
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Mee-Hyun Lee,
Dongshin University, Republic of Korea

REVIEWED BY

Fangmin Zhong,
Nanchang University, China
Tingxuan Gu,
Zhengzhou University, China

*CORRESPONDENCE

Han Liu

liuhan68@sjtu.edu.cn

Wenfang Wang

wwenfang0372@163.com

†These authors have contributed equally to
this work and shared first authorship

RECEIVED 19 June 2024

ACCEPTED 09 October 2024
PUBLISHED 01 November 2024

CITATION

Xia X, Wang Y, Wang M, Lin J, Wang R, Xie S,
Yu Y, Long J, Huang Z, Xian H, Zhang W,
Lu C, Wang W and Liu H (2024) The
enhancement of immunoactivity induced by
immunogenic cell death through serine/
threonine kinase 10 inhibition: a potential
therapeutic strategy.
Front. Immunol. 15:1451796.
doi: 10.3389/fimmu.2024.1451796

COPYRIGHT

© 2024 Xia, Wang, Wang, Lin, Wang, Xie, Yu,
Long, Huang, Xian, Zhang, Lu, Wang and Liu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 01 November 2024

DOI 10.3389/fimmu.2024.1451796
The enhancement of
immunoactivity induced by
immunogenic cell death through
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inhibition: a potential
therapeutic strategy
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Ruiheng Wang, Shufeng Xie, Yaoyifu Yu, Jinlan Long,
Zixuan Huang, Huajian Xian, Wenjie Zhang, Chaoqun Lu,
Wenfang Wang* and Han Liu*

Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research
Center for Translational Medicine at Shanghai, Rui Jin Hospital, School of Medicine and School of Life
Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
Introduction: Immunogenic cell death (ICD) is capable of activating the anti-

tumor immune response of the organism; however, it is concurrently a complex

process involving multiple factors. The specific factors that impact the

occurrence of ICD remain undefined.

Methods: Through cluster analysis, patient specimens retrieved from the

TARGET, TCGA, and GEO AML databases were categorized into two subtypes

based on the expression levels of ICD-related genes: ICD-high and ICD-low. We

compared the prognostic survival outcomes, pathway enrichment analysis, and

immune cell infiltration between these two subtypes. Additionally, we identified

factors related to AML development frommultiple databases and verified the role

of these factors both in vivo and in vitro in activating the immune response during

the occurrence of ICD.

Results and discussion: In the ICD-high subtype, there was a notable increase in

the abundance of immune cell populations, along with the enrichment of pathways

pertinent to the activation of various immune cells. Despite these immunological

enhancements, this subgroup demonstrated a poorer prognosis. This phenomenon

was consistently observed across various additional AML datasets, leading us to

hypothesize that elevated expression of ICD genes does not invariably correlate with

a favorable prognosis. Notably, STK10 exhibited elevated expression in AML, was

associatedwith a poor prognosis, and showed synchronous expression patternswith

ICD genes. Inhibition of STK10 led to the activation of ICD and the induction of an

antitumor response. Moreover, when combined with other ICD inducers, it

produced a synergistic anti-tumor effect. Our results reveal the impact of STK10

on ICD and underscore its key role in initiating ICD.
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Introduction
Immunogenic cell death, a regulated form of cell death (RCD),

is essential in tumor immunotherapy (1). Recent research has

focused on investigating the mechanisms of ICD, with particular

attention to the release of ATP, exposure of calreticulin (CALR),

and secretion of the nuclear protein HMGB1 (2). These factors are

crucial in activating the adaptive immune system, as ATP attracts

dendritic cell precursors expressing purinergic receptors (3) and

calreticulin signals for the phagocytosis of dying cancer cells (4).

Additionally, HMGB1 activates toll-like receptor 4 (TLR4),

promoting the maturation of dendritic cell. Preclinical trials have

affirmed chemotherapeutic agents, such as doxorubicin,

mitoxantrone, oxaliplatin, bortezomib, cyclophosphamide, and

anthracycline can trigger ICD, thereby activating anticancer

immune responses (5). In 2020, two anti-cancer drugs based on

the concept of ICD, belantamab mafodotin (6) and lurbinoctedin

(7), were approved by the FDA.

Acute myeloid leukemia (AML) is characterized by the

malignant transformation of myeloid progenitor cells, which are

arrested in a premature and inherently proliferative condition (8).

The primary treatment approach for AML is chemotherapy, and

enhancing the induction of ICD has the potential to enhance the

efficacy of chemotherapeutic agents in both experimental models of

AML and individuals (9, 10). Previous studies have demonstrated

that blocking the protein phosphatase 1/GADD34 complex can

mimic the CALR translocation triggered by anthracyclines.

Anderson’s research suggests that bortezomib enhances the

immunogenicity of multiple myeloma cells by activating the

cGAS/STING pathway and promoting the production of type I

interferons. Furthermore, studies have demonstrated that STING

agonists significantly enhance bortezomib-induced ICD (11).

However, the precise role of ICD in AML remains incompletely

elucidated. Further investigation is warranted to elucidate the

clinical significance of ICD biomarkers in AML patients.

Serine/threonine kinase 10 (STK10), a member of the serine/

threonine kinase family, plays an important role in various

biological processes (12). STK10 features an N-terminal kinase

domain and a C-terminal phosphorylation domain, allowing it to

phosphorylate serine/threonine residues. Its primary role lies in the

regulation of the cell cycle, signal transduction, and cell apoptosis.

In the context of tumorigenesis, aberrant expression of STK10 can

impact tumor cell proliferation, differentiation, and apoptosis,

thereby influencing the initiation and progression of tumors.

These findings are supported by evidence showing that STK10

induces PLK1 activation in COS-7 cells, and that upregulation of a

kinase-inactive STK10 in 3T3 fibroblasts impedes cell proliferation

(12). Nevertheless, the function of STK10 in modulating apoptosis

is subject to debate. Loss-of-function mutations lead to reduced

apoptotic activity (13), whereas silencing STK10 with siRNA leads

to heightened cell death in Ewing’s sarcoma cell lines (14). These

observations imply that the impact of STK10 is contingent upon the

cell type and environmental conditions.

The precise role of STK10 in the promotion of ICD is not yet

fully understood. Our research has unveiled that the activation of
Frontiers in Immunology 02
ICD-related genes triggers comparable immune responses in

various tumor models. Additionally, we have identified two

subtypes linked to ICD in individuals with acute myeloid

leukemia (AML) through consensus clustering. Of particular

importance, the ICD-high subtype is characterized by an

augmented infiltration of immune cells and heightened immune

response signals, yet it is associated with inferior clinical outcomes

compared to the ICD-low subtype. These findings suggest that the

induction of an immune response through ICD is a multifaceted

process influenced by multiple factors, which can counteract the

favorable prognosis typically associated with ICD and lead to

markedly reduced survival rates.

Furthermore, not all ICD-associated biomarkers are associated

with a good prognosis. The relationship between STK10 and ICD-

associated biomarkers is significant, as evidenced by their influence

on the expression of these biomarkers following cell death induced

by STK10 inhibitor. Our collective goal is to identify novel targets

for the treatment of AML and provide additional guidance for

clinical management.
Materials and methods

Data availability

The TARGET mRNA expression data of 303 normal and 482

AML patients, along with their corresponding clinicopathological

data, were obtained from the GDC Data Portal (https://

portal.gdc.cancer.gov). The TARGET RNA-seq alignment and

count files were generated using GENCODE v36 gene annotation

(https://gdc.cancer.gov/about-data/gdc-data-processing/gdc-

reference-files). To eliminate data dimensionality, the TPM matrix

of TARGET was standardized by applying a log2 transformation to

the TPM values plus one. Adding one to each TPM value prevents

issues with logarithmic transformation when dealing with zero

TPM values. The TCGA AML and GTEX FPKM datasets were

acquired from UCSC Xena Portal (http://xena.ucsc.edu).

Subsequently, we converted FPKM values into TPM values using

the formula: TPMi = FPKMi × 1000000/(FPKM0+⋯.+FPKMm). In

the formula, i represents gene i, while m denotes the total number of

genes. Finally, the resulting TPM values were normalized through a

log2(TPM + 1) transformation. We extracted the OHSU (15) AML

dataset from cBioPortal (https://www.cbioportal.org/datasets).

Additionally, we obtained expression and clinical information

from Gene Expression Omnibus (GEO) datasets (https://

www.ncbi.nlm.nih.gov), which consisted of GSE71014 (n = 104)

(16), GSE16432 (n = 420) (17), GSE14468 (n = 244) (18) and

GSE76009 (n = 227) (19). Samples lacking complete prognostic

information were excluded, and probes without corresponding gene

symbols were also eliminated from further analysis. Both GSE71014

and GSE76009 were acquired using the GPL10558 detection

platform, while different GEO platforms (GPL), including

GPL8650-8654 and GPL10105-10108, contributed to the

acquisition of GSE16432. The acquisition of GSE14468 was

performed with GPL570, followed by normalization of raw data

using Affymetrix Microarray Suite 5 (MAS5) to target intensity
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values at 100. Intensity values underwent log2 transformation and

mean centering per probe set.
Cluster analysis

Cluster analysis was conducted and presented using the

SangerBox software (http://www.sangerbox.com/tool) (20), an

online platform for data analysis. In brief, ConsensusClusterPlus

(21) was employed for cluster analysis, utilizing agglomerative k-

means clustering with a 1-pearson correlation distance and

resampling 80% of the samples for 10 repetitions. Based on the

assessment of the area under the cumulative distribution function

(CDF) curve, an increase in K results in a gradual augmentation of

the area beneath the CDF curve. To maximize this area while

maintaining its magnitude, it is advisable to minimize the decline

rate of Delta based on evaluating CDF Delta’s downward trend. The

optimal number of clusters was determined by considering both

intra-group consistency and average agreement within each

cluster group.
Generation of Kaplan–Meier plots

Based on the expression level of the ICD gene, patient samples

from various AML datasets were classified into two subtypes: C1

and C2. Survival analysis was conducted based on the survival time

and living status of these samples. Kaplan-Meier (KM) plots were

generated for survival analysis using sangerbox online platform,

which is based on the R survival package. The final prognostic KM

plots were presented with a hazard ratio (HR), a 95% confidence

interval (CI), and a log-rank P value. A statistically significant result

was considered when the P value was less than 0.05.
Differential gene analysis

The TARGET AML samples were stratified into C1 and C2

subtypes through cluster analysis, followed by differential gene

analysis using the limma method. Limma (linear models for

microarray data, DOI:10.1093/nar/gkv007) is a statistical

approach based on generalized linear models for identifying

differentially expressed genes. In this study, we employed the R

software package limma (version 3.40.6) to perform differential

analysis and identify genes that exhibit significant differences

between various comparison groups and control groups.

Specifically, the expression profile dataset was subjected to

multiple linear regression using the lmFit function. This was

followed by the calculation of moderated t-statistics, moderated

F-statistics, and log-odds of differential expression using eBayes

function, which applies empirical Bayes moderation to standard

errors. Finally, the significance of differential expression for each

gene was determined. Volcano plots and heatmaps were generated

using the differentially expressed genes in the R packages ggplot2.
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Gene Set Enrichment Analysis

The Gene Set Enrichment Analysis (GSEA) software (version

3.0) was obtained from the Broad Institute via the following link:

http://software.broadinstitute.org/gsea/index.jsp.

The TARGET AML samples were classified into C1 and C2

subtypes based on cluster analysis, and we downloaded the

c7.All.V7.4.Symbols.gmt and c2.cp.kegg.v7.4.symbols.gmt

collections from the Molecular Signatures Database for KEGG

pathway and immunologic signature analysis (http://

www.gseamsigdb.org/gsea/downloads.jsp). To evaluate relevant

pathways and molecular mechanisms, gene expression profiles

were utilized in conjunction with phenotype grouping, using a

minimum gene set of 5 and a maximum gene set of 5000, in

addition to performing 1000 resamplings. The ranked list was

generated through differential gene analysis, where the p-value is

defined as follows: The absolute value of the p-value equals −log2

(adjusted p-value), with the adjusted p-value calculated by limma

from differential gene analysis.
GO annotation

For the functional enrichment analysis of gene sets, we utilized

the GO annotation from the R software package org.Hs.eg.db

(version 3.1.0) as the background to map genes into the reference

set. Enrichment analysis was conducted using clusterProfiler

(version 3.14.3), an R software package, to obtain gene sets

enrichment results. The minimum gene set size was defined as 5,

while the maximum gene set size was limited to 5000. Statistical

significance was determined by p < 0.05.
Immune cell infiltration estimations

The estimation of immune cell infiltration was performed using

the IOBR R package (22) on the SangerBox online platform. IOBR

provides a comprehensive resource for the systematic analysis of

immune cell infiltrates in various cancer types, offering multiple

immune deconvolution methods such as quanTIseq, TIMER,

CIBERSORT, xCell, MCP-counter and EPIC algorithms. We

utilized TARGET, GSE71014, and GSE76009 profiles for this

analysis. Upon uploading the input file, IOBR’s estimation

component automatically executes immune infiltration estimation

using CIBERSORT. The resulting values encompass overall

estimates of immune cell infiltration as well as specific levels and

proportions of eight common immune cells infiltrating each

sample. The proportions of these eight common immune cells are

visualized using GraphPad Prism 6 software.
Cell culture conditions and reagents

The leukemia cell lines MV411, THP1, NOMO1, and MOLM13

were obtained from American Type Culture Collection (ATCC,
frontiersin.org
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Rockefeller, MD, USA) and maintained at 37 °C in 5% CO2 in

RPMI 1640 medium containing 10% (v/v) fetal bovine serum (FBS)

and a 5% (v/v) mixture of penicillin and streptomycin. Bortezomib

(S1013, Selleck) and SB633825 (HY-108333, MedChemExpress)

were reconstituted according to the instructions. Samples were

collected with written consent from the patients, and data

analysis protocols were approved by the Ruijin Hospital Ethics

Committee, adhering to the principles of the Helsinki Declaration.
Western blot analysis and fractionation

For the preparation of whole-cell extracts, cell pellets were

washed with DPBS, resuspended in protein lysate containing 2%

SDS, and boiled. Lysates were separated on sodium dodecyl sulfate-

polyacrylamide gel electrophoresis, transferred to nitrocellulose

membranes, and subsequently analyzed by immunoblotting. The

antibodies used included STK10 (25471-1-AP; Proteintech),

phospho-IF2a (44-728G; Thermo Fisher Scientific) and b-actin
(3700; Cell Signaling Technology).
Quantification of relative cell viability
by CCK8

To evaluate the impact of Bortezomib and SB633825 on AML

tumor cells, MV411, MOLM13, NOMO1, or THP1 cells were

seeded into 96-well plates at a concentration of 1 × 104 cells per

well in 100 mL of growth medium. Cells were treated with different

concentrations of Bortezomib, either alone or in combination with

SB633825, at 37°C for 60 hours. Then, 10 mL of Cell Counting Kit 8

(CCK-8) reagent was added to each well, followed by incubation at

37°C for 1.5 h. Cell viability was measured at 450 nm using a

microplate reader. Each experiment was repeated in triplicate, and

statistical analysis was performed using GraphPad Prism 6 software.

To calculate the cell survival rate, use the following formula:

Survival rate (%) = (ODexperiment - ODblank)/(ODcontrol - ODblank)

× 100%.
Cell cycle and apoptosis analysis

The cell cycle analysis was conducted using the APC BrdU flow

kit (552598, BD Biosciences). Cells were treated with 10 mM BrdU

for 1 hour, followed by harvesting, fixation, permeabilization, and

subsequent fixation before incubation with DNase to expose the

incorporated BrdU. Subsequently, cells were stained with anti-

BrdU-APC for 20 minutes at room temperature. Finally, cells

were washed and resuspended in 7-AAD staining buffer. The

analysis of stained cells was performed on a flow cytometer.

For the Annexin V apoptosis assay, APC Annexin V Apoptosis

Detection Kit (559763, BD Biosciences) was used. The APC annexin

V apoptosis detection was performed using flow cytometry in

accordance with the manufacturer’s protocol, and the data were

processed using FlowJo. Early apoptotic cells were identified as

those that were APC Annexin V-positive and 7-AAD-negative.
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Cells that stained positive for both APC Annexin V and 7-AAD

were either in the end stage of apoptosis or undergoing necrosis,

while cells that stained negative for both dyes were considered alive.
Depletion of STK10 via CRISPR/Cas9 and
restoration of STK10 expression
using lentivirus

The knockdown of STK10 in MV411 cells was achieved using

the fo l lowing gRNAs: Stk10 gRNA-1: CACCGACTC

ACCTCCAGCAGCTGCG; Stk10 gRNA-2: CACCGCATGAT

TGAGTTCTGTCCAG. Briefly, MV411 cells were transfected

with a CRISPR/Cas9 vector (lentiCRISPR v2-P2A-PuroR)

(Addgene, 52961) containing an STK10 guide RNA at a

multiplicity of infection (MOI) of approximately 10 for 24 hours.

Subsequently, the transfection was repeated for another 24 hours.

Puromycin selection at a concentration of 2 mg/mL were then

applied to isolate puromycin-resistant cells for a duration of 72

hours. Following selection, 50 individual cells were collected and

seeded into separate wells of a 96-well plate to facilitate colony

formation. These colonies were subsequently analyzed by

immunoblot analysis to assess the expression levels of STK10.

The STK10-knockout cell line was infected with PLVX-

tdTomato-STK10 at an MOI of 10. After 24 hours of infection,

the supernatant containing excess lentivirus was removed by

centrifugation, and the cells were then reinfected with the same

virus for another 24 hours. Subsequently, the infected cells were

collected, and the expression of STK10 was assessed using

tdTomato detection via flow cytometry.
ATP and HMGB1 release measurement

Supernatants from AML cell lines, including MV411,

MOLM13, NOMO1, OCI-AML3/OA3, SHI1, THP1, and U937,

as well as patient samples, were collected after 48 hours of treatment

with SB633825 or Bortezomib alone or in combination. The ATP or

HMBG1 content in these supernatants was then measured using the

RealTimeGlo Extracellular ATP Assay or Lumit HMGB1 (Human/

Mouse) Immunoassay (W6110) from Promega, following the

manufacturer’s recommendations. The study was approved by the

ethics committee of Ruijin Hospital, and all patients provided

informed consent.
ICD assessment in vivo

C57BL/6 mice were used for the C1498 xenograft model.

Briefly, C1498 cells were exposed to a lethal dose of SB633825

and/or bortezomib. Subsequently, 2×106 apoptotic C1498 cells were

injected at Site 1, followed by 1×106 viable C1498 cells at Site 2 one

week later. The tumor volume at Site 2 was assessed after 10 days.

The tumor volume was determined using the equation V = 1/2 × L

×W^2, where V represents the calculated tumor volume. The study

was conducted in accordance with the guidelines provided by the
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National Institutes of Health for the ethical treatment and

utilization of animals in laboratory settings, and was approved by

the ethics committee of Ruijin Hospital.
Statistical analysis

The statistical analyses were conducted using GraphPad Prism

6 software. Paired or unpaired Student’s t-tests were employed to

compare two experimental conditions. One-way or two-way

ANOVA tests were utilized for comparing multiple conditions.

Unpaired t-tests were used to assess differences in gene expression

and CIBERSORT scores between C1 and C2 subtypes, provided that

the normality assumption was met. Survival analyses were

performed using the log-rank (Mantel-Cox) test.
Results

Two ICD-related clusters were identified
with consensus clustering

An overview of the ICD-related genes was published by

Abhishek et al. (23). To assess the impact of ICD on the

progression of AML, we analyzed the expression profile of ICD-

related genes in both normal and AML patient cohorts from the

TARGET datasets. In contrast, nearly all ICD-related genes

exhibited high expression levels in corresponding normal samples

but were generally under-expressed in AML samples, with

significant heterogeneity in their express ion profi les

(Supplementary Figure 1A). Based on consensus clustering, we

identified two ICD-associated clusters in the TARGET AML

cohort through k-means clustering (Supplementary Figures 1B-

D). Cluster C1 exhibited low levels of expression of ICD-related

genes, while cluster C2 displayed high levels of expression

(Figure 1A). Therefore, the C1 cluster with significantly

diminished ICD gene expression is designated as the ICD-low

subtype. Conversely, the C2 clusters with markedly elevated ICD

gene expression are referred to as the ICD-high subtype. However,

KM analysis revealed that cluster C2, namely ICD-high subtype,

had a shorter survival (Figure 1B).

Subsequently, a similar analysis of TCGA AML patients showed

that GTEX normal blood samples had significantly elevated

expression levels of ICD-related genes in comparison to TCGA

AML samples (Supplementary Figure 1E). We also identified two

clusters in the TCGA (Supplementary Figure 1F), GSE71014 (16)

and GSE16432 (17) datasets (data not shown) by consensus

clustering analysis. Notably, the ICD-high subtype also

demonstrated a significantly reduced survival duration

(Supplementary Figures 2A-D), consistent with observations in

TARGET AML cohorts (Figures 1A, B). Finally, the two clusters

of GSE16432 showed no significant difference in clinical outcomes

(Supplementary Figures 2E, F). Overall, high expression of the ICD

genes was positively associated with poorer patient outcomes

in AML.
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ICD subtype-specific differentially
expressed genes and signal pathways

Given that the two clusters within all AML cohorts showed

different prognoses, we focused on identifying the key genes and

signaling pathways that influence these outcomes. We identified 91

downregulated genes and 6,680 upregulated genes in the C2 subtype

(Supplementary Figures 3A, B), with the upregulated genes showing

enrichment in immunity-related activities, including leukocyte

activation, myeloid cell activation, neutrophil activation, T cell

activation, Th17 cell differentiation, Th1 and Th2 cell

differentiation, and Natural killer cell-mediated cytotoxicity

(Figures 1C, D). To further validate the prognostically relevant

signaling pathways between the two subtypes, we conducted GSEA

analysis and found that immune pathways, such as the chemokine

signaling pathway and Toll-like receptor signaling pathway, were

differentially enriched in the ICD-high subtype (Figures 1E, F). Our

findings suggest that elevated expression of ICD genes in the

subgroup with high ICD levels is indicative of an immune-

activated microenvironment.
Distinct tumor microenvironment
landscape between two subgroups

A favorable clinical prognosis is widely recognized as being

associated with the abundance and activation of immune cells

within the tumor microenvironment. To characterize the immune

landscape of the two subtypes, we focused on analyzing the

composition of the tumor microenvironment. Overall, the

stromal, immune and estimate scores were higher in the C2

subtype compared to the C1 subtype in both cohorts (Figure 2A,

Supplementary Figure 4A). The immune infiltration in AML

microenvironment was assessed using the CIBERSORT approach

along with LM22 signature matrix. The proportions of 22 immune

cells, including both myeloid and lymphoid immune cells, were

summarized in Figure 2B for the analysis of 482 AML patients from

TARGET and in Supplementary Figure 4B for the analysis of 104

AML patients from GSE71014. Notably, there was a significant

increase in monocytes, while mast cells showed substantial

downregulation in the C2 subtype (Figure 2C, Supplementary

Figure 4C). Additionally, changes in the number of monocytes

and mast cells were validated between the two subtypes in

GSE76009 (19) (Supplementary Figure 4F). In addition to the

changes in immune cell composition, immune activation-

associated molecules, such as human leukocyte antigen (HLA)

genes and immune checkpoints, were also upregulated in the C2

subtype (Figures 2D, E, Supplementary Figures 4D, E).

These findings strongly suggest that the ICD-high subtype

displays an activated immune phenotype, while the ICD-low

subtype presents a suppressed immune phenotype in AML. This

parallels the immunological characteristics observed in the majority

of solid tumor microenvironments. However, the high expression of

ICD genes in the immune-hot state correlates with a poorer
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prognosis in AML, marked by a notable increase in monocyte

numbers and a significant decrease in mast cell numbers. The

underlying cause of this peculiar phenomenon remains unclear,

and the potential impact of alterations in monocyte and mast cell

numbers on prognosis is yet to be determined.
Frontiers in Immunology 06
Highly similar STK10 expression profile and
ICD gene expression profile

To elucidate the perplexing phenomenon of heightened ICD

gene expression and unfavorable prognosis, we extensively screened
FIGURE 1

Identifying signaling pathways in the C1 (ICD-low subtype) and C2 (ICD-high subtype) subtypes within the TARGET dataset. (A) An interactive
heatmap displays the expression of 33 ICD-related genes in the two subtypes, with red indicating high expression and green indicating low
expression. (B) Kaplan-Meier curves for C1 (ICD-low subtype) and C2 (ICD-high subtype). The color patches represent the 95% confidence intervals.
(C, D) The dot plot presents the enrichment analysis of KEGG (C) and GO (D) signaling pathways of C2 vs C1. The size of each dot corresponds to
the gene count, while the color bar indicates -log10 (adjust p-value) or -log10 (FDR). (E, F) GSEA analysis determines the underlying signaling
pathways between C1 and C2 subtypes.
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across diverse AML databases to investigate potential interactions

between ICD genes and other pertinent prognostic factors

(Figure 3A). This analysis revealed ten top-ranked risk genes that

exhibited significant differences (Hazard Ratio ≥ 1 and p-value ≤

0.05) (Figure 3B). In addition to their association with AML
Frontiers in Immunology 07
prognosis, CPNE8, HOXA10, and SPINT2 were also found to be

prognostically relevant across multiple tumor types (Figure 3C).

Regarding specificity to AML, STK10, PLA2G4A, TNS3, and

PACS2 demonstrated remarkable specificity (Figure 3C). In terms

of expression levels, STK10 displayed the highest expression in
FIGURE 2

Immune composition of C1 (ICD-low subtype) and C2 (ICD-high subtype) subtypes in the TARGET dataset. (A) The violin plot presents the median
and quartile estimations for stromal score, immune score, and ESTIMATE score. (B) The stack plots depict the relative proportions of 22 distinct
immune cell types in each sample within the TARGET dataset. (C) The box diagram illustrates the relative distribution of distinct immune cell
populations within the C1 and C2 subtypes. (D, E) Box plots depict differential expression of HLA genes (D), and multiple immune checkpoints (E)
between C1 and C2 subtypes. Statistical significance is denoted by *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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AML, showing the most substantial fold difference (Figure 3D).

This suggests the need for further investigation into STK10. The

expression pattern of STK10 closely mirrored that of each ICD-

related gene (Figure 3E, Supplementary Figures 5A, B), with its

expression in the ICD-high subtype being significantly higher than

that in the ICD-low subtype (Figure 3F). Moreover, high expression

of STK10 predicted a poor prognosis, which aligned with the

unfavorable prognosis observed in the ICD-high subtype

(Figure 3G, Supplementary Figure 5C).
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STK10 inhibition leads to the modulation of
ICD gene expression profile

To investigate whether STK10 regulates ICD gene expression or

influences ICD-induced immune activation, we treated AML cell

lines with SB633825 or knocked out the STK10 gene to assess its

impact on cell viability and CALR extracellular exposure. The

compound SB633825 exhibits potent inhibitory activity against

TIE2, STK10, and BRK by competing with ATP binding.
FIGURE 3

The expression of STK10 shows a positive correlation with the expression of ICD. (A) Wayne diagram illustrating the integration of TCGA AML HR,
GSE16432 AML HR, OHSU AML HR, and TARGET AML upregulating DEGs datasets. (B) The intersection segment of the Wayne plot reveals a total of
the top 10 genes that exhibit differential expression. (C) The heatmap displays the hazard ratio (HR) of 10 genes across 33 tumors. The red square
with a red border indicates HR ≥ 1 and p ≤ 0.05, while the plain red square represents HR ≥ 1 and p > 0.05, indicating an association with poor
prognosis. Conversely, the blue square signifies HR < 1, indicating a favorable prognosis. (D) The expression of 10 differentially expressed genes
(DEGs) was examined in TGGA AML and GTEx normal samples. (E) The heat map visualizes the expression patterns of STK10 and 33 ICD genes in
TARGET AML cohorts. (F) The scatter plot depicts the mRNA expression levels of STK10 in the ICD-high and ICD-low subtypes obtained from the
TARGET dataset. (G) The prognosis of the TARGET cohort was evaluated using Kaplan-Meier analysis after stratifying the group into high and low
subtypes based on STK10 expression.
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However, considering the significantly low expression levels of TIE2

and BRK in AML cells (Figure 4B), SB633825 can be regarded as a

selective inhibitor specifically targeting STK10 in AML. The

RNAseq results revealed that treatment with SB633825 led to the

up-regulation of the majority of ICD-related genes (Figure 4A). The

STK10 gene was successfully disrupted using CRISPR-Cas9

(Figure 4C), leading to a significant down-regulation of key

components involved in ICD, such as CALR, HMGB1, ATG5,

and CASP1 (Figure 4D). Additionally, an escalated dose of

SB633825 induced apoptosis (Figures 4E, F) and enhanced CALR

exposure on the cell membrane in a dose-dependent manner

(Figures 4G, H). Mechanistically, SB633825 arrested the cell cycle

at the G0/G1 phase, ultimately leading to apoptosis (Figure 4I).

To further clarify the relationship between STK10 and ICD-

related genes, we employed a tdTomato-STK10 lentivirus to restore

the knocked-out STK10, and the restoration of STK10 was

successful (Figures 5A, B). Upon genetic knockout of STK10,

there was a marked reduction in the release of ATP and HMGB1,

accompanied by a significant increase in CALR exposure

(Figures 5C-E). Following the rescue of STK10, the release of

ATP and HMGB1 was reinstated, while the upregulation of

CALR exposure was notably diminished (Figures 5C-E).

Furthermore, SB633825 also significantly induced tumor cell

apoptosis and CALR exposure in two AML patients (Figures 5F, G).

In addition to CALR exposure, the release of HMGB1, ATP, and

phosphorylation of eIF2a also play a pivotal role in eliciting an

immune response during ICD. Treatment with sublethal

concentrations of SB633825 led to increased phosphorylation of

eIF2a in a time-dependent manner (Figures 5H, I), with negligible

effects on ATP release across multiple AML cell lines (Figure 5J).

Nonetheless, the secretion of HMGB1 was attenuated in both

primary AML patient samples and AML cell lines (Figures 5K, L).

These findings align with those observed in AML cell lines,

suggesting that each factor plays a distinct role in the process of

ICD and demonstrates varying degrees of relevance to prognosis.
Co-treatment with SB633825 and ICD
inducers synergistically elicit
antitumor effects

Previous studies have reported that bortezomib effectively

induces ICD in AML cells (24). Whether there is an interaction

between SB633825 and ICD inducers remains unclear.

Concentration-dependent induction of apoptosis was observed in

AML cell lines treated with SB633825 alone (Figure 6A).

Meanwhile, co-treatment with bortezomib synergistically induced

apoptosis and extracellular CALR exposure in AML cells

(Figures 6B-F). The mouse leukemia cell line C1498 was

subjected to treatment with SB633825 and Bortezomib alone or in

combination. Subsequently, the treated C1498 cells were injected at

site 1, followed by the injection of untreated C1498 cells at site 2

after a week, and then the growth of tumors was monitored

(Figure 6G). The antitumor effects of both SB633825 and

bortezomib alone were observed as anticipated, but their
Frontiers in Immunology 09
combination demonstrated a synergistic enhancement of the

antitumor immune response (Figure 6H).

Consequently, our hypothesis posits that STK10 does not exhibit

a direct regulatory association with the elevated expression of

immunogenic cell death (ICD) genes. While the upregulation of

ICD responses within the tumor microenvironment further

stimulates the immune system—such as by promoting dendritic

cell (DC) maturation and antigen presentation—STK10

concurrently activates inhibitory immune cells, including myeloid-

derived suppressor cells (MDSCs) and M2 macrophages, which

counteract the immune activation induced by ICD upregulation.

The proposed mechanism, illustrated in Figure 7, indicates that this

mode of action may be applicable to various types of tumors.
Discussion

An in-depth analysis of gene expression patterns in AML

samples has unveiled further insights into the heterogeneity of

this disease. In addition to stratifying AML based on high and low

ICD subtypes according to gene expression profiles, we have

identified distinct molecular signatures associated with each

subtype. Our research has unveiled a significant link between

elevated expression levels of ICD genes and a relatively

unfavorable prognosis in AML patients, a correlation that has

also been noted in specific types of solid tumors (25–29). This

contradicts previous reports that indicated increased expression of

these genes is linked to better overall survival rates. These

unexpected results underscore the complexity of AML biology

and emphasize the necessity for further investigation into the

underlying mechanisms propelling disease progression.

Accordingly, we have also delved into the cellular components

within AML samples. Our data reveal a higher proportion of

monocytes and mast cells in the ICD high subtype, raising

intriguing questions about potential interactions between these cell

types and their impact on disease prognosis. The release of tumor

protein, translationally-controlled 1 (TPT1) by dying cancer cells has

been shown to facilitate the recruitment of myeloid-derived

suppressor cells (MDSCs) to the tumor microenvironment (TME),

thereby promoting local immunosuppression and disease progression

(30, 31). The classification of monocytes, particularly those with high

proportions in ICD-high subtype, as MDSCs is currently uncertain. It

is hypothesized that the significant decline in overall survival might

not be due to the upregulation of the ICD gene, but rather by the

accumulation of monocytes or MDSCs. There is a potential for

monocytes and mast cells to impact the tumor microenvironment

in AML. However, verifying this hypothesis through direct methods

is currently unfeasible due to difficulties in patient sample collection

and overall survival evaluation.

Although not all cell-death inducers can activate intracellular

stress pathways, considerable efforts have been dedicated to

deciphering the release of damage-associated molecular patterns

(DAMPs) by malignant cells in response to immunogenic stressors

such as bortezomib and crizotinib (11, 32, 33). In this study, we

explored the role of STK10 in shaping the tumor microenvironment,
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FIGURE 4

The inhibition of STK10 induces ICD and alters the expression profile of ICD-associated genes. (A) The heatmap illustrates the expression of ICD
genes in MV411 cells, which were treated with SB633825 for 24 hours and underwent RNAseq analysis. (B) The expression levels of TIE2, STK10, and
BRK mRNA were analyzed in various leukemia cell lines within the CCLE dataset (https://sites.broadinstitute.Org/ccle). (C) The STK10 gene was
knocked out in MV411 cells using CRISPR-Cas9 technology. Two single monoclonal cells were selected for western blot analysis to detect the expression
of STK10 protein after treatment with different lentiCRISPR-sgRNA. (D) The heatmap illustrates the expression of ICD genes in MV411 cells following the
knockout of the STK10 gene. (E–H) The AML cells were treated with the STK10 inhibitor SB633825 at the indicated doses for 48 hours. Subsequently, they
were subjected to flow cytometry analysis to measure apoptosis (E, F) and CALR exposure (G, H). (I) The MV411 or MOLM13 cells were subjected to
SB633825 treatment for varying durations, and then the distribution of cells in different phases of the cell cycle was assessed using BrdU/7AAD staining.
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FIGURE 5

The rescue of STK10 inhibits CALR exposure, while the inhibition of STK10 also triggers ICD in AML patients. (A) The expression of RFP-STK10 was
detected by flow cytometry (FCS) after rescuing the knockout of the STK10 gene using CrisprCas9 in MV411 cells. (B) The bar chart represents the
MFI statistics for RFP-STK10. (C–E) Detect the release of ATP (C), HMGB1 (D), and exposure of CALR (E) following STK10 rescue in MV411 cells with
CRISPR-Cas9-mediated knockout of the STK10 gene. (F, G) The two AML samples were treated with a concentration of 30 mM SB633825 for 48
hours, followed by assessment of apoptosis (F) and CALR exposure (G) using FCS. (H, I) THP1 (H) and MV411 (I) cells were treated with 30 mM
SB633825 for various durations, followed by detecting STK10 expression and phosphorylated eIF2a levels through western blot analysis. (J) The
extracellular ATP accumulation in different AML cells was evaluated following a 48-hour treatment with SB633825. (K) Release of HMGB1 in the cell
supernatant in response to the indicated dose of SB633825 treatment on AML cells for 48 hours. (L) Two AML patient samples were treated with 30
mM SB633825 for 48 hours, and the release of HMGB1 into the culture supernatant was assessed. Statistical significance is indicated by *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001.
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given its significant correlation with genes associated with ICD

expression in both TARGET and GEO cohorts. Treatment with

SB633825 in AML cell lines and samples results in minimal passive

release of HMGB1, heightened exposure of CALR, and increased

phosphorylation of eIF2a upon apoptosis induction at a half-lethal
Frontiers in Immunology 12
dose of SB633825. The inhibition of STK10 contributes to the

induction of ICD, suggesting a potential indirect regulatory link

between STK10 and ICD genes. It is plausible that STK10

modulates immune activation through direct regulation of other

immune cells, such as monocytes, MDSCs or mast cells.
FIGURE 6

The combination of SB633825 with other ICD inducers enhances SB633825-induced ICD by promoting apoptotic cell death. (A) Relative viability
was measured after treatment with increasing doses of SB633825 in AML cells. (B–E) Relative viability was measured after 48 hours of treatment
with Bortezomib and increasing doses of SB633825 in MV411 (B), MOLM13 (C), NOMO1 (D), and THP1 (E) cells. (F) Ecto-CALR exposure on MV411
and NOMO1 cells was assessed by FCS after 48 hours of treatment with SB633825 and Bortezomib individually, as well as in combination. (G) The
mouse model for detection of SB633825-induced ICD in vivo. (H) The volume curve illustrates the changes in tumor volume in Site 2 upon
treatment of C1498 cells with SB633825 and Bortezomib alone or in combination, injected into Site 1.
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Accumulating evidence shows that BTZ triggers ICD through

upregulating type I interferon (IFN) signaling (11, 34). Our findings

suggest that the STK10 inhibitor SB633825, in collaboration with

bortezomib, enhances CALR exposure, thereby demonstrating a

more robust anti-tumor immune activation. However, the impact of

SB633825 on type I IFN signaling remains unclear. Additional

research is warranted to investigate the precise mechanism by

which SB633825 activates intracellular stress pathways.

The cascade of events in the progression of ICD can lead to

significant infiltration of myeloid and lymphoid cells, shifting

neoplastic lesions from a ‘cold’ phenotype to a ‘hot’ phenotype

(3). However, malignant cells employ diverse strategies to evade

immune surveillance by circumventing the emission or detection of

ICD-relevant signals (35). Further investigation is required to fully

comprehend STK10’s specific role in immune surveillance.

Although its exact function remains unclear, our study lays a

solid foundation for future research on how STK10 contributes to

tumor immunity.
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The illustration portrays the impact of STK10 on the occurrence of ICD and the function of monocytes/MDSCs.
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