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Abstract

Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and
freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal
transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome
along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling ap-
proaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic,
topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assem-
blages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most
specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be
sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the
present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Fur-
thermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater

ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.
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Introduction

Fungi are a diverse group of heterotrophic eukaryotic organisms
with a multitude of ecological roles. Recent estimates suggest that
there may be up to 6 million extant species of fungi (Licking et al.
2020, Baldrian et al. 2021). They include economically and ecolog-
ically relevant groups such as molds, mushrooms, and yeasts, as
well as many less studied fungi that do not seem to produce tangi-
ble fruiting bodies. Fungal communities are ubiquitous (Naranjo-
Ortiz and Gabaldén 2020, Debeljak and Baltar 2023) and have been
reasonably well characterized in a number of habitats, such as
soils, rivers, lakes, and oceans, or in association with plants or
animals (James et al. 2020, Mikryukov et al. 2023). In spite of all
scientific progress, fungal communities remain difficult to study
due to the limited number of distinct morphological features, high
physiological variation, and often cryptic ecology, especially in an
ecosystem as inaccessible as groundwater (Grossart et al. 2019,
Retter and Nawaz 2022).

Terrestrial groundwater, Earth’s largest reservoir of liquid
freshwater, is found below the land surface, and is generally de-
scribed as thermally stable. The lack of light makes groundwa-

ter oligotrophic by nature (Overholt et al. 2022), being character-
ized by a scarcity of organic matter (OM). This allows groundwa-
ter organisms to maintain slow metabolic rates while exhibiting a
comparatively lower productivity than surface water ecosystems
(Griebler and Lueders 2009). Nonetheless, groundwater is known
to support a diverse variety of microbes, for instance bacteria and
archaea, but also protozoa (Korbel et al. 2013, Herrmann et al.
2020, Karwautz and Griebler 2022, Fillinger et al. 2023). It provides
a relatively stable environment and furthermore shelters its in-
habitants from desiccation. In terms of energy, underground lay-
ers of water-bearing material (aquifers) may exhibit various re-
dox gradients that microorganisms can exploit for their metabolic
processes (Maamar et al. 2015, Fillinger et al. 2023).

To date, our knowledge of the ecological importance of fungi in
groundwater, including the suitability of groundwater as a fungal
habitat, their diversity and distribution, as well as the pathways of
their entry, or the overall existence of resident communities is lim-
ited. Recent studies have shown that fungi play fundamental roles
in the subsurface ecosystem through their widespread anaer-
obic metabolism (Mtller et al. 2012, Drake and Ivarsson 2018,
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Hoque and Fritscher 2023), trophic relationships (e.g. symbiosis,
parasitism, predation) (Bengtson et al. 2014, Galindo et al. 2018,
Grabner et al. 2020), and evolutionary traits such as flagellated
unicellular forms and hyphae formation (Rojas-Jimenez et al.
2017, Voigt et al. 2021). To this end, we sampled 45 ground-
water wells and 14 river sites at two times of the year along
a 300 km altitudinal gradient in the Austrian alps stretching
from the alpine region to the lowland (i.e. the foothills of the
alps). Hydrological exchange between groundwater and river
systems, and subsequent groundwater recharge is largely deter-
mined by climatic conditions, soil properties, the depth of the
groundwater, and the properties of the surface of the Earth (e.g.
altered by anthropogenic degradation such as increased surface
sealing, or surface erosion due to intensive agriculture) (Uhl
et al. 2022). Thus, fungal communities along the groundwater
and river network should potentially be influenced by various
landscape (present climatic, topologic, and geologic) and land use
characteristics, and we are expecting corresponding patterns in
their biodiversity. Understanding the ecological dynamics that
shape microeukaryotes across freshwater habitats enables us to
relate groundwater to an ecosystem (i.e. the river) that is both
hydrologically interdependent and much better understood in
terms of fungal and freshwater ecology (Grossart et al. 2019,
Swan et al. 2021, Barros and Seena 2022). Additionally, the ma-
jority of fungi have been shown to be saprotrophic, feeding on
detritus in groundwater (Foulquier et al. 2011, Inkinen et al. 2019,
Shamshedenova et al. 2019, Somervuori et al. 2021). We therefore
propose that fungi play a vital role in the element and nutrient
cycle of groundwater through their versatile metabolic and phys-
iological characteristics. We hypothesize that the effects of local
landscape characteristics and environmental conditions, e.g. as a
result of hydrologic fluctuations, are reflected in the presence of
locally adapted fungi (De Céceres and Legendre 2009). Our study
addresses the complexity of fungal communities in groundwater
and the adjacent river in an alpine valley and intents to unravel
drivers that determine their biodiversity, ecology, and distribution
in the context of landscape characteristics, hydrological and
environmental conditions as well as local land cover.

Materials and methods

Study area, field sampling, and data acquisition

Sampling took place in the provinces Styria and Salzburg (Aus-
tria) from June to July (spring) and October to November (autumn)
2020. A total of 118 samples were collected in total, consisting
of 90 groundwater and 28 surface water samples, including the
Source of the Mur River in the Hohen Tauern national park as
well as the Lassnitz and Pols tributaries (Fig. 1). To roughly cate-
gorize the river catchment, which follows an altitudinal, land use,
and climatic gradient, we defined three different basins, which we
called the alpine region, the Graz basin, and the lowland (Fig. 1).
To determine land cover in the Mur valley catchment at each
sampling site, we used the CORINE Land Cover data (2012-2018;
https://www.data.gv.at/, accessed on 1 February 2021). For catego-
rizing lithological characteristics, we utilized the OneGeology sur-
vey (https://onegeology.org/), with the permission of OneGeology.
Bioclimatic variables of mean annual air temperature (biol,°C),
annual precipitation amount (bio12, kg m~?), and seasonal pre-
cipitation as the coefficient of variation (bio15, kg m~?) from the
years 1981-2010 were downloaded from CHELSA Bioclim (Karger
et al. 2017) to subsequently calculate zonal statistics of our sam-
pling locations.

Sample collection for fungal communities,
physicochemical parameters, and basic microbial
variables

Groundwater was withdrawn from observation wells established
within the past few decades by the provinces of Styria and
Salzburg to monitor groundwater quality and quantity (locations,
groundwater table, and well depths can be found in Table S1).
Consequently, nearly all the wells from which groundwater was
sampled have extensive long-term datasets on hydraulic head
(groundwater table) and temperature, accessible via www.ehyd.
gv.at. Groundwater was withdrawn using a Grundfos submersible
MP1 pump (Eijkelkamp Soil & Water Corp., the Netherlands),
placed 2 m below the groundwater table. The pumping rate main-
tained a maximum drawdown of 0.5 m of water table in the well
vicinity. Before sample collection, stagnant well water was purged
by pre-pumping twice the well water volume, and stability of key
physicochemical parameters (electrical conductivity: EC, pH, wa-
ter temperature, concentration of dissolved oxygen: DO) was con-
sidered. During sample collection, the pumping rate was reduced
to avoid dislodgement of microbial biofilms and withdrawal of
fine sediments. River water samples were collected from the river-
bank, if possible, from the free-flowing section. Water tempera-
ture, pH, EC, and DO of groundwater and river water were mea-
sured on site using field sensors (WTW, Weilheim, Germany). All
samples were filled into sterilized canisters washed with a 2%
sodium hypochlorite solution and rinsed three times with MilliQ
lab water, as well as with sample water. Within 48 h of sampling,
in which canisters were stored in a dark cool place, a total of 101
of groundwater and 4 1 of surface water were filtered onto 0.22 pm
Sterivex filters (Merck Millipore, Darmstadt, Germany) with a peri-
staltic pump. Filters were stored right away at —80°C until molec-
ular analysis.

All water samples were analyzed for the concentration of major
ions, nutrients (NO3~, NO,~, NH,*, PO,37), dissolved organic car-
bon (DOC), dissolved inorganic carbon, composition of dissolved
organic matter (DOM), and water stable isotope (5'#0, §°H) signa-
tures as previously described in Retter et al. (2021, 2023). A de-
tailed description of the environmental characteristics of sam-
pling sites is also included therein. DOM was characterized in
terms of different fluorescence indices, i.e. HIX (humification in-
dex), BIX (freshness/biological index), and FI (fluorescence index),
as well as the commonly referenced peaks obtained from aquatic
DOM (i.e. Coble peaks b, t, a, m, c; Coble 1996, Coble et al. 2014,
Parlanti et al. 2000).

Nucleic acid extraction and Illumina sequencing

Genomic fungal nucleic acids were extracted in two batches us-
ing the Norgen RNA/DNA purification kit (Norgen Biotek, ON,
Canada). In brief, filters were first removed under sterile condi-
tions and cut up, and 800 ul of the kit’s lysis buffer was added to
the filter strips in a sterile 1.5 ml screw cap micro tube containing
0.2 ml of a mix of 1:1 0.1 mm and 0.7 mm Zirconia/Silica beads
(Biospec, Bartlesville, USA). Cell lysis was enhanced by incuba-
tion for 10 min at 55°C followed by bead-beating. The entire liquid
was transferred to a new microcentrifuge tube and centrifuged at
14000 x g for 2 min. The supernatant was then purified accord-
ing to the manufacturer’s protocol. DNA was quantified using a
Qubit 4 dsDNA assay. Three negative control samples were co-
extracted from sterile 0.22 pm Sterivex filters. A primer combina-
tion of forward primer ITS3-Mix2 (Tedersoo et al. 2015) and reverse
primers ITS4-cwmix1 and ITS4-cwmix2 (Wurzbacher et al. 2017),
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Figure 1. Map showing the sampling locations of groundwater and surface water as points along the Mur valley in Styria (outlined boundaries) and
Salzburg, as well as groundwater bodies along the valley depicted in their regional landscape types (alpine region, Graz basin with the city of Graz, and

the lowland).

annealing to the 5.8S gene and the ITS2 region, respectively, was
used for amplification following the PCR protocol described by Pje-
vac et al. (2021), with PCR conditions as described in Retter et
al. (2019). Sequencing was done at the Joint Microbiome Facility
(JMF) of the Medical University of Vienna and the University of Vi-
enna on a MiSeq platform (Illumina, San Diego, CA, USA), produc-
ing 2x300 b paired-end sequences. Sequencing data, generated by
the JMF under Project IDs JMF-2009-1 and JMF-2106-09, were de-
posited under the BioProject accession number PRINA926931.

Sequence data processing and classification

We applied a two-marker metabarcoding approach making use
of a conserved region that helps to anchor the ITS (Heeger et al.
2018, Licking et al. 2020). Raw reads were processed and classi-
fied using the metabarcoding pipeline of Heeger et al. (2019) uti-
lizing the two marker regions 5.8S and ITS2 with default settings
(pipeline configurations: conflictBehavior = “mark,” primerError
= 0.2, maxAmplLen = 550, minAmplLen = 150). Here, operational
taxonomic units (OTUs) were classified by the lowest common an-
cestor classification using the UNITE reference database release
for eukaryotes (ITS2) (v. 9.0, 29.11.2022, Abarenkov et al. 2022)
and RFAM database (5.8S) (v. 14.2, Kalvari et al. 2021). OTUs that
were classified by either 5.8S or ITS2 as fungi were retained. Tax-
onomic annotations of the 600 largest (i.e. most abundant) OTUs
were manually examined and verified as suggested by Nilsson et
al. (2012) using BLAST (Altschul et al. 1997). Clustering sequences
into OTUs has previously been shown to outperform amplicon se-

quence variants in regards to recovering species diversity when it
comes to fungal metabarcoding datasets (Tedersoo et al. 2022).

The dataset was decontaminated in R (v. 4.3.1, R Foundation for
Statistical Computing 2023) with “decontam” (v. 1.18.0, Davis et
al. 2018) with a prevalence-based identification of contaminated
sequences using a strict threshold of 0.3. Spring and autumn se-
quencing batches were analyzed separately against their respec-
tive negative control samples. Samples with <100 reads were dis-
carded.

Statistical analysis

In this study, we aim to conduct a comprehensive biodiversity
assessment of fungal communities in groundwater and adjacent
river ecosystems based on high-throughput amplicon sequencing.
To test for differences between groundwater and the river in terms
of total estimated richness and Shannon diversity based on OTU
abundances, we used the R packages breakaway (v. 4.8.4, Willis
and Bunge 2015) and divnet-rs (v. 0.2.1, Willis and Martin 2020).
Shannon diversity was calculated as effective number of species
(Jost 2006) as Hill-numbers (q = 1) and was calculated from model
matrices of tested co-variates with 6 replicates, perturbation set
to 0.01, and a medium abundant base taxon, otherwise using
default tuning settings. To test diversity estimates between fixed
combinations of the covariate-wise differences, we used the func-
tions “betta” and “betta_random” incorporating the sequencing
batch affiliation as a random effect, as well as computing a global
P-value with an F-test using a bootstrap analysis with 10000
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iterations implemented in the function “test_submodel” in the
R package breakaway. To test for differentially relative abundant
phyla across groundwater, and the river, we used the “differential-
Test” function using a Wald test with a false discovery rate cut-off
of 5%, implemented in the corncob package (v. 0.2.0, Martin 2017).

The interpretation of complex multidimensional sequencing
datasets requires the implementation of efficient dimensionality
reduction techniques to effectively retrieve relevant fungal com-
munities rather than single species/OTUs (Balint et al. 2016, Leite
and Kuramae 2020). To that end, we employed a Latent Dirichlet
allocation (LDA) analysis, which employs a probabilistic model to
identify groups of OTUs that frequently appear together i.e. com-
munities of fungi, which we term “assemblages.” Here, each sam-
ple represents a mixture of assemblages computed as Dirichlet-
distributed proportions and thereby reduced to a probability dis-
tribution on a fixed set of assemblages (Blei et al. 2003). This
method of deconstructing samples into overlapping assemblages
of co-occurring fungal taxa has been shown to be a powerful
and computationally efficient model-based approach (Sommeria-
Klein et al. 2020, 2021). It also enables the linkage of commu-
nity composition of local communities with environmental data,
a task that is frequently challenging due to the size and com-
plexity of metabarcoding datasets. LDA is suited for this task due
to its adaptability to accommodate uneven sample sizes (i.e. no
prior rarefaction required) and large, sparse datasets commonly
encountered in these environments (Sommeria-Klein et al. 2020,
Weiss et al. 2016).

We used the R version of the pipeline for LDA analysis of
metabarcoding data provided by Sommeria-Klein et al. (2021). We
determined the optimal range for the number of assemblages, de-
noted as K, spanning from 5 to 40. This evaluation of K involved
the utilization of two distinct methodologies: (i) a comparison
based on Akaike’s information criterion between different algo-
rithm realizations and (ii) perplexity-based cross-validation. The
perplexity defines the level of coherence within the dataset. For
cross-validation, we randomly split the dataset into 10-sample
validation sets. Median perplexity across all validation sets was
used to compare K-values. Given the relatively unstructured na-
ture of the groundwater dataset, we employed Gibbs sampling for
LDA with 100 Markov Chain Monte Carlo chains, each running
for 5000 iterations. The process began with random assemblages,
and concentration parameters for the distribution of assemblages
over sites and for the taxonomic composition over assemblages
were set to o = 0.067 and § = 0.067, respectively. Following an ini-
tial 2000 iterations (burn-in), we captured samples every 25 iter-
ations during the final 3000 iterations. We followed the approach
by Sommeria-Klein et al. (2021) and used a heuristic approach to
select a K-value near the plateau’s onset of mean perplexity (K =
35). We began by fitting the model to the entire dataset with the
K-value that yielded the lowest mean perplexity. We then refined
this K-value based on repeating the model computation with a
range of K-values (5-15, where 15 was the number of assemblages
that had a cumulative prevalence above one sample i.e. the ideal
number of assemblages) and choosing the number of K (K = 10)
that lead to the least spatial autocorrelation, as well as retriev-
ing similar assemblages across K-values based on correlations
with environmental parameters. Correlations of environmental
data and assemblage distributions were done by computing the
Pearson correlations between the best realization and environ-
mental variables. Spatial autocorrelation of assemblage proba-
bilities was assessed by computing Moran’s I (‘Moran.I” in the R
package ape; Paradis and Schliep 2019) on each assemblage dis-
tribution based on hydrological distances between sites. Hydro-

logical distances were computed as network distances in meters
between all sample pairs based on their sub catchment IDs cre-
ated from the Mur catchment stream network with the function
“get_distance_graph” in the hydrographr package in R (Schirz et
al. 2023). The stream network graph was calculated based on the
Hydrography 90 m dataset taking flow accumulation, flow direc-
tion, drainage basins, outlets, stream distance metrics along the
network into account (Amatulli et al. 2022). Zonal statistics of bio-
climatic variables derived from CHELSA Bioclim were also com-
puted in hydrographr in R with the function “extract_zonal_stats.”

To determine how much of the changes in fungal assemblage
composition across ecosystems could be explained by broader
categories such as landscape characteristics (climatic variables,
water temperature, lithological bedrock characteristics, topology),
hydrological (hydrological distances), and environmental (DO, EC,
PpH, nutrients, major ions, DOM coble peaks, DOM fluorescence in-
dices) conditions as well as local land cover, we applied a variation
partitioning analysis based on distance-based redundancy anal-
ysis (dbRDA) on response matrices of Euclidean distances of as-
semblage probabilities between samples. Environmental variables
were represented by the first 10 axes of principal components
(PCs) derived from a principal component analysis on z-score
transformed environmental data using the function “prcomp.”
Climatic variables were specified according to the CHELSA Bio-
clim codes biol, bio12, and biol5, as well as water temperature.
Hydrological conditions were given as hydrological distances be-
tween sites based on distance-based Moran’s eigenvector maps
(db-MEMs) (Declerck et al. 2011). The db-MEM matrix was created
with the “dbmem” function in the R package adespatial (Guénard
and Legendre 2022). All variables were selected by forward selec-
tion using the adjusted R? of the full db-RDA model (landscape
characteristics, environmental variables, hydrology, land use) as
stopping criterion with the function “ordiR2step” (10 000 permuta-
tions). The variance inflation factor (VIFs) for each full model was
checked before, and collinear variables (VIF > 10) were excluded
(Kleinbaum 1978). The marginal significances of each group of
variables tested were determined using the “anova.cca” function
with 10 000 permutations both implemented in the R package ve-
gan (Oksanen et al. 2022).

Results

Different fungal diversity in river and
groundwater

Based on relative OTU abundances, the river water contained a
higher total estimated fungal richness (P < .001, F-stat = 237.456)
as well as Shannon diversity given as effective number of species
(Table 1) (P < .001, F-stat = 728.2094). It furthermore harbored a
larger proportion of unique fungal OTUs (51%). Groundwater and
river water shared 16% of the OTUs, and these shared fungi (i.e.
generalist or transient taxa) were classified as, e.g. Cladosporium,
Fusarium, Epicoccum, Vishniacozyma, Filobasidium, Pyrenochaetopsis,
Paranamyces, and Mrakia. Especially Cladosporium and Epicoccum
showed large log2-fold increases in relative abundance in ground-
water (2.1, and 1.5, P < .05), and significant increases for Betamyces
and Mrakia (—1.3, —0.95, P < .05) were observed in the river wa-
ter. More generally, some fungi were significantly differently abun-
dant in surface and groundwater. Members of Chytridiomycota and
Basidiomycota were more abundant in the river, whereas Mortierel-
lomycota, Ascomycota, and Rozellomycota were relatively more abun-
dant in groundwater (P < .05, Table S1). Olpidiomycota only oc-
curred in groundwater (Table 1).
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Table 1. The summary statistics of taxon richness and relative abundances in the different types of habitats (groundwater and river) of

the most abundant fungal phyla.

Relative Relative Relative Relative

Groundwater richness % abundance % River richness % abundance %
tot # reads 64740 26434
tot # OTUs 1406 1942
Total estimated Richness 46.7 £9.8 240.2 £ 15.1
Shannon diversity 142.8 £ 0.3 2193 +238
Ascomycota 26970 48.1 41.7 7979 41.8 30.2
Basidiomycota 9276 30.6 14.3 6738 25.4 25.5
Mortierellomycota 12562 3.3 19.4 22 0.2 0.1
Chytridiomycota 2137 2.8 3.3 8480 12.9 32.1
Rozellomycota 3314 3.4 5.1 354 3.0 1.3
Olpidiomycota 1505 0.4 2.3 1 0.0 0.0
Unclassified Fungi 8749 9.9 13.5 2808 16.2 10.6
Mucoromycota 101 0.7 0.2 9 0.0 0.0

Total estimated richness and Shannon diversity based on OTU abundances are shown as mean values and standard errors. Read numbers of each phylum are also

shown.

Biodiversity of fungal assemblages across
ecosystems

In this dataset, 10 distinct fungal assemblages could be recovered
by LDA modeling, and average assemblage probabilities across
samples were the highest in assemblage 1 (~0.20) and decreas-
ing towards assemblage 10 (~0.03) (Figure S2). Some assemblage
probabilities differed significantly along the river valley basins
(Fig. 1, alpine region, the Graz basin, and lowland) as well as be-
tween ecosystems (groundwater and river) and seasons (spring
and autumn) (Table S2). Assemblage 10 showed significant spatial
autocorrelation and was not well resolved by the model in terms
of fungal taxa (i.e. all fungal OTUs present in the data had a non-
zero probability to occur in this assemblage) and was therefore
excluded from further discussion (Table S2).

Linking LDA derived assemblages to
environmental drivers

Assemblage 2 was strongly associated (i.e. high probabilities) with
the river during spring season (Fig. 2A, Table S3) and correlated
positively with microbial productivity (prokaryotic cell counts and
cellular ATP concentrations), pH, annual precipitation, DOC, DO,
DOM peaks for protein-like coble fluorophores b (Tyrosine-like
DOM) and t (Tryptophan-like DOM), and negatively with annual
mean air temperature (°C), major ions and conductivity, and HIX
(humified DOM) (Fig. 3). Autumn river fungal communities were
characterized by a shift towards assemblage 4 (Fig. 2), when the
river system became less productive and generally lower in water
temperature. Assemblage 4, in contrast to the river spring assem-
blage, was correlating to a lesser extent with microbial productiv-
ity and protein-like DOM, but additionally with DOM derived coble
peaks a, ¢ (both terrestrial humic substances), and m (i.e. marine
and terrestrial humic material).

The assemblages 1, 3, 5, and 8 were predominantly associ-
ated with groundwater and are further characterized in the fol-
lowing (Table S3). High assemblage 1 probabilities were associ-
ated with groundwater low in organic material (DOC and DOM)
and located in areas with high seasonal variation in precipitation.
The combined effect of season, ecosystem type, and regionality
(Table S3) hints at this assemblage being more prevalent in au-
tumn throughout the alpine mountain range. Assemblage 3 on the
other hand seemed to predominate groundwater high in ions (Na,
K, Cl), ammonium, and humified organic material of terrestrial
origin (HIX, coble peak c) coinciding with a lower pH (on average

6.8) and lower DO. This groundwater assemblage weakly coincided
with the spring season (Dunn’s test, with Bonferroni adjusted P-
value = .025). In contrast, assemblage 5 was characteristic for the
lowland and correlated positively with nitrate concentrations and
annual mean air temperature, and negatively with DO. Assem-
blage 8 showed high probabilities in groundwater recovered from
the Graz basin (Table S3), and the assembly correlated strongly
with ions (Mg, Na, Cl), EC, and was predominantly recovered from
deeper groundwater (i.e. low groundwater levels).

Fungal taxa linked to LDA depicted assemblages

River assemblages 2, and 4 are the most similar in terms of the
presence of fungal taxa (Fig. 4B). Assemblage 2 (River spring) con-
tains the highest diversity in terms of OTU richness (1305 OTUs),
and most of the fungal taxa belong to Ascomycota (34.2%), Ba-
sidiomycota (25.7%), unclassified fungi (24.4%), and Chytridiomy-
cota (11%). Common genera (i.e. high proportions) in this as-
semblage are Ustilago, Pucciniastrum, Filobasidium, Peterozyma, Be-
tamyces, Mrakia, and Aureobasidium, where members of the genus
Pucciniastrum are unique to this assemblage (Fig. 4A). Some of the
most OTU-rich genera that occur uniquely in this assemblage be-
long to Mrakia, Betamyces, and Rhizophydium. In assemblage 4 (River
autumn), fungal richness is 884, of which 48.8% are Ascomycota,
21.2% Basidiomycota, 17.1% unclassified fungi, and 8.9% Chytrid-
iomycota. Genera predominantly linked to this assemblage are Ra-
mularia, Fusarium, and Flagellospora. Here, members of the genus
Ramularia present only in this assemblage are also comparatively
rich in OTUs.

OTU diversity further decreases towards the groundwater as-
semblages. Assemblage 1 richness is 411, which is the highest
among groundwater assemblages. It is mainly composed of As-
comycota (43.1%), Basidiomycota (34.5%), unclassified fungi (13.4%),
and Chytridiomycota (4.9%). Genera prevalent in this assemblage
are Cladosporium, Epicoccum, and Olpidium, where some members
of Olpidium are unique to this assembly, but only containing two
species. The second richest assemblage in groundwater is 3 (379
OTUs), which is mainly characterized by Ascomycota (45.1%), Ba-
sidiomycota (36.4%), and unclassified Fungi (10.6%). Common gen-
era include Mortierella, Olpidium, and Rhizophydium, with some
species of Mortierella and Rhizophydium being unique to this as-
semblage. In both assemblages, 1 and 3 Vishniacozyma, Dioszegia,
Mortierella, and Filobasidium are particularly rich in OTUs. Assem-
blage 5 has a fungal richness of 329, and most fungi belong to
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Figure 2. Groundwater and river assemblages of co-occurring OTUs along the alpine gradient. (A) Base map (ESRI World Shaded Relief) with sites
depicting the relative assemblage proportion of the 10 recovered assemblages as pie charts with assemblages 1-10 shown in their respective colors. (B)
Relative contributions of fungal taxa to assemblages on genus (left) and phylum (right) level, respectively.

Ascomycota (49.8%), Basidiomycota (31.3%), and unclassified fungi
(10.3%). Common genera are Fusarium, Mortierella, Apiotrichum, and
Paranamyces with some species belonging to Mortierella, Cutaneotri-
chosporon, and Exophiala being unique to this assemblage. Here,
Exophiala, Mortierella, and Fusarium are especially rich in OTUs.
The groundwater associated assemblage with the lowest diversity
(130 OTUs) is assemblage 8 and comprises mainly of Ascomycota
(45.5%), Basidiomycota (38.5%), and unclassified fungi (9.2%). Gen-
era tightly linked to this assembly are Cladosporium, Vishniacozyma,
and Apiospora, where Apiospora, Rhizophlyctis, and Psathyrella are
uniquely occurring. The genus richest in OTUs is Filobasidium.

Trophic modes of fungal assemblages

In this dataset, OTUs present in each assemblage were matched
to growth form and primary lifestyle at genus level utilizing the
database of P6lme et al. (2020). Fungal river assemblages (2 and 4)
contained a larger share of OTUs not classifiable to the genus level
(mean proportion = 64.4%) compared to groundwater (mean pro-
portion = 51.6%) (Figure S3A). Fungi forming filamentous mycelia
as well as dimorphic yeasts were more prevalent in ground-
water assemblages compared to the river communities (Dunn'’s
multiple comparisons, Bonferroni adjusted P < .05). Dung sapro-
trophs, pollen saprotrophs, and algal parasites were significantly
more prevalent in river assemblages, whereas groundwater as-
semblages contained a relatively larger share of soil saprotrophic,
animal, and mycoparasitic fungal OTUs (Dunn’s multiple compar-
isons, Bonferroni adjusted P < .05) (Figure S3B).

Landscape characteristics shape fungal
assemblages

To estimate the contribution of landscape characteristics, envi-
ronmental and hydrological conditions, and local land cover to the
observed distribution patterns of fungal assemblages along the
river valley, a variation partitioning analysis was done. When as-
sessing the total variation explained by broader categories, land-
scape characteristics explained the largest portion of total varia-
tion in fungal probabilities between sites (10.8%) and was followed
by environmental differences (9.5%), and land use patterns (4.6%)
(Table 2). Hydrological connectivity between sites played only a
minor role.

Discussion

In the present study, we explored an Austrian alpine-river gradient
for fungal diversity and distribution across groundwater and river
water. Diversity was considered both in terms of taxonomy and
ecological roles. A number of significant patterns were recovered
for both ecosystem types and are discussed in detail below.

The ecology of fungal river assemblages

It is intriguing that in this study, some fungal taxa have been
found exclusively in certain assemblages, potentially serving as
indicators for local environmental conditions. The river com-
munity in spring (assemblage 2) was the richest in fungal
taxa and exhibited a strong association with key environmental
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Figure 3. Network plot of assemblages correlating with environmental variables (Pearson correlation; P < .05) visualized using the Force Atlas layout in
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parameters as well as with concentrations of DOC and protein-
like DOM. Elevated protein-like DOM and DOC during spring have
shown to be associated with the breakdown products of lignin, or
leaching of exudates from leaf emergence (Singh et al. 2014). It
could also correspond to recent in-stream production (i.e. phyto-
plankton growth) and processing of OM, or could indicate influ-
ence by human activities (i.e. a shift from more plant/soil derived
DOM to more microbial/algal DOM) (Jgrgensen et al. 2011, Lambert
et al. 2017, Ren et al. 2021). This assemblage contained the only
Pucciniastrum species present in this data set, P. areolatum, which is
the causal agent of spruce rust and produces basidiospores dur-
ing spring. These basidiospores are propagated by wind and are
probably introduced into and spread by the river system (Zhang
et al. 2021). Many species of Mrakia associated with this assem-
blage are psychrophilic and produce both yeast and hyphal states

(dimorphic). They have the ability to produce cold-active pecti-
nases and different hydrolytic enzymes, which indicates their po-
tential to decompose OM in cold environments (Bezus et al. 2022).
A number of Mrakia species have previously been reported from
freshwater ecosystems, including polar regions, glacial meltwater,
snow, rivers, and wetlands (Fell 2011, Grossart et al. 2019, Jones et
al. 2014). The chytrid genus Rhizophydium contains many zoosporic
taxa known to be parasitic on algae and cyanobacteria (e.g. Plank-
tothrix) or saprotrophic (e.g. cellulosic and keratinophilic) in soil,
aquatic habitats, or on pollen. This chytrid potentially coincides
with phytoplankton river spring blooms (Figure S4) (Letcher et al.
2004, Longcore and Simmons 2012, Maier and Peterson 2017, Wag-
ner et al. 2023). The zoosporic chytrid Betamyces was also char-
acteristic of and specious in this assemblage, including the only
known species Betamyces americae-meridionalis. Betamyces spp. have
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Figure 4. (A) Taxonomic composition of individual assemblages showing the most prevalent OTUs on genus level and proportions shown in respective
assembly colors when OTUs are unique to an assembly, colored in gray when they occur in all assemblies (Generalists) or are colored in blue when
they are unique to the river assemblies (River). (B) Dendrogram based on the Jaccard distance between assemblies computed from the presence or

absence of fungal OTUs in each assemblage.

previously been reported from pollen and soil, and they have been
found to be highly abundant in association with microplastics in
Arctic freshwater lakes (Gongalves et al. 2022, Gonzalez-Pleiter et
al. 2021, Letcher et al. 2012).

The fungal river assemblage coinciding with autumn (assem-
blage 4) was characterized by significantly cooler water temper-
atures and higher terrestrial and humic, but fewer freshly pro-
duced DOM compared to spring river conditions. It only contained
one exclusive fungal genus, namely the plant pathogen Ramula-
ria, above all its species R. miae and R. unterseheri. R. miae was first
observed causing black leaf spots in a bloodwort species native
to South Africa, but has since been isolated from multiple hosts
(Videira et al. 2015a). Ramularia unterseheri is also plurivorous, of-
ten recovered from dead or alive leaves of Fagus (Videira et al.
2015b). Most plants undergo changes in growth and physiology
during autumn and are therefore more vulnerable and suscepti-
ble to Ramularia infections, probably leading to higher prevalence

of infections and completion of the pathogen’s life cycle and the
dispersal of spores during that time. An increase in terrestrial or-
ganic and humic substances can be linked to an increased import
of usually fungi-rich substrates (e.g. leaf litter—a primary source
of allochthonous OM in rivers and streams) during autumn and
winter (Chrismas et al. 2023). Indeed, we found that the remaining
extant unique genera were well-known leaf-litter decomposers
and/or leaf inhabitants (i.e. “hyphomycetes,” Flagellospora, Tetracla-
dium, Tetrachaetum, Moellerodiscus), some of them being sensitive
to water pollution (Baschien et al. 2013, Charcosset and Gardes
1999, Duarte et al. 2012, Ghate and Sridhar 2015, Pietryczuk et
al. 2018). The most specious genera in this assemblage, Dioszegia,
and Vishniacozyma, belong to psychrophilic/psychrotolerant, halo-
tolerant, and/or osmotolerant yeasts often recovered from glacial,
cold, and/or arid regions from e.g. meltwater, groundwater and
volcanic springs (Buzzini et al. 2018, Jones et al. 2014, Wurzbacher
et al. 2020, Nuppunen-Puputti et al. 2021). They are known, for
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Table 2. Partition of variation in assemblage probabilities over sites between environmental, biogeographical, and hydrological conditions

and local land cover.

Group Significant variables R2 adj DF
Environment PC1 + PC6 + PC3 + PC4 0.176 4
Landscape Water temp + lithological char + bio15 0.105 11
Land use Land use 2nd level 0.053 12
Hydrology dbMEM1 0.009 1
Environment | landscape + land use + hydrology 0.095

Landscape | environment + land use + hydrology 0.108 9
Land use| environment + landscape + hydrology 0.046 10
Hydrology| landscape + land use + environment 0.010 1
Residuals 0.701

Group|Group+Group represents the marginal fraction of variation explained by each group after controlling for the respective others. Significance of each individual

group was assessed by 10 000 permutations.

instance, to inhabit soil rich in OM and potentially contribute to
nutrient cycling and the decomposition of diverse types of organic
compounds (Abu-Mejdad et al. 2019, Maeng et al. 2022).

The prevalence of dung and pollen saprotrophs as well as al-
gal parasites in the river is compatible with the available OM
sources and hosts. River systems are heavily impacted by their
surrounding environments (through land cover), and they are typ-
ically characterized by high primary production. Dung and pollen
saprotrophs benefit from the influx of OM from terrestrial sources,
while algal parasites thrive in environments with abundant host
biomass. Taxonomic classification to genus level was only possible
for around 36% of the OTUs from the river assemblages, probably
due to the high abundance of early diverging fungi (i.e. Chytrid-
lomycota) in the river known to fail during ITS classification, as
well as their underrepresentation in the UNITE database (Heeger
et al. 2019).

The ecology of fungal groundwater assemblages

The specific environmental conditions shaping the specious
groundwater assemblage 1 follow the regional distribution pat-
tern of the number of rainy days. A higher coefficient of variation
in seasonal precipitation indicates a larger variability in precip-
itation throughout the year due to convective precipitation (i.e.
increased rain and storm events) along the mountain range com-
pared to the lowland. This is also corresponding to the existing
weather gradient between the rainy north and the less rain-rich
south of the alpine region, and in the south-eastern foothills of
the Alps to a decrease in rainy days with distance from the moun-
tain range (Wakonigg et al. 2008). Higher variation in precipitation
can potentially lead to increased hydrological mixing in ground-
water, promoting the dispersal and introduction of fungal propag-
ules (e.g. spores or filaments), and subsequently a higher fungal
diversity. The assemblage was also typical for groundwater largely
deprived of protein-like, terrestrial, and aquatic humic OM (e.g.
stream, and algal DOM), possibly due to dilution effects (Sgnder-
gaard et al. 2003, Foulquier et al. 2010, Coble et al. 2014). Unique
fungal taxa were identified as Olpidium brassicae, Stereum hirsu-
tum, Parathyridaria clematidis, and Pseudotaeniolina globosa. Olpidium
brassicae is a unicellular, zoosporic plant endoparasite, often in
the roots of vascular plants, and known to be transmitted when
water is recirculated and exchanged (Runia 1994). Stereum hirsu-
tum is a lignicolous white-rot fungus that is known to produce
a wide range of metabolites (terpenes, acetylenic aromatic, alkyl,
and benzoate derivates) (Pu et al. 2021, Liu et al. 2023). Not much
is known about P. clematidis on the other hand, even though a few
other members of the genus have previously been isolated from

the marine environment (Dayarathne et al. 2020, Poli et al. 2020).
Pseudotaeniolina globosa is a known rock inhabiting fungi that is
meristematic and melanized and associated with mineral weath-
ering (Necropolis et al. 2021).

The second richest assemblage in groundwater (assemblage 3)
was characterized by elevated ammonium concentrations under
more reducing conditions and lower pH, possibly due to denitrifi-
cation of infiltrated nitrate as a result of the application of fertiliz-
ers and irrigation (Huang et al. 2016, Korbel et al. 2022). Addition-
ally, potassium and recalcitrant, aromatic, fulvic-like DOM (coble
peak c) were comparatively higher in groundwater coinciding with
assemblage 3. This DOM component seems to be the major form
of DOM found in groundwater throughout the year and could be
elevated in spring due to the input of terrestrial derived OM fol-
lowing snow melt (Harjung et al. 2023). Its degradation in a reduc-
ing environment could additionally lead to increased ammonium
levels in groundwater (Huang et al. 2021). Unique fungal taxa in
this assemblage belonged to the genera Mortierella, and Rhizophy-
dium, the latter being more variable than what was previously un-
derstood (Longcore 2004, Sigee 2005, James et al. 2006). Species
rich genera present in both groundwater assemblages 1 and 3
were members of the yeast genera Dioszegia, and Vishniacozyma, as
well as Mortierella, including M. alpina. The latter is an oleaginous
species that accumulates a diverse range of fatty acids, compris-
ing of up to 50% of its dry weight (Wang et al. 2011). It has previ-
ously been found in association with soil, seaweed, and peatlands
(Asemaninejad et al. 2017, Poli et al. 2022, Gongalves et al. 2023).
More generally, members of Mortierella are saprotrophic, known for
decomposing labile carbon. They are commonly isolated from soil
and have previously been identified as one of the dominant gen-
era in groundwater (Asemaninejad et al. 2017, Nawaz et al. 2018,
Nuppunen-Puputti et al. 2021).

Assemblage 5 was indicative of reduced groundwater influ-
enced by agricultural land use, as suggested by high nitrate con-
centrations at these sites and the fact that these land use prac-
tices intensify in the lowland, spatially coinciding with increased
assemblage probabilities (Graeber et al. 2012) (Fig. 4A). Here, un-
classified members of Peniophora were particularly rich in taxa. Pe-
niophora encompasses corticioid fungi with lignolytic and antipro-
tozoal activities, some of them causing white-rot, but also found
to be associated with beetles and sea grass (Valmaseda et al. 1990,
Heitman et al. 2017, Xu et al. 2023). Moreover, dominant taxa, such
as members of Fusarium, Apiotrichum, and Mortierella, are known
for their nitrate utilization capabilities, and fungal denitrification
isindeed a major pathway in natural systems, sometimes exceed-
ing bacterial denitrification capacities (Takaya 2002, Shoun et al.
2012, Zhong et al. 2022, Zuo et al. 2023). The oleaginous yeast
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Cutaneotrichosporon, unique to this assemblage, has been shown
to utilize a broad spectrum of especially aromatic compounds for
fatty acid biosynthesis (Yaguchi et al. 2020). These are compounds
that most bacteria are not capable of degrading. Some species
of Cutaneotrichosporon, as well as the other exclusively associated
fungal genus with assemblage 5, Exophiala, may furthermore be
parasitic on animals, including humans (Najafzadeh et al. 2018,
Aliyu et al. 2020).

The last groundwater assemblage (8), which was also lowest
in species diversity, coincided with higher concentrations of ions
and lower groundwater levels in the Graz basin, suggesting a com-
munity locally adapted to infiltration of, e.g. road salt, industrial
discharges, or effluents from local wastewater treatment systems
(Howard and Gerber 2018, Becher et al. 2022). Fungi unique to
this assemblage were, e.g. Apiospora marii and Rhizophlyctis, specif-
ically R. rosea. A. marii could previously be isolated from stems and
roots of plants causing plant dieback and wilt (Agusti-brisach et
al. 2023). Rhizophlyctis rosea is one of the most ubiquitous cellu-
lose degrading zoosporic soil chytrids, and their presence might
suggest a dynamic groundwater-surface exchange in urban areas
(Longcore and Simmons 2012, Jones and Bennett 2014). Since it
produces motile zoospores, we propose that the vadose zone could
serve as a potential habitat for this chytrid, as long as oxygen is
abundant (Willoughby 2001, Gleason et al. 2019).

The overall high prevalence of soil saprotrophic fungi in
groundwater could putatively be explained by ongoing exchange
processes of groundwater with the surface via the soil. We think
itis likely that soil fungi may find a suitable habitat in groundwa-
ter, or the vadose zone, contributing to ongoing ecosystem pro-
cesses with their unique, versatile metabolic capabilities. This
would have to be further investigated by targeting not the total
but the active fungal communities in groundwater via e.g. RNA
sequencing or omics approaches. Our results agree with previous
findings that filamentous fungi, as well as fungi that form yeast
stages are more often found in groundwater compared to the river
system (Wurzbacher et al. 2020, Afonso et al. 2021). The fact that
animal pathogens (some of which are also known to infect hu-
mans) are primarily present in groundwater affected by intensive
agriculture should raise concerns regarding their increased trans-
port facilitated by habitat fragmentation and human use. These
pathogenic fungi are possibly diluted in streams after their intro-
duction via fertilization with manure, whereas they can reside in
groundwater for a prolonged period of time.

Landscape characteristics drive differences in
fungal assemblages

Our analysis showed that local landscape characteristics, includ-
ing climatic conditions that translate into river and groundwater
temperatures, bedrock lithology, as well as precipitation patterns
were detrimental factors in shaping fungal communities across
groundwater and river ecosystems. Differences in local environ-
mental conditions, as well as variations in land use were addi-
tional drivers. Even though lithological conditions do not seem to
be a major driver for bacterial communities (Maamar et al. 2015),
we show that they are significantly shaping fungal assemblages
in groundwater. For instance, some fungal species are known for
their granite weathering capabilities, and different rock surfaces
have been found to harbour a distinct selection of fungal com-
munities (Knudsen and Vesterholt 2008, Nuppunen-Puputti et al.
2021, Liet al. 2022, Liu et al. 2022a).

In conclusion, our study revealed significant differences in fun-
gal diversity and relative abundances of fungal groups between

groundwater and the river. Unlike bacterial communities, where
biodiversity in groundwater exceeds that of surface waters, fungi
are less likely to establish diverse communities in groundwater
(Ji et al. 2022, Retter et al. 2023). We attribute this difference both
to the restricted exchange of groundwater systems with the land
surface and surface waters and to the reduced input of organic
material compared to riverine environments. While it is appar-
ent that fungal communities in groundwater contain numerous
degraders of OM and that fungal diversity was relatively high in
groundwater receiving terrestrial input in the form of humic and
fulvic OM, the most specious assemblage was existing at sites con-
taining lower OM. This, in turn, is likely attributable to the highly
variable precipitation and storm events at these sites, possibly di-
luting organic material and at the same time introducing tran-
sient fungi into groundwater. The presence of transient fungal
taxa found in both groundwater and the river supports the notion
of ecological connectivity between these two contrasting ecosys-
tems. Even though spanning both ecosystems, OTUs belonging to
Cladosporium, and Epicoccum seem to be abundant in—and char-
acteristic of—groundwater, while Dioszegia and Vishniacozyma are
found across ecosystems in comparable proportions (Nawaz et
al. 2018, Perkins et al. 2019, Afonso et al. 2021, Liu et al. 2022b).
Moreover, parasitic fungi regularly recovered from aquatic ecosys-
tems are likely to require a certain amount of hosts—mostly
phototrophs—and are therefore absent in the groundwater envi-
ronment (Frenken et al. 2017, Van den Wyngaert et al. 2022, Kla-
wonn et al. 2023). Our study emphasizes that a consistent and
diverse group of fungi perceives the vast, energy limited, and light
deprived groundwater as a suitable habitat and that these fungi
could be linked to specific environmental conditions, correspond-
ing ecological functions, and niches.
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