases and effectiveness in identifying plasmids from a com-
plex, understudied environment. Furthermore, we seek to gain
insights into the diversity, ecological roles, and adaptive signifi-
cance of plasmids in these extremophilic microbial communities,
contributing to a deeper understanding of their contributions to
ecosystem function and evolution.

Materials and methods
Sample collection and processing, DNA
extraction, and sequencing

A total of 14 samples were collected from hydrothermal vents at
AMOR, located in the Norwegian-Greenland Sea (Table S1). Four
were from the Loki’s Castle Vent Field, one from the Soria Moria

vent fleld, and nine from in situ enrichments at the Bruse vent field
(Stokke et al. 2020, Vulcano et al. 2022). Following the sampling,
metagenomic DNA was isolated and sequenced as previously de-
scribed (Stokke et al. 2020, Vulcano et al. 2022). Sequencing was
performed in two batches, using the Illumina MiSeq (300 bp;
samples M1-5, M10-14) and NovaSeq (150 bp; M19-21, M34)
platforms.

Bioinformatic analysis
Quality control and assembly

Following the sequencing, obtained data was processed and as-
sembled using either Qiagen CLC Genomics Workbench (v11;
MiSeq samples) or fastp (v 0.23.2) (Chen et al. 2018), with
MEGAHIT v1.2.9 (Liet al. 2016). Only contigs over 500 bp were con-
sidered for further analysis.

Plasmid identification

Following assembly, contigs longer than 500 bp were used as in-
put for three different plasmid identification tools. First, GeNo-
mad v1.7.4 was used in end-to-end mode with the following
flags: —enable-score-calibration —disable-find-proviruses —cleanup. Each
task was given 40 CPU threads and 60 Gb of RAM (Camargo et
al. 2023). Next, data for the PlasX pipeline were preprocessed
by anvi'o, and plasmid contigs were identified by running the
search_de_novo_families and predict commands with default param-
eters (Eren et al. 2021, Yu et al. 2023). Similarly, the tasks were as-
signed with the same computational resources. Finally, PLASMe
was used with the unified transformer (-u True) (Tang et al. 2023).
After prediction, results from all three tools were filtered based on
score assigned to each contig. Only contigs with score >0.7 (where
0 is a chromosome and 1 is a plasmid) were marked as plasmid
contigs.

Majority voting system for plasmid contigs selection

The set containing plasmid contigs remaining after filtering was
then further refined using a majority voting system. Intersections
between results of each tool were calculated via a custom Python
script. Singletons (i.e. contigs only found in output of one tool)
were classified as unlikely to be plasmids, and contigs found in
intersections of two or all three tools were designated as high-
confidence plasmid contigs.

Characterization of identified plasmid contigs
Characterization was performed for all potential plasmid contigs,
i.e both singletons and contigs from set intersections. All analy-
ses were performed for contigs longer than 500 bp, except for tax-
onomic classification with Kraken2, which was performed using
all contigs.

Taxonomic annotation

Taxonomy was assigned to predicted plasmid contigs us-
ing two approaches. First, the contigs were annotated using
kraken2 (v.2.1.3) with Standard database (rev. 2023_04_13, ob-
tained from https://benlangmead.github.io/aws-indexes/k2), us-
ing the -report-minimizer-data and -minimum-hit-groups 3
flags, as recommended by Lu et al. (2022) and Wood et
al. (2019). Next, the contigs were annotated using MMseqs2
(v. 92d8cc375ea4cc4784e17150d10e0f9dc8004491) easy-taxonomy
workflow (Steinegger and Séding 2017). The reference database
used was the NCBI NR database (rev. 2023_02_20), obtained using
the MMseqs2 databases workflow. Both tools were assigned 40 CPU
cores and 120 Gb of RAM per task.
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Functional annotation

Functional annotation of genes found on predicted plasmid con-
tigs was performed using the eggNOG-mapper v2 suite (v2.1.12),
utilizing Prodigal for gene calling and DIAMOND for protein align-
ment (Hyatt et al. 2010, Huerta-Cepas et al. 2019, Buchfink et al.
2021, Cantalapiedra et al. 2021). The emapper command was run
with default parameters, using the contigs as an input (-itype
metagenome).

Identification of genes with adaptation value

In order to identify genes carrying adaptive function, coding se-
quences (CDS) within each plasmid contig were predicted using
Pyrodigal (v3.3.0)—a Python library binding to Prodigal (Hyatt et
al. 2010, Larralde 2022).

Genes with adaptive value were identified from the results ob-
tained from the eggNOG-mapper tool. The results were parsed,
looking for genes assigned a specific KO number, gene name,
GO term, as well as via text search within function descriptions.
All filtering steps were performed using custom-made Python
scripts.

Identification and description of mobilization for conjugal
transfer, replication, and mating pair formation proteins

Identification and classification of mobilization for conjugal
transfer (MOB), replication (REP), and mating pair formation (MPF)
proteins within plasmid contigs was performed using MOB, REP,
and MPF protein databases from the MOB-suite utility (Robertson
and Nash 2018). Those databases were used to create diamond
databases (makedb), and to search the genes of plasmid contigs
using diamond blastp. Output data was then filtered using custom
Python scripts, selecting hits with at least 50% sequence identity
and 70% bidirectional coverage (pident qcovhsp and qcovhsp from
—outfmt 6 accordingly). Afterwards, only one database hit per pro-
tein (with lowest e-value) was selected.

Identification of ncRNA

Identification of ncRNA's was performed using the Rfam database
v14.10 and Infernal v 1.1.5 (Nawrocki and Eddy 2013, Kalvari et al.
2017). First, the covariance model database was created from the
Rfam source files using cmpress. Next, cmscan was used to iden-
tify RNA sequences within plasmid contigs, using curated cut-
offs (—cut_ga) and other options recommended in the Rfam tu-
torial: —rfam —nohmmonly —clanin Rfam.clanin —oskip —fmt 2 -0 out-
put.txt —tblout table.txt Rfam.cm input.fasta (https://rfam.github.io/
rfam-tutorials/).

Pairwise similarity analysis

Analysis of pairwise similarity between plasmid contigs was car-
ried out using Sourmash v.4.8.8 (Pierce et al. 2019). First, con-
tigs signatures were generated via sourmash sketch with k-mer
size of 31 and scale value of 1000 (-p k = 31, scaled = 1000).
Next, the signatures were compared with sourmash compare and
visualized with sourmash plot, using default options for both
commands.

Semiautomatic annotation of selected plasmid contigs

Selected plasmid contigs were first automatically annotated with
Bakta (database version 2024-01-19) (Schwengers et al. 2021).
Next, the annotations were manually validated using a combina-
tion of blastp from the NCBI BLAST+ suite and HHpred from the
MPI Bioinformatics Toolkit webserver (Camacho et al. 2009, Zim-
mermann et al. 2018).
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Results and discussion

Selection of sequencing platform has a major
impact on assembly outcomes

Samples containing bacterial DNA were isolated from multiple
vent flelds located in the AMOR in the Norwegian-Greenland Sea
(Fredriksen et al. 2019). Sampling sites were characterized by dif-
ferent temperatures, varying from 10°C (sample M4) to 72°C-75°C
(samples M5, M11, M19, and M21). Most of the samples were col-
lected from hydrothermal sediments (M4, M10-14, M19-21, and
M34) or barite chimneys (M1-M3). Sample M5 was the only one
isolated from a white smoker. Full metadata concerning the sam-
ples can be found in Table S1.

Following sample collection and processing, DNA isolated from
environmental samples was sequenced in two separate batches,
resulting in two datasets: MiSeq and NovaSeq. The MiSeq dataset
comprised samples M1-M5 and M10-M14 (n = 10), which were se-
quenced using the MiSeq platform in 2 x 300 bp mode. The No-
vaSeq dataset included samples M19-M21 and M34 (n = 4), se-
quenced using the NovaSeq platform (2 x 150 bp).

The assembly results revealed notable differences between the
two datasets. The NovaSeq samples yielded a higher average to-
tal contig length (443966701 bp) compared to the MiSeq sam-
ples (345176277 bp), despite having fewer contigs on average
(59742 versus 116 663) (Fig. 1). This suggests that the NovaSeq
platform generated higher-quality data, resulting in longer con-
tiguous sequences. The most striking difference was observed in
the average contig length, with the NovaSeq dataset having more
than twice the length of the MiSeq dataset (7576 versus 3468).
This could be due to the superior quality of NovaSeq data, and/or
a coincidentally occurring low number of repeated regions, that
usually make it difficult to assemble long sequence contigs from
shorter reads (Kusmierek and Nowak 2018).

However, it is important to note that two samples—M13 (MiSeq)
and M19 (NovaSeqg)—had the smallest total contig lengths. This
observation is particularly surprising for sample M19, given that
the NovaSeq datasets generally produced higher quality data. This
could be attributed to various factors, such as the quality and
quantity of the input DNA, the presence of contaminants, or the
inherent complexity of the microbial communities in these spe-
cific samples. A detailed description of assembly results can be
found in Table S2.

Overall, samples obtained from the vent fields at AMOR repre-
sent a diverse range of microbial communities adapted to various
thermal conditions—from moderate to extreme. The use of two
different sequencing platforms, MiSeq and NovaSeq, introduced
a significant bias in assembly quality. The NovaSeq dataset seems
to be superior, with longer contiguous sequences and higher mean
contig lengths. However, the presence of outliers with lower as-
sembly quality in both datasets highlights the need for cautious
interpretation of the data.

Each plasmid identification tools introduces its
own taxonomic and functional biases

The three plasmid identification tools employed in this study—
GeNomad, PLASMe, and PlasX—yielded varying numbers of plas-
mid contigs from 14 environmental samples. GeNomad marked
the highest number of contigs assigned as plasmids-2350, fol-
lowed by PlasX (2215), and PLASMe (604) (Fig. 2A). Overlap be-
tween the results of each tool was calculated based on inter-
section analysis, namely by matching contig names. Remarkably,
only 12 contigs were consistently designated as plasmid by all
three tools (Fig. 2A). This heavily underlines the importance of tool
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Figure 2. (A) Venn diagram showing the intersection of results of all three plasmid classification tools. (B) Proportion of plasmid contigs identified

within each sample by each tool.

selection for plasmid prediction, as each tool has its own
strengths, weaknesses and biases. GeNomad and PlasX generated
results that seem to be more similar, sharing the highest num-
ber of contigs among all groups (149). This contrasts with results
of PLASMe, which only shared 34 contigs with GeNomad and 10
with PlasX. However, it is important to note that this tool identi-
fied a much smaller number of plasmid contigs compared to the
other two.

The number of plasmid contigs identified by each tool varied
greatly across the 14 environmental samples (Fig. 2B). Overall,
samples M1-M3 had the highest number of plasmid contigs iden-
tified. On a per-tool basis, GeNomad identified the highest num-
ber of plasmid contigs in samples M2 (664) and M1 (397), while
PLASMe and PlasX found the most plasmid contigs in samples M2
(151 for PLASMe, 335 for PlasX) and M3 (95, 294 accordingly). Inter-
estingly, all three tools consistently identified the fewest plasmid
contigs in sample M13 (GeNomad: 14, PLASMe: 1, and PlasX: 48),
with the exception of PlasX, where sample M13 was the second
least abundant after sample M19 (45). This consistency may in-
dicate that these samples may have an inherently lower plasmid
content compared to other samples, or that the plasmid contigs
present in these samples are particularly difficult to identify us-
ing the employed tools, either due to their design or the reference
data used during the training process.

Selection of taxonomic classifiers matters

To determine the taxonomic origin and potential host of the plas-
mid contigs, two separate classifiers were used and compared to
find the optimal result. While correct taxonomic annotation of
plasmid sequences is very difficult, given that they often differ in
properties such as GC-content and k-mer composition from their
host, even a low-level assignment can be greatly beneficial (Aytan-
Aktug et al. 2022). For example, determining whether the plasmid
originates from bacteria or archaea, can be crucial for its later
analysis and annotation.

Two tools were initially selected for taxonomic analysis:
Kraken2 and MMsegs2. To determine which one performs bet-
ter, all >5000 contigs identified by three plasmid classifiers were
assigned taxonomy (Fig. 3). First, we classified the samples using
kraken?, using the standard database. Overall, the tool performed
well, assigning the lowest taxonomic rank (species) to over 38%
of all sequences. Surprisingly, only 55.8% of all sequences were
classified at the kingdom level. On the other hand, MMsegs2 with
the NR database seemed to fare much better at higher taxonomic
levels. The tool assigned a kingdom to 94.4% of all contigs, also
outperforming kraken? at the phylum level (62.3% versus 48.2%).
At lower taxonomic levels, the percentage of classified sequences
dropped significantly, reaching less than 10% at the species level.
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Given the nature of samples analysed in this study, which came
from an understudied environment, we believe that the high per-
centage of low-level annotations provided by Kraken2 may be
false. Additionally, since determining the highest ranks, i.e. king-
dom and phylum, has the highest impact on downstream anal-
ysis, and given that MMsegs2 seemed to outperform Kraken2 on
these levels, we decided to use MMseqs as classification tool of
choice for further analyses. Furthermore, it must be noted that
true plasmid-host association is very hard to determine using
solely bioinformatic tools, and usually requires the use of labo-
ratory techniques, such as Hi-C sequencing (e.g. Calderén-Franco
et al. 2023).

Biggest taxonomic differences between tools are reflected in
archaeal diversity

We analysed the differences in taxonomic composition of plas-
mid contigs indicated by each plasmid classification tool. In gen-
eral, contigs originating from bacteria seem to dominate in most
environments, regardless of tools used. The exception seems to
be sample M13, where both GeNomad and PlasX detected a large
proportion of contigs later classified as archaeal (Fig. 4). This
aligns well with previous amplicon data, which also showed Ar-
chaea as the most abundant in this sample, and with the results
from MAG-based metagenomic study (unpublished) (Stokke et al.
2020).

Generally, the results of taxonomic classification of selected
contigs seems to be consistent across tools. The data is dominated
by bacteria from Gamma, Delta, and Epsilonproteobacteria classes,
even though the proportion of hits vary between tools. Notably,
Flavobacteria have only been observed in GeNomad output, while
PLASMe was the only tool to identify contigs classified as Bacilli.
Overall, GeNomad detected the most phyla not found in results
of other tools (22), followed by PlasX (10) and PLASMe (6). Interest-
ingly, PlasX identified a high proportion of Anaerolineae—members

of the Chloroflexi phylum often found in marine sediments (Blaze-
jak and Schippers 2010) (Fig. S1).

One of the most important differences between the resulting
datasets is the minuscule presence of archaeal data in PLASMe
output. This may be due to the reference dataset used to train
the tool, as it consisted exclusively of bacterial data (Tang et al.
2023).

Degree of similarity between proteins from the
distinguished plasmid contigs and the reference plasmids
varies between tools

To gain a better understanding of which plasmid contig dataset
show the greatest degree of similarity to known plasmids, we com-
pared the proteins found on plasmid contigs identified by PlasX,
PLASMe, and GeNomad to proteins found on plasmids deposited
in the PLSDb database. For each protein found within our datasets,
we reported five best hits to the proteins from PLSDb. Next, we
analysed the density of hits based on mean coverage between
query and subject sequence, as well as % identity.

Our analysis revealed that while the general trends are similar
between datasets, there are some notable differences. Overall, a
high percentage of all hits showed very high identity and coverage,
especially for hits from GeNomad and PLASMe (Fig. 5). Practically
no hits were identified near the origin of the density plot, indicat-
ing that all sequences showed at least a low similarity to known
sequences. Interestingly, for PlasX results, the highest density of
hitsislocated between 30% and 50% of identity, while keeping over
80% coverage. Additionally, a localized maximum can be seen for
hits with >99% coverage and identity. This could suggest that this
tool was able to detect contigs containing not only the conserved
plasmid core, but also the novel genetic load.

Furthermore, while results of search for GeNomad and PLASMe
datasets are located mostly within 80%+ coverage range, a sig-
nificant proportion of hits for proteins originating from PlasX-
identified plasmids contigs showed coverage below 75%.
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Content of plasmid contig datasets varies between tools on
functional level

Another very important aspect of biological data, especially for
metagenomic datasets, is its functional composition. In order to
determine what kind of functional modules and traits can be
found within plasmid contigs identified by each classifier, we em-
ployed multiple tools, each targeting a different aspect of the
metagenome.

First, we used eggNOG-mapper to get an in-depth understand-
ing of the general function of each gene found on plasmid contigs.
The first set of information that was of great interest, was annota-
tion with COG categories. A COG category was assigned to 87.0%,
88.6%, and 90.8% of all protein CDS for GeNomad, PLASMe, and
PlasX contigs, respectively (Fig. 6). Furthermore, 67.3%, 71.1%, and
76.3% of all CDS were assigned a category other than S (Poorly
Characterized), meaning that at least their general function is
known. This result suggests that plasmid contigs selected by PlasX
show the greatest similarity to known sequences, or that their
content is the most similar to data in the COG database. On the
other hand, GeNomad had the highest proportion of Unclassified
and Poorly Characterized proteins, suggesting a “less conserva-
tive” approach. As mentioned before, both results can be beneficial
when working with data from extreme environments, as a more

conservative approach can guarantee a larger proportion of True
positives, whereas an opposite approach can lead to discovery of
novel sequences.

On COG category level, genes involved in categories L (DNA
replication, recombination, and repair), K (transcription), and P
(inorganic ion transport and metabolism; GeNomad and PLASMe)
or I (lipid transport and metabolism; PlasX) were most common.
Given the type of data—plasmid contigs—this result was desired.
In general, proteins involved in DNA metabolism are not only es-
sential for plasmid functioning but are also most conserved and
best described. High abundance of genes involved in transcription
may be interesting, since they are not so commonly found on plas-
mids. This could be attributed to presence of prophage regions, ge-
netic load of the plasmids, or contamination with chromosomal
sequences. Similarly, presence of proteins responsible for trans-
port and metabolism of either inorganic ions or lipids is expected
on plasmid sequences, as they can provide a significant adapta-
tional advantage. On the other hand, proteins from categories A,
W, B, and Z were only found in less than five copies for all datasets.

The most striking difference between three analysed datasets
was observed for the category D—cell cycle control, cell divi-
sion, and chromosome partitioning. For GeNomad and PLASMe
datasets, proteins from this category constituted about 1.5% of all
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proteins, whereas for PlasX the percentage was 5.5%. This could
be attributed to contamination of the dataset with chromosomal
data, but also to presence of proteins responsible for plasmid par-
titioning and maintenance. Further analysis of the D category
revealed that most proteins were classified as tyrosine recom-
binases (Fig. S2). Interestingly, while 133 of those proteins were
found in the PlasX dataset, only five were identified in GeNomad
data, and none were present in PLASMe plasmid contigs.

Additionally, 54 proteins marked as “involved in chromosome
partitioning” were identified in PlasX data. The difference was not
as great as for recombinases, with GeNomad also outputting plas-
mid contigs containing 22 proteins with the same classification.
Again, PLASMe did not contain any such proteins. Overall, this
analysis revealed that PlasX showed a significant bias towards cer-
tain proteins from the COG D category, especially xerC and xerD
site-specific tyrosine recombinases, and proteins involved in chro-
mosome partitioning. GeNomad results were more moderate and
did not show any significant trends in terms of COG category D
proteins. PLASMe dataset contained the least proteins from this
category (12), compared to other tools (144 for GeNomad and 406
PlasX), but relative count did not differ significantly from GeNo-
mad (1.28% versus 1.61%), and can be attributed to overall smaller
number of plasmid contigs.

Yet again, because of the nature of the dataset analysed in this
study it is hard to determine whether the biases described above
are a result of contamination or novelty. Presence of site-specific
tyrosine recombinases is usually correlated with integration of
prophages into sequences, which can happen in any part of the
genome. This hypothesis could be supported by the results of tax-
onomic analysis, as PlasX was the tool with the highest number of
contigs classified as viral. Similarly, proteins involved in chromo-
some partitioning can be responsible for chromosome partition-
ing, or may be mis-annotated, and in fact be involved in plasmid
partitioning systems. This is quite likely, given the similarity be-
tween both types of proteins. Interestingly, PLASMe output does
not contain most of the proteins described above. This could be a
sign of high precision of the tool, as proteins that are likely found
on chromosomes are not found in this dataset. On the other hand,
typical plasmid proteins, like parA, toxin-antitoxin systems, and
plasmid maintenance proteins are also absent from this dataset,
which could indicate lower recall of this tool.

Next, we performed identification of RNAs found on plasmid
contigs identified by all three classifiers. The classification was
carried out using the Rfam database with Infernal, using cutoff
values set by Rfam curators when creating families. Initial anal-
ysis revealed a wide array of ncRNAs found in all three datasets.
For all tools, tRNAs were the most abundant type of RNA. Addi-
tionally, RNAI, an element typically found on ColE1-like plasmids,
was also identified in all three datasets, although only in one copy
(Helmer-Citterich et al. 1988). Interestingly, a multitude of group II
catalytic introns was also found in each tools’ output—including
general (Intron_gpll) and specific hits (group-1I-D1D4-1,3,6). Fi-
nally, archaeal small subunit ribosomal RNA was also found in
all datasets (Fig. 7).

Overall, there were no significant differences in results of
search between datasets, except for CRISPR-DR elements, found
inlarge abundance in GeNomad data, and to some extent in PlasX,
but notin PLASMe. Interestingly, both archaeal and bacterial large
subunit ribosomal RNA was identified in PLASMe and GeNomad
data, but not PlasX.

For GeNomad, CRISPR RNA direct repeat element 2 was almost
as abundant as tRNA (62 hits and 63 hits, respectively), suggest-
ing that the tool may be biased towards contigs containing this
element. CRISPR direct repeats were the third most abundant el-
ement for PlasX, with 14 hits. Further analysis revealed that the
repeats are located on six contigs, two carrying only one copy, one
with two copies, and contigs with 11, 27, and 34 copies. Further
analysis revealed no Cas genes located on these contigs. However,
Cas and CRISPR-related proteins were identified on other plasmid
contigs originating from the same environment, indicating that
working systems could be present in vivo (for example, sample
M11, containing a contig with 34 DRs, also contained cas1, cas2,
and casé proteins, as well as other CRISPR-related proteins). Hav-
ing considered this information, as well as the fact that the plas-
mid contigs come from metagenomic assemblies and may not be
complete, it is nearly impossible to determine if the systems are
in fact functional or not, especially without applying laboratory
experiments.

Finally, we decided to identify typical plasmid proteins, in-
volved in MOB, MPF, and REP. For this, we utilized MOB-suite
databases (Robertson and Nash 2018). Initial analysis revealed a
low number of proteins belonging to any of the groups (Fig. S3).
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Figure 7. Heatmap showing the count of RNAs identified within data originating from each plasmid identification tool. Identification was performed

using Rfam database and Infernal.

First, we scrutinized the MOB proteins. We were able to identify
proteins from five different MOB groups (F, H, P, Q, and V), but only
one of them (P) was identified in all three datasets. Overall, the
most MOB proteins were identified in GeNomad dataset (18), while
PLASMe had the same number as PlasX (10), despite a much lower
count of contigs in output dataset. The only MOB type identified
in all datasets was MOBP.

Next, the protein group which showed the most striking
differences—MPF proteins. This group was the most numerous.
Again, GeNomad had the most hits (69), followed by PlasX (44)
and PLASMe (6). Only three types of MPF proteins were found—F,
T, and unknown—with MPF-F and MPF-T being found in all three
datasets, albeit in much lower counts within the PLASMe output.

Results of REP analysis were scattered, with no protein cluster
gathering more than four hits from one tool. Overall, the results of
this analysis are quite surprising. Given the fact that a total of over
5000 plasmid contigs were analysed, obtaining 225 hallmark plas-
mid genes is appalling. Once again, this result can be attributed to
many factors. Most likely includes database bias, lack of reference
data, and incompleteness of contigs (i.e. a full plasmid sequence
can be split into multiple parts, out of which only one will con-
tain a REP system). Nevertheless, further analysis would have to
be conducted in order to determine what partitioning and mobi-
lization systems can be found in the microbial communities of the
AMOR ridge.

Characterization of majority voting plasmid
contigs

In order to address the discrepancies between the results of all
three tools and remove their respective biases, a majority vot-
ing system was used to determine contigs that have a maximally
high probability of actually originating from plasmid DNA. Con-
tigs classified as plasmid by at least two out of three tools were
selected, resulting in a dataset containing 205 plasmids, with 12
of them being selected by all three tools. These high-confidence
plasmids present a valuable resource for an in-depth analysis
of the taxonomic, functional, and metabolic diversity within the
AMOR microbial communities. Surprisingly, 41 contigs carrying
hallmark plasmid genes (MOB, REP, or MPF) identified with MOB-
scan were not included in this set. However, most of the hits were

of poor quality, and as such, those contigs were not further con-
sidered. A series of analyses analogous to that performed before-
hand using datasets from three plasmid classification tools was
performed. First, we looked into the taxonomic classification and
diversity between environments. Next, we scrutinized the func-
tional and adaptational value of the plasmid contigs in question,
highlighting their role in adaptation to extreme conditions. Finally,
we tried to fund similarities to plasmid sequences available in
public databases.

High-confidence plasmid contigs vary in size and GC
content

Typically, plasmids range in size from around 700 bp to 400 kb,
with some (e.g. mega-sized plasmids in Alphaproteobacteria) reach-
ing over 1 Mb in size (Thomas and Summers 2008, Dziewit et al.
2014, Ciok et al. 2016, Frage et al. 2016). Plasmid contigs identified
via majority voting varied in size from 611 bp to 251 kb, staying
within reasonable range for predicted plasmids. Average length
was 18.1 kb, while median length was 3740 bp (Fig. 8A). While
this could potentially be a result of mostly small plasmids being
present in the environment, it is more likely a result of fragmenta-
tion of sequences. Mean GC content of all 205 plasmid contigs was
58.37%, but a more detailed analysis revealed that most plasmids
have a GC content of either around 30% or 60%. Since GC con-
tent of sequence is usually linked with temperature of the envi-
ronment (higher temperatures mean higher GC content), we also
analysed how the GC content changes based on the temperature
of the sampling site (Hu et al. 2022) (Fig. 8B). For environments
with the highest temperature (75°C), a peak was observed at ~65%
GC content. As the temperature dropped, the height of this peak
started dropping, while a second peak, located at ~30% GC con-
tent started appearing, increasing in size, reaching its maximum
at 20°C. This clearly showcases how temperature affects the GC
content of plasmid contigs.

Taxonomy of plasmids from DSHVs is biased toward
Pseudomonadota and Campylobacterota

One of the most important characteristics of plasmid sequences
is their taxonomy, or association with the host. However, it's cru-
cial to remember that plasmids are mobile and may be exchanged
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content plots, environments M4, M10, and M12 were excluded, as they contained two or less plasmid contigs.

between hosts. To determine the taxonomy of plasmid contigs se-
lected via majority voting, we applied the same methodology as
before, using MMsegs?2 easy-taxonomy module with NR database
as reference. Initial analysis revealed that over 96% of all plasmid
contigs were classified within any taxonomic rank. The percent-
age dropped rapidly with decreasing rank, with 75% plasmid con-
tigs classified at phylum level, 58% at class level, down to 9% at
species level (Fig. S4A). In general, the dataset is dominated heav-
ily by Bacteria, with only one out of 205 sequences classified as
Archaeal. The annotation of this sequence only reached the phy-
lum rank—Euryarchaeota. Furthermore, seven sequences were not
assigned to any Kingdom, and 193 plasmid contigs were classi-
fied as Bacterial. Classification of all bacterial plasmid contigs on
phylum level can be seen on panel B of Fig. S4.

The most abundant phyla were Pseudomonadota and Campy-
lobacterota. On family level, Burkholderiaceae were observed the
most frequently, with 29 plasmid contigs assigned to this rank.
The next most abundant family was Arcobacteraceae, with five ob-
servations. This family is unique within the Campylobacterota phy-
lum, as it is found in an unusually wide range of environments,
including vents at AMOR (Fera et al. 2004, Urich et al. 2014, Dahle
etal. 2015, Stokke et al. 2015, Steen et al. 2016). One of the species
within this family, Arcobacter sulfidicus, produces filamentous sul-
fur, which may indicate its pivotal role in formation of white sul-
fur mats, useful in anchoring microbes to rocky surfaces affected
by flow of hydrothermal fluids (Wirsen et al. 2002). Other families
known to metabolize sulfur, namely Sulfurimonadaceae and Chro-
matiaceae were also identified (Hubas et al. 2013, Han and Perner
2015). Other than that, plasmid contigs were classified as originat-
ing from families Methylococcaeae (two contigs), Enterobacteriaceae
(one), Paracoccaceae (one), Roseobacteraceae (one), and Wenzhouxian-
gellaceae (one).

Overall, we believe that the results presented are in line with
the fundamental role of sulfur species in forming and nourish-
ing the bacterial communities found in deep-sea environments
(Urich et al. 2014, Dahle et al. 2015, Stokke et al. 2015, Steen
et al. 2016). Another fact that must be considered is the rel-
atively low percentage of successfully classified sequences, es-
pecially at lower taxonomic levels. This stems from the under-
representation of data from extreme environments in public

databases, as well as lack of experimental data confirming their
taxonomy.

Plasmids may provide a plethora of functional advantages
to their hosts

To gain an insight into the metabolic functions of plasmid con-
tigs, we analysed the presence and relative abundance of pro-
teins within each COG category, as well as looked into specific
categories to reveal what evolutionary advantages they may pro-
vide. Similar to results coming from each plasmid classifier, plas-
mid contigs selected via majority voting system were enriched
with genes from COG categories L, K, and P (replication, recom-
bination, and repair; transcription; inorganic ion transport and
metabolism, respectively), suggesting that, apart from functions
related to plasmid maintenance and transmission, functionality
related to utilization of novel, inorganic energy sources is the most
enriched within plasmid contigs (Fig. 9).

In order to determine the exact functionality carried by
plasmid-encoded proteins, we next analysed the output of
eggNOG-mapper in terms of both Pfam hits and KEGG hits. For
both categories, if a protein was annotated with more than one
ID, the IDs were split and treated as separate entries. 2575 pro-
teins, originating from 205 plasmid contigs, were assigned 3875
nonoverlapping Pfams and 2728 KEGG KO terms.

Overall, most abundant protein families (i.e. Pfams) identified
in the majority voting plasmid dataset were related to phage bi-
ology and transmembrane transport. Specifically, we identified 73
hits to phage integrases (PF00589) and 29 hits to their N-terminal
SAM-like domain (PF02899), as well as 32 resolvases (PF00239),
often encoded within Tn3-like transposons (Heffron et al. 1979).
In terms of transmembrane transport and substrate binding, we
identified a wide range of domains, with the LysR substrate bind-
ing domain (PF03466) having the most hits (47). This domain
can have a critical role in ensnearing substrates available in the
environment, including amino acids, sugar phosphates, organic
acids, metal cations and many more (Matilla et al. 2022). Poten-
tial role of plasmids in acquisition of substrates from the en-
vironment can be further confirmed by the presence of numer-
ous copies of domains involved in transport of various substrates,
including ABC transporters (PFO0005, 43 hits), major facilitator
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Figure 9. COG categories assigned to genes found within contigs classified as plasmid by at least two classification tools. Annotations for COG
categories are as follows: J: translation, ribosomal structure and biogenesis, K: transcription, L: replication, recombination, and repair, D: cell cycle
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secondary metabolites biosynthesis, transport, and catabolism, and S: function unknown.

superfamily (MFS) members (PF07690, 40 hits; PF05977, 4 hits;
PF06779, and 4 hits), ACR family membrane proteins (PF00873,
32 hits), and binding-protein-dependent transport system mem-
bers (PF00528, 30 hits). Additionally, many regulatory domains
were found as well, such as the regulatory helix-turn-helix protein
from LysR family, matching the LysR substrate-binding domain (55
hits, PF00126); 34 general response regulator domains (PF00072),
and more. We also identified domains responsible for binding and
transport of metals (such as CopB and copper oxidases; ChrB, and
other chromate transporters), multiple 2Fe-2S iron-sulfur clus-
ter binding domains (fer2, fer4 4,12,14), conjugal transfer pro-
teins (traCEFGHLN), DNA methylases and polymerases, and multi-
ple DDE transposases. Overall, we were able to identify 589 unique
domains, and 421 proteins were not assigned any Pfam domain.

Despite basing on the same input dataset, the results of KEGG
KO annotations present a different functional landscape com-
pared to Pfam. Here, by far the most numerous annotation be-
longs to partitioning proteins (K03496-chromosome partition-
ing protein—42 hits; and K03497-ParB chromosome partitioning
protein-24 hits) and chemo- and aerotaxis proteins (K03406-
methyl-accepting chemotaxis protein-20 hits; K03776-aerotaxis
receptor-16 hits; K05874-methyl-accepting chemotaxis protein
I, serine sensor receptor-17 hits; and K05875-methyl-accepting
chemotaxis protein II, aspartate sensor receptor-12 hits). On the
other hand, some similarities were retained, such as presence of
copper transport and resistance proteins (K17686, K07156, and
K07233), MFS proteins (K08191, K03535, K08225, and K08369), and
conjugal transfer proteins (K12056-K12072). Here, the number of
proteins with no database ID assigned was much higher compared
to Pfam, as 1429 proteins were not matched with any KEGG KO,
and the rest were assigned 310 unique KO numbers.

Choice of sequencing platform significantly affects
outcomes of functional annotation

While differences observed between different sources of annota-
tion (Pfam versus KEGG) are not drastically big, they are much
more noticeable when comparing annotations between sam-

ples originating from different sequencing platforms. Namely, the
number of unique Pfam and KEGG annotations assigned to pro-
teins originating from each environment, is much higher for No-
vaSeq samples compared to MiSeq data (Fig. S5). This is especially
significant for samples M2 and M3, which, despite containing a
high number of plasmid contigs (62 for M2, highest of all sam-
ples, and 27 for M3, third highest), have a much smaller propor-
tion of unique database IDs within them. Samples M4, M10, M12,
and M14 only contain a minimal number of plasmid contigs (2, 2,
1, and 4, respectively).

While differences in environmental diversity could contribute
to variations in annotation, the results from section "Selection of
sequencing platform has a major impact on assembly outcomes”
suggest that sequencing methodology plays a significant role. The
higher quality and quantity of data produced by NovaSeq may al-
low for more comprehensive assembly and annotation of plasmid
sequences, revealing a greater diversity of functional genes. Con-
versely, the shorter, potentially fragmented assemblies obtained
from MiSeq data may limit the detection and characterization
of certain plasmid-borne genes, leading to an underestimation
of functional diversity. However, the observed variability within
MiSeq samples suggests that the inherent plasmid content and
community structure within these environments could also con-
tribute to the observed differences.

In conclusion, the functional analysis of high-confidence plas-
mid contigs from DSHVs revealed a diverse array of genes in-
volved in various metabolic processes. While core plasmid func-
tions like replication, transcription, and inorganic ion transport
were enriched, the presence of numerous genes related to phage
biology, including integrases and resolvases, suggests complex in-
teractions between plasmids and phages in this ecosystem, pos-
sibly interplay between these elements leading to formation of
plasmid-like prophages or integration of phages within plasmids
or exchange of genetic modules. This interplay may be crucial
for plasmid maintenance, horizontal gene transfer, and the ac-
quisition of novel adaptive traits. The abundance of genes re-
lated to transmembrane transport and substrate binding further
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indicates a pivotal role of plasmids in facilitating nutrient up-
take and adaptation to the unique geochemical conditions of hy-
drothermal vents. Notably, a significant proportion of proteins
lacked annotations in both the Pfam and KEGG databases, high-
lighting the understudied nature of this environment and the po-
tential for novel gene functions yet to be discovered. It is also im-
portant to acknowledge that the observed functional profiles may
be influenced by the biases of the individual plasmid classifiers,
each potentially favoring certain types of plasmids based on their
training data and algorithms.

In-depth analysis of 12 plasmid contigs selected
by all tools

The last step in analysis of plasmid data obtained from tested
metagenomic samples was to take an indepth look at 12 plasmid
contigs selected by all three tools used in the study. All of the se-
quences can be found in supplementary file F1. Plasmid contigs
contained within this dataset should have a maximally high like-
lihood of being actual plasmids/fragments of plasmids. The first
step in this analysis was to compare the plasmid contigs to deter-
mine their similarity, and potentially find clusters of similar plas-
mids. In order to do so, we used k-mer-based tool sourmash (Pierce
etal. 2019). Results showed that the 12 plasmids formed two clus-
ters of size four, containing nearly identical sequences (estimated
Jaccard similarity index equal to 1). For the remaining four con-
tigs, no similarity to any other plasmid contig from this dataset
was found (Fig. 10A). Notably, plasmid contigs which formed clus-
ters 1 and 2, originated from environments M19, M20, M21, and
M34, sequenced using the NovaSeq platform; and only three plas-
mids in this dataset originated from MiSeq data. Once again, the
importance of sequencing platform selection and its effect on re-
sults of downstream analyses is provided.

Plasmid contigs from cluster 1 provide chromate and
superoxide resistance

The cluster 1 contained contigs M19_ctg 14464, M20_ctg 158526,
M21_ctg 2756, and M34_ctg 74242, each 22 261 bp long, and with
GC content of 64.86%. Each contig contained 29 protein CDS. Bas-
ing on the results of MMseqs2 taxonomic analysis, the contigs
were classified into Pseudomonadota phylum. A blastn search
confirmed very high similarity (>99% identity and coverage) to
plasmids originating from other members of this phylum, namely
Ralstonia strains, although the target sequences were much longer
(190-340 kb). Linear map of the plasmid contig M19_ctg 14464 as
a representative of all four contigs found within this cluster can
be seen in Fig. 10(B).

The next step was to perform functional annotation of CDS,
which was carried out using HHpred. First, we tried to identify
hallmark plasmid genes. Unfortunately, no REP, MOB, or MPF genes
were identified within the sequences. Similarly, GeNomad, which
uses a custom database of hallmark plasmid genes, also identified
no such features. Despite that, the contig did contain two poten-
tially interesting modules. First, a transposon-like module, con-
taining 4 genes (coordinates 5585-7327 bp), containing an inte-
gron gene cassette protein, a transposase, a prophage protein and
site-specific DNA recombinase SpolVCA/DNA invertase PinE. The
functionality and exact role of this module is hard to determine,
as the annotations for proteins in this element were of low quality.
Second, a chromate-resistance module was identified. This mod-
ule encodes six proteins, including a periplasmic adaptor subunit
of RND efflux transporter, CzcA family RND efflux transporter,
two chromate resistance proteins, and a superoxide dismutase.
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Together, these proteins have a potential to form a fully func-
tional chromate-resistance mechanism, which includes reduc-
tion, binding and transport of chromate. Interestingly, a similar
genetic module was reported by Branco et al. (2008). In their work,
the authors describe an operon of analogous structure and con-
firm its function in chromate and superoxide resistance. Further-
more, the element described in their work was located within the
TnOtChr transposable element, similar to how the chromate resis-
tance genes identified in this work are located near a transposase
gene. Another two genes, potentially involved in metal resistance
are located both upstream and downstream—a periplasmic heavy
metal sensor, and a MFS transporter. A putative nucleotidyltrans-
ferase, followed by a putative toxin of the MNT-HEPN system was
also found. Upon further analysis the nucleotidyltransferase pro-
tein showed similarity to mtnA adenylyltransferase, further sug-
gesting the completeness of this toxin—-antitoxin system (Yao et al.
2020).

Cluster 2 plasmid contigs contains a genomic island related
to phosphate transport and arsenate metabolism

The second identified cluster, marked on Fig. 10(A) with color
green, groups much larger contigs. Contigs M19_ctg 253676,
M21 _ctg 589898, and M34_ctg 74039 are 131.5-kb long, while
contig M20_ctg 136670 is about 1 kb longer, i.e. 132.6 kb. The ad-
ditional fragment, not found in other contigs, contains two pre-
dicted genes. GC content was identical for all four contigs at
59.9%. Taxonomic classification of these contigs placed them in
the Burkholderiaceae family. Unlike with cluster 1, a blastn analy-
sis showed no significant similarity between the plasmid contigs
from this cluster and sequences from the NT database.

Akin to cluster 1, the first goal of analysis of this set of plas-
mid contigs was to identify hallmark plasmid genes. This time,
the identification was successful. Most notably, genes responsible
for plasmid partitioning (parAB) and conjugation (virB-like) were
found, cementing the origin of those sequences as plasmid. A full
list of 10 genes marked as hallmark by GeNomad can be found
in Table S3. Furthermore, manual analysis of nearby loci revealed
the presence of more MPF-related genes, hinting that the system
could be complete. A highly interesting feature of distinguished
plasmid contigs is a putative genomic island, located near the end
of the contig (Fig. 10C). Downstream, the island is delimited by two
1S21-like elements encoding a transposase and a helper ATPase.
Following these, a pstSCAB and phoUB genes are present, constitut-
ing a high affinity and velocity phosphate transport system along
with its regulator (Shinagawa et al. 1983, Yuan et al. 2006). Addi-
tionally, the genomic island, as observed based on localized drop
in GC content, contains a series of ars genes (arsR, arsl, arsR, and
arsH), followed by a MFS transporter, forming a structure similar
to that described by Muller et al. (2007), although the presence
of two arsR-like regulatory proteins is uncommon. Those genes
could provide a critical advantage to the host of this plasmid, by
enabling As respiration. Zhang et al. (2023) proved that they may
play a pivotal role in metabolism of microorganisms found in deep
sea cold seep sediments, as well as global carbon and nitrogen cy-
cling. Compared to mechanisms described in this study, the mod-
ule is missing genes responsible for As(V) reduction and oxidation
methylation of As(III).

Other than that, various other enzymatic proteins were iden-
tified, including, but not limited to aldehyde dehydrogenase, as-
partate carbamoyltransferase, and chemotaxis protein, putatively
providing various metabolic advantages to host cell (Schalk et al.
2009, Lipscomb and Kantrowitz 2012, Shortall et al. 2021). Notably,
the quality of annotation of this plasmid contig was relatively low,


https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae124#supplementary-data

12 | FEMS Microbiology Ecology, 2024, Vol. 100, No. 10

(A)

M3_ctg 57032
M5_ctg_35674
M1_ctg_9871

M20_ctg_285425
M19_ctg_253676
M20_ctg_136670
M21_ctg_589898
M34_ctg_74039
M20_ctg_ 158526
M19_ctg 14464
M21_ctg_2756
M34_ctg 74242

Cluster 2

Cluster 1

(B)

1w (D)
M5_ctg_35674 -‘M Toxin-antitoxin
08 5,652 bp systems
M1_ctg_9871 »wm HTH-domain
08 5,991 bp . proteins
M20_ctg_285425 ~D—»> DNA-modifying
0.4 3,168 bp enzymes
M2_ctg_57032 M
02 5,170 bp
—
o 2.5 kb

22661 bp

. Transposon MFS Transporter g]hrtOrglgltiem
2.5kb etabolis
(C)
M19_ctg 153676
131,574 bp ‘Q:WXKK:EHM
Phosphate Arsenic
. Transposase metabolism metabolism

2.5kb

Figure 10. (A) Heatmap showing pairwise similarity between 12 plasmid contigs, basing on estimated Jaccard similarity. (B) Linear map of the plasmid
contig M19_ctg 14464, with features classified into general categories. Arrows indicate predicted genes. For genes with multiple potential
classifications, the most specific was selected. (C) Schematic representation of the putative genomic island identified on plasmid contigs from the
cluster 2. (D) Linear representation of plasmid contigs M5_ctg_35 674, M1_ctg 9871, M20_ctg 28 5425, and M2_ctg 57 032. The DNA-modifying enzymes

category includes integrases, recombinases and DNA polymerase.

with 46 out of 144 genes found within the plasmid marked as hy-
pothetical proteins.

Small plasmid contigs encode many toxin-antitoxin
systems suggesting their selfish nature

Other than the eight plasmid contigs, forming clusters 1 and 2,
which were described above, four unique, nonclustering plasmid
contigs were identified as well. Representation of all four contigs
can be seen on panel D of Fig. 10.

First, contig M5_ctg 35674 with 50.48% GC content, was de-
scribed. Taxonomic classification indicated the LCA of this se-
quence as order Enterobacteriales. The length of this sequence
equals 5.6 kb, and only eight predicted genes were identified
within it. Among these, three proteins were marked as hy-
pothetical. We also identified a site-specific DNA recombinase
SpoIVCA/DNA invertase PinE, inovirus-type Gp2 protein and two
helix-turn-helix domains containing proteins. However, the most
notable is the presence of heat shock protein C (HSP C) and RNAI
ncRNA sequences. The latter indicates the plasmid is a ColE1-like
replicon, while the presence of a HSP protein could provide a sig-
nificant environmental advantage, given that sample M5 was col-
lected from an environment with temperatures reaching 72°C.

Next, contig M1_ctg 9871—a 5.9-kb sequence with 15 predicted
genes and 40.73% GC content, was distinguished. The low GC
content, especially compared to other plasmids, can be some-
how explained, as sample M1 was collected from an environment
with the lowest temperature (20°C). The contig was only classi-
fied as bacterial. Among the identified 15 genes, several toxin—
antitoxin related proteins were found, including two complete
toxin—-antitoxin systems (cddAB and hicAB) and two TA-related
proteins (higA family addiction module antidote protein and type

II toxin—antitoxin system PemK/MazF family). Additionally, a pair
of vapC ribonuclease, which is a toxin in the vapBC system, and pu-
tative (anti)toxin protein, located in the upstream ORF, was iden-
tified. The putative protein showed moderate similarity to mul-
tiple toxin and antitoxin proteins from type II systems, and it
could form another TA system within this plasmid. There is also
a polymerase beta-like protein and a nucleotidyltransferase, both
of which can be involved in base excision repair of DNA (Krokan
and Bjgras 2013). Presence of such a system could greatly benefit
the host, provided that DNA damage is frequently occurring in the
environment.

Plasmid contig M20_ctg 285424 is the smallest of 12 selected
contigs within this dataset. It also has the lowest GC content
of just 27.65%, while it originates from a moderately hot envi-
ronment (50°C). The contig is 3.1 kb long and only encodes four
protein-CDS, two of which are hypothetical proteins. The other
two are a replication protein and vbhA antitoxin of the vbhAT
toxin—antitoxin system.

Finally, plasmid contig M3_ctg 57032, is another small se-
quence (5.1 kb) containing only four open reading frames. Among
those, two are integrases, one protein is a HTH-domain containing
protein with unknown function, and the final oneis a hypothetical
protein. Based on the genetic content of this sequence, it is pos-
sible that it is not a plasmid, despite being selected by all three
tools. Possibly this is a fragment of a larger replicon.

Conclusions

In this study, we explored the diversity and ecological roles of
plasmids in DSHVs located at AMOR in the Norwegian-Greenland
Sea—a unique and understudied environment. We first analysed



the impact of the choice of sequencing platform and concluded
that it significantly impacted the assembly and subsequent func-
tional annotation of plasmid contigs, with NovaSeq data provid-
ing greater resolution and uncovering a wider range of functional
diversity compared to HiSeq data.

Next, our comparative analysis of three state-of-the-art plas-
mid identification tools (PlasX, GeNomad, and PLASMe) re-
vealed significant differences in taxonomic composition, degree
of similarity to known plasmids and functional content between
datasets originating from each classifier. Each tool exhibited dif-
ferent strengths and biases, likely derived from diverse method-
ologies and reference datasets used during their development.

GeNomad identified the highest number of plasmid contigs and
showed a “less conservative” approach, as evidenced by the higher
proportion of poorly characterized and unclassified proteins. This
suggests that GeNomad could perform better when working with
novel sequences, for example originating from extreme environ-
ments. However, it also demonstrated a potential bias toward con-
tigs containing CRISPR elements, which warrants further investi-
gation.

PlasX exhibited the greatest similarity to known sequences and
COG database entries, suggesting a more conservative approach,
yet it identified a number of sequences similar to GeNomad. The
tool identified a high proportion of proteins involved in cell cycle
control, cell division, and chromosome partitioning, particularly
site-specific tyrosine recombinases and proteins involved in chro-
mosome partitioning. While this could be attributed to contami-
nation with chromosomal data, it may also indicate the presence
of prophage regions or plasmid partitioning systems.

PLASMe identified a significantly lower number of plasmid con-
tigs compared to GeNomad and PlasX, displaying high precision
by excluding proteins typically found on chromosomes. However,
the absence of characteristic plasmid genes, such as parA, toxin—
antitoxin systems, and plasmid maintenance systems, indicates
a lower recall. Additionally, PLASMe’s output was notably lack-
ing in archaeal diversity, most likely due to the exclusively bac-
terial reference dataset used in its training. To mitigate the afore-
mentioned biases, we created a high-confidence plasmid dataset,
obtained through a majority voting approach, which unveiled a
diverse array of genes involved in core plasmid functions, phage
interactions, nutrient acquisition, and stress response. This func-
tional landscape reflects the complex interplay between plasmids
and their microbial hosts in the extreme conditions of deep-sea
vents, suggesting an essential role for plasmids in facilitating
adaptation and survival. The presence of numerous poorly anno-
tated or novel genes underscores the vast untapped genetic po-
tential of this unique ecosystem. Notably, many plasmid contigs
were equipped with toxin-antitoxin systems, responsible for de-
pendence of cell survival on a mobile genetic element, which high-
lights the role of “selfish DNA” within the studied extreme envi-
ronments.

Overall, our findings contribute to a deeper understanding of
plasmid ecology in DSHVSs, revealing the importance of consider-
ing both biological and methodological factors when investigating
these complex microbial communities. The observed functional
diversity highlights the potential for plasmids to drive adapta-
tion and evolution in extreme environments, offering valuable in-
sights into the ecological roles of these mobile genetic elements.
Further research, including experimental validation of predicted
gene functions, will be crucial for unraveling the full extent of
plasmid-mediated processes in these ecosystems. Additionally,
the development of refined plasmid identification tools specifi-
cally tailored to challenging metagenomic datasets from extreme
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environments will enhance our ability to comprehensively char-
acterize the (meta)plasmidome and uncover its hidden features.
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