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Germline natural killer
cell receptors modulating
the T cell response
Laura Mora-Bitria and Becca Asquith*

Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
In addition to their central role during innate responses, NK cells regulate

adaptive immunity through various mechanisms. A wide array of innate

receptors has been involved in the NK cell regulatory function. However, the

clinical implications of these regulatory pathways are poorly understood. Here,

we review the experimental evidence on the effects of NK cells on T cells and

their positive and negative consequences for disease outcome during T cell

responses in humans.
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Introduction

The ability of a host to respond to pathogens in an improved fashion upon subsequent

infections is a defence mechanism central to adaptive immunity. In jawed vertebrates,

adaptive immunity is executed by T and B lymphocytes expressing a vast repertoire of

somatically rearranged receptors. For example, the adult human body typically harbours

1011 T cells with 108 different somatically generated T cell receptors (TCR) (1) out of the

1020 possible TCRs (2).

While this broad TCR repertoire can recognise the evolving pathogenic landscape, it

can also erroneously respond to self-proteins. Furthermore, even when correctly

responding to foreign antigen it is necessary to control the magnitude and longevity of

the T cell response. Several control mechanisms modulate adaptive immunity. These vary

from the deletion of clones with self-reactive TCRs to the regulation of the adaptive

response by the innate immune system.

Here, we review the regulatory role of one particular component of innate immunity:

natural killer (NK) cells and their germline-encoded receptors. We summarise the

mechanisms by which NK cells have been shown to modulate T cells, the receptors and

ligands involved, their expression patterns and evidence of their impact on human health.
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Multifaceted immune functions of
NK cells

T, B cells and NK cells originate from a common lymphoid

progenitor in the bone marrow. However, unlike T and B cells, NK

cells do not express somatically rearranged receptors and are

considered innate effectors. Upon activation, NK cells produce

cytokines and execute a rapid cytotoxic function against infected

or transformed cells. Although less than 20% of circulating

lymphocytes are NK cells (3), their innate effector function is

essential. Low NK cell cytotoxicity correlates with the risk of

cancer (4), and more recent studies show that individuals with

primary NK cell immunodeficiencies are more susceptible to

herpesvirus infections and related morbidities (5). Besides these

direct effects of NK cells on pathogen-infected and malignant cells,

NK cells also modulate the adaptive response.

In healthy individuals, NK cells are found at low frequency in

lymph nodes (3, 6), but in vivo studies in mice show that infection

triggers NK cell recruitment to lymphoid tissue and their

accumulation in T-cell rich sites (7, 8). Colocalisation of NK cells

and T cells in lymph nodes – the sites of primary T cell activation –

may facilitate communication between these two lymphocyte

populations and influence the outcome of the immune response

(7). Different mechanisms of NK cell regulation of T cells and how

they impact adaptive responses have been described (Figure 1). To

date, the impact of these NK cell regulatory pathways on the

outcome of adaptive responses has been explored mainly in

mouse models (Table 1). The human in vitro and/or ex vivo

studies investigating NK immunoregulatory role are listed

in Table 2.

NK cells can impact T cell responses through interactions with

other innate cells that in turn affect T cells (i.e. involving one or

more additional cell populations) or with T cells. IFN-g-producing
NK cells can drive dendritic cell (DC) maturation, which in turn,

prime Th1 T cell responses (27). This NK cell-mediated Th1

polarisation is dependent on the cytokine conditioning regime of

NK cells and on cell-cell interactions between NK cells and DCs.

NK cells can also kill DCs (29–31), a process known as DC editing

as NK cells preferentially target immature DCs. DC editing might

preferentially select more immunogenic DCs and has been shown to

lead to more protective antitumour T cell responses in mice (14).

However, NK cell regulation of DCs has also been shown to reduce

T cell priming in a mouse tumour model (11) and to limit murine

antiviral T cell responses, promoting, in this case, viral persistence

(12). In a mouse model of allogeneic skin graft rejection, NK cells

kill allogeneic DCs in graft draining lymph nodes, preventing

alloreactive T cell responses (41).

NK cells can also interact with both CD4+ and CD8+ T cells.

IFN-g production by NK cells has been shown to promote the

priming of Th1 T cell responses in lymph nodes, both in mice (15)

and in humans (32). NK cells can also suppress T cell proliferation

both in humans and in mice, an effect that is cell-cell contact

dependent (16, 33). On the other hand, (42) showed that NK cells

can kill CD4+ and CD8+ T cells in a perforin-dependent manner, an
Frontiers in Immunology 02
observation that has been validated by an increasing number of

studies (reviewed in (43–45)).

NK-cell killing of T cells has been shown to impair both B and T

cell responses in mice (17, 19, 20). In some contexts, e.g. during

murine cytomegalovirus (MCMV) or lymphocytic choriomeningitis

virus (LCMV) infections, NK cell-mediated suppression of the

adaptive T cell response can be beneficial and prevent

immunopathology (19, 46). Additionally, NK cells can act in

synergy with Tregs, ensuring tolerance and eliminating incorrectly

activated T cells that can cause autoimmunity (18, 21, 22, 47).

In the next section, we review the receptor-ligand pairs that

have been reported to be involved in these NK cell regulatory

functions to date.
Receptors modulating NK cell
regulation of T cells

NK cell effector functions, both cytolytic and cytokine

production, are modulated by a wide array of activating and

inhibitory receptors expressed by NK cells. These functions are

typically correlated with the two NK cell subsets; the CD56dim

population is associated with superior cytolytic function whereas

CD56bright cells are potent cytokine producers. Few studies have

looked at the role of each NK cell subset during regulation of T cell

responses but a comprehensive human in vitro study by (35) found

that both CD56dim and CD56bright NK cells were able to kill

activated T cells to a similar extent (though their response to

cytokines differed).

Below, we review the receptor-ligand pairs that have been

involved in the NK cell-mediated regulation of T cells in humans.

Most studies focus on the effect of receptor engagement on NK cell

cytotoxic function against T cells, either via direct release of lytic

granules or via the induction of death receptor-mediated apoptosis.

Note that most if not all the receptors reviewed below can also be

expressed by T cells and affect T cell function or survival in a direct

manner. Here we focus on the indirect T cell regulation by NK cell

regulatory functions.
Death receptors

TRAIL-TRAILRs
Like Fas ligand (FasL), TRAIL (also known as TNFSF10)

belongs to the tumour necrosis factor (TNF) superfamily. Both

FasL and TRAIL activate the extrinsic apoptosis pathway through

engagement of surface death receptors. In vitro evidence in humans

indicates that NK cells expressing TRAIL can eliminate hepatitis B

virus (HBV)-specific CD8+ T cells with upregulated TRAIL death

receptor 2 (TRAIL-R2), also known as TNFRSF10B or DR5 (39).

Moreover, they showed CD8+ T cell expression of TRAIL-R2

correlates with HBV viral load. A similar study found that TRAIL

+ NK cells target activated CD4+ T cells that upregulate TRAIL-R1

(also known as DR4 or TNFRSF10A) and TRAIL-R2 (35).
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Engagement of the death receptor Fas on T cells has also been

implicated in NK cell-mediated killing of CD4+ T cells in a mouse

model of graft-versus-host disease (48). Whether Fas-FasL

interactions result in NK cell-mediated T cell apoptosis has not

been investigated in humans. Like Fas and TRAIL, the co-

stimulatory molecule OX40 (TNFRSF4) also belongs to the TNF

receptor superfamily and has also been implicated in NK cell

regulation; there is some evidence that engagement of OX40 on T

cells by OX40L+ NK cells promotes CD4+ T cell proliferation in

humans in vitro (49).
Frontiers in Immunology 03
Activating receptors

NKG2D-MICA/B
NKG2D is distant member of the C-type lectin receptor NKG2

family, displaying limited homology with the other 6 NKG2

members. The NKG2 family contains both activating and

inhibitory isoforms most of which form heterodimers with the

CD94 molecule. An exception is NKG2D, which does not interact

with CD94 and instead forms homodimers that engage the major

histocompatibility complex class I chain-related proteins A and B
FIGURE 1

NK cell immunoregulatory mechanisms. NK cells can impact adaptive T cell responses through different pathways. NK cells can (A) affect dendritic
cell (DC) maturation and/or (B) kill DCs and thus affect T cell priming. Interactions between NK cells and T cells have been shown to (C) promote T
cell differentiation, (D) inhibit proliferation or expansion of T cells and (E) reduce T cell numbers via NK cell-mediated cytotoxicity. The receptors that
have been implicated in these NK cell regulatory roles are listed at the bottom of each subplot. Receptors in square brackets have been studied in
mice. The blue and yellow receptor-ligand complex in (A, B) indicates T-cell receptor (TCR) and major histocompatibility complex (MHC).
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(MICA/B) and the UL16 binding proteins (ULBP) as ligands.

NKG2D is expressed on NK cells but also in CD8+, gd T cells and

a subset of CD4+ T cells. (42) showed that activated T cells are

recognized and killed by NK cells in a perforin-dependent manner

in mice. Activated T cells were also shown to upregulate NKG2D

ligands. Moreover, staining intensity of NKG2D ligands on T cells

correlated with susceptibility to NK cell lysis. Consistent with this,

addition of anti-NKG2D or anti-NKG2D-ligand antibodies

abrogated NK cell lysis. MICA and ULBP1-3 molecules are also

upregulated in human CD4+ and CD8+ T cells undergoing

proliferation upon stimulation with different antigens (50)

whereas M. tuberculosis-expanded Tregs upregulate ULBP1 but

not MICA/B molecules (36). NKG2D ligand expression renders

activated CD4+, CD8+ and expanded Treg cells susceptible to NK
Frontiers in Immunology 04
cell cytolysis in an NKG2D dependent manner (36, 50). In line with

these findings, a more recent study found that human CD4+ T cells

activated with anti-CD3 and anti-CD28 coated beads are

susceptible to NK cell degranulation. NK cell-mediated killing of

T cells was dependent on engagement of multiple NK cell receptors,

including NKG2D (35).

NKG2C/CD94-HLA-E
Like NKG2D, NKG2C is a NKG2 C-type lectin receptor but

unlike NKG2D, NKG2C forms a heterodimer with CD94. NKG2C/

CD94 heterodimer delivers activating signals when bound to its

ligand, the HLA-E molecule. HLA-E presents a highly conserved

nonamer peptide derived from the leader sequence of classical MHC

class I molecules. Interestingly, the human cytomegalovirus (HCMV)
TABLE 1 NK cell immunoregulation of T cell responses in mice.

Target
population

NK cell-
mediated
mechanism

Effect on adaptive
response

References Model T cell specificity

DCs

DC maturation

Enhancement of protective T
cell responses

(9, 10) Mouse in vivo Unknown, tumour

Inhibition of antitumour T
cell responses

(11)
Mouse in vivo, ex vivo,

in vitro
tumour antigen-specific

DC elimination or
“DC editing”

Impairment of T cell responses

(12)
Mouse in vivo,

ex vivo,
In vitro

MCMV

(13) Mouse in vivo, ex vivo
human papillomavirus,

ovalbumin

Enhancement of T cell responses (14) Mouse in vivo Tumour specific

CD4+

CD4+ differentiation Priming of T cells towards Th1 (15)
Mouse in vivo,

in vitro
ovalbumin

Suppression of
CD4+ proliferation

Impaired antiviral T cell
responses (liver)

(16)
Mouse in vivo, ex vivo,

in vitro
LCMV

CD4+ killing

Impairment of T and B
antiviral responses

(17–19)
Mouse in vivo,
ex vivo, in vitro

LCMV,
MCMV

Impairment of germinal center
responses (affinity maturation)

(20) Mouse in vivo Hapten protein conjugate

Prevention of immunopathology (19) Mouse in vivo LCMV

Prevention of autoimmunity (18, 21, 22) Mouse in vivo, in vitro

Type II collagen,
myelin oligodendrocyte
glycoprotein (MOG)

MCMV

Impairment of immune
memory formation

(17)
Mouse in vivo,
ex vivo, in vitro

LCMV

CD8+

CD8+ killing

Impairment of immune
memory formation

(17, 23)
Mouse in vivo,
ex vivo, in vitro

LCMV
ovalbumin

Impairment of antiviral T
cell responses

(24) Mouse in vivo, in vitro LCMV

Prevention of immunopathology (25) Mouse in vivo LCMV

Suppression of CD8+

proliferation/
expansion

Impairment of antiviral and vaccine-
induced antiviral response

(16, 26)
Mouse in vivo, ex vivo,

in vitro

Vaccine- induced
(ChAdOx),
LCMV
Due to the size of the literature, only a sample of studies are reported for each mechanism. Note that the same NK cell immunoregulatory role can have both positive and negative effects on
adaptive T cell responses.
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UL40 signal peptide is homologous to the HLA-I leader peptide (51).

HLA-E presentation of UL40-derived peptides is recognized by

NKG2C+ NK cells, driving adaptive-like NK cell responses (52).

However, HLA-E can also bind the inhibitory receptor NKG2A and

thus can be used as an escape mechanism by HCMV. NKG2C

expression is upregulated in NK cells from human cytomegalovirus

(HCMV) infected individuals and has been implicated in innate NK

cell control of HCMV infection (53). However, a recent study

indicates that NKG2C+ NK cells can also regulate the HCMV-

specific T cell response as NKG2C+ NK cells can kill HCMV-

activated CD8+ T cells in vitro (54). In addition, NK cell

cytotoxicity correlated with HLA-E expression, which is

upregulated upon T cell activation and also positively correlates

with T cell differentiation state.

NKp44-HLA-DP
The NKp44 receptor, also known as natural cytotoxicity

receptor 2 (NCR2), belongs to the natural cytotoxicity receptor

(NCR) family along with NKp46 (NCR1) and NKp30 (NCR3).

NKp44 has multiple ligands including the extracellular matrix

protein Nidogen-1 (55), the cancer-associated protein PCNA (56)

and the soluble factor PDGF-DD (57). Additionally, NKp44 binds a

subset of HLA-DP allotypes, including HLA-DP401 (58). NK cell

recognition via NKp44 engagement was shown to be modulated by

HLA-DP-presented peptides and resulted in NK cell degranulation.

Since HLA-DP molecules are primarily expressed on antigen-

presenting cells including B cells, NKp44-HLA-DP interactions

could influence T cell responses via the NK cell interaction with a

third immune cell population (58). However, a recent study reports
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upregulation of HLA-DP molecule in effector CD8+ T cells,

especially in HCMV+ individuals (40). In addition, HLA-DP+

T cell frequencies were lower in individuals carrying the HLA-DP

alleles coding for NKp44 ligands, suggesting that NKp44-HLA-DP

engagement triggers NK cell suppression of T cells in a more

direct manner.

aKIRs-HLA-I
Killer-cell immunoglobulin-like receptors are encoded by a

polymorphic and polygenic gene family that contains both activating

and inhibitory isoforms. KIRs are expressed on NK cells and a subset of

terminally differentiated T cells. In NK cells, KIRs regulate functional

maturation and innate effector function of NK cells through

interactions with their ligands, which include the polymorphic HLA-

I molecules. Like NKp44, KIRs do not recognise all HLA-I allotypes. In

fact, each KIR binds to a set of HLA-I allotypes. Although the ligands

for inhibitory KIRs (iKIRs) are well-established, the ligands for

activating KIRs (aKIRs) are less well-defined due to their enhanced

peptide specificity, whichmakes ligand identificationmore problematic

(59, 60). Some aKIRs have been shown to bind HLA class I molecules

in a similar fashion to their paired inhibitory KIR, albeit with higher

peptide specificity (61). Peptide-specificity of aKIRs together with the

high inter-individual variation at both KIR and HLA-I genes might

explain the paucity of experimental studies investigating the role of

aKIR-HLA interactions on NK cell killing of T cells. Nonetheless, there

is some evidence that KIR2DS1-C2 interactions activate NK cell

alloreactivity against DCs and phytohemagglutinin-induced T cell

blasts (62), an effect that was abrogated by KIR2DS1 masking and

modulated by expression of iKIRs.
TABLE 2 NK cell immunoregulation of T cell responses in humans.

Target
population

NK cell-
mediated
mechanism

Effect on adaptive
response

References Model T cell specificity

DCs

DC maturation
Priming of T cells

towards Th1
(27) Human in vitro Not investigated

DC elimination or
“DC editing”

Unknown (28–31) Human in vitro Not investigated

CD4+

CD4+ differentiation
Priming of T cells

towards Th1
(32) Human in vitro Not investigated

Suppression
CD4+ proliferation

Unknown
(33) Human in vitro

Bee venom allergen,
phospholipase A2 (PLA) and

M. bovis

(34) Human in vitro Not investigated

CD4+ killing
Unknown (35–37) Human in vitro

M. bovis,
LPS

Prevent autoreactivity (38) Human in vitro, ex vivo Not investigated

CD8+

CD8+ killing

Increase in viral load (39) Human in vitro, ex vivo HBV

Decreased CD8+

clonal expansion
(40) Human in vitro, ex vivo HCMV

Suppression of
CD8+ expansion

Impairment of vaccine-
induced antiviral response

(26) Human in vitro, ex vivo HBV
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DNAM-1-PVR/Nectin2
DNAM-1 (CD226) is an activating receptor expressed in

different immune cell types including NK cells that binds the

Nectin/Nectin-like family of adhesion molecules, including the

poliovirus receptor (PVR) (also known as CD155) and Nectin2

(also known as CD112 or PVRL2). It has been shown that upon

superantigen stimulation, T cells upregulate DNAM-1 ligand

expression. Moreover, DNAM-1-PVR interactions modulated NK

cell killing of activated and proliferating T cells (63). Interestingly,

an inhibitory receptor that belongs to the same receptor family as

DNAM-1, TIGIT, also binds PVR and Nectin2 as ligands and so

DNAM-1 and TIGIT are considered paired receptors. To our

knowledge, whether TIGIT affects NK cell regulatory function has

not been studied.
Inhibitory receptors

NKG2A/CD94-HLA-E
Like the NKG2C/CD94 heterodimer, NKG2A/CD94 binds

HLA-E molecules as ligands but unlike NKG2C/CD94, HLA-E

engagement results in inhibition of NK cell function. NKG2A/

CD94-HLA-E interactions have also been implicated in NK cell

regulation of T cells. In vitro experiments by (37) showed that NK

cells inhibited CD4+ T cell proliferation by killing antigen-activated

CD4+ T cells. The extent of NK cell killing was dependent on the

degree of HLA-E expression on T cells, which in turn depended on

the stimulatory conditions and the interaction with its receptor,

NKG2A/CD94. A similar study confirmed that the HLA-E-NKG2A

interaction protected activated T cells from NK cell-killing and that

blocking the interaction could increase NK cell degranulation by up

to two-fold (35). Finally, studies in mice show that the HLA-E

functional homologue, Qa-1b, inhibits NK cell regulation of T cell

responses (64). Qa-1b is upregulated in response to type I IFN and

so IFN signalling protects activated T cells from NK cell elimination

(65, 66). Together with TCR activation, type I IFN also induces

HLA-E upregulation in human antigen-activated T cells (37),

suggesting that the stimulation conditions influence the extent of

NK cell elimination of T cells.
iKIRs-HLA-I
Similar to aKIRs, the impact of iKIR-HLA-I interactions on NK

cell regulation of T cells remains poorly understood. There is some

evidence that inhibitory signals driven by KIR3DL1-HLA-Bw4 or

KIR2DL2/L3-HLA-C1 interactions inhibit NK cell cytotoxicity

against T cell blasts in humans in vitro, even in the presence of

KIR2DS1-C2 activating signals (62). Indirect evidence of a regulatory

role of inhibitory receptors recognising MHC-I on NK cells (Ly49

receptors) can also be found in studies in mice, where lower levels of

MHC-I molecules, either due to lack of IFN I signalling or due to

deficiency of a transcriptional regulator of MHC-I genes, result in

increased NK cell-mediated elimination of T cells (66, 67). In a more

recent study using isotope labelling, we have shown that the number of
Frontiers in Immunology 06
iKIR-ligand gene pairs in an individual positively correlates with CD8+

T cell lifespan in humans in vivo (68); each additional iKIR-ligand gene

pair increased T cell lifespan by 60 days. This effect was independent of

iKIR expression on CD8+ T cells, suggesting that an indirect

mechanism – possibly through NK cell regulation of T cells – is at play.
PD-1-PD-L1
It is well established that PD-L1 ligation of the “checkpoint

receptor” PD-1 hampers TCR activation and acquisition of T cell

effector function with some evidence indicating that PD-1 engagement

can also decrease T cell survival. A recent study indicates that, in a

murine model of chronic Hepatitis B virus infection, engagement of

PD-1 on ChAdOx vaccine-induced T cells by PD-L1 on NK cells

reduces the magnitude of the vaccine-induced T cell response; an effect

that is reversed by NK cell depletion prior to vaccination (26).

Consistent with this, a study in mice has shown that liver resident

PD-L1+ NK cells suppress proliferation of both CD4+ and CD8+ T

cells upon PD-1 engagement, impairing antiviral T cell responses in

vivo (16). This observation has been recapitulated in humans in vitro.

In this case, activated T cells displayed reduced proliferation when co-

cultured with tumour experienced PD-L1+ NK cells, an effect that was

not observed when T cells were co-cultured with non-tumour

experienced NK cells. Moreover, the negative effect on T cell

proliferation by PD-L1+ NK cells was reversed by anti-PD-L1

blockade (69). Human in vitro experiments suggest that PD-L1

engagement reduces NK-cell IFN-g secretion, providing a plausible

mechanism underlying the PD-L1 dependent suppression of T cell

expansion (26). Finally, the PD-L1/PD-1 axis has also been implicated

in NK cell-mediated regulation of DC maturation. In this study,

depletion of NK cells increased DC maturation and enhanced

priming and recall antitumour T cell responses in mice (11).
Variation in NK cell control of
T cell responses

Activating and inhibitory ligands for NK cell receptors are

upregulated upon T cell activation, either by TCR ligation or

cytokine stimulation. Therefore, it is likely that activated T cells

are the primary targets of NK cell regulation (44). Indeed, by

looking at gene expression data from (70) we find a consistent

pattern with both naïve CD4+ and naïve CD8+ T cells upregulating

the expression of death receptors FAS and TRAIL-R (1 and 2) upon

activation (Figure 2). Therefore, NK cells expressing death receptor

ligands might regulate recently activated T cells. In the case of

ligands for NK activating receptors the picture is more mixed. HLA-

E and HLA-A expression increases upon activation and although

expression levels are lower, ULBP1-2 (but not ULBP3), Nectin2 and

PVR are also upregulated upon activation. Surprisingly, MICA/B

are downregulated in activated naïve T cells and HLA-DPB1 follows

a similar pattern. Regarding inhibitory ligands, expression of HLA-

C decreases in both CD4+ and CD8+ naïve T cells. However, HLA-B

expression is higher in activated CD8+ T cells and remains constant
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in naïve activated CD4+ T cells compared to unstimulated samples.

It is worth noting that these samples were stimulated with anti-

CD3/CD28 beads for 4h (70) and so it is possible that if cells were

stimulated for longer or under different conditions (e.g. with

cytokines) we would observe different expression patterns.

Additionally, different T cell subsets might upregulate different

ligands so future studies might clarify if, upon stimulation,

populations like naïve Tregs or memory T cells follow the same

or different ligand expression patterns as conventional naïve T cells.

Context (together with variable expression of inhibitory and

activating receptors/ligands) seem to affect the extent of NK cell

regulation. For example, TRAIL has been described in the

elimination of T cells in vitro (35, 39), but not in mice in vivo

(16, 19). In LCMV infection, NK cells in mice kill activated CD4+ T

cells (19) and follicular helper T (Tfh) cells (17) but the opposite

happens during vaccinia virus infection in mice, where NK cells
Frontiers in Immunology 07
display poor cytotoxicity towards activated CD4+ T cells (72). This

poor cytotoxicity is probably due to elevated expression of the

inhibitory receptor NKG2A (72). Similarly, while in protein-

immunized mice NK cells restrain germinal center responses (20),

mice with previous LCMV vaccination had protective recall T cell

responses against LCMV challenge (73). The authors suggest that

vaccine-elicited T cell responses are not subjected to NK cell

regulation (73) but this is in direct contrast with work from Diniz

et al. showing NK regulation of responses induced by the

ChAdOx vaccine.

Besides stimulation conditions, another factor that might affect

the NK cell regulatory function is genetic variation. Some of the

receptors and ligands described above, like KIRs and classical HLA

molecules, display the highest levels of polymorphism in the human

genome; only certain ligand alleles encode proteins that will bind

the receptor and vice versa. Therefore, NK cell regulation is not only
FIGURE 2

NK cell ligand expression on stimulated and unstimulated naïve T cells. Gene expression data from Schmiedel et al. was downloaded from the
Human Protein Atlas (71). This dataset contains transcript expression levels per gene in 15 immune cell types. Mean transcripts per million (TPM) are
shown for unstimulated and stimulated CD4+ and CD8+ naïve cell types as well as for unstimulated naïve Treg cells. Stimulated naïve Treg condition
was not tested and is indicated as ND (Not Done) in each subplot. Gene expression was measured with RNA sequencing. Samples were stimulated
with anti-CD3/CD28 beads for 4h (70). Note HLA-A and HLA-E molecules also bind inhibitory receptors and so they can function as inhibitory
ligands. Similarly some HLA-B and HLA-C molecules also engage activating receptors.
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shaped by the array of receptor-ligand pairs expressed at a given

time and context but also by the genetic makeup of the individual.

One the most polymorphic and polygenic NK cell receptor

families is the KIR family. Individuals vary in the number of

activating and inhibitory KIRs they carry in their genome.

Furthermore, this gene content variation is enhanced by allelic

diversity at each KIR. KIR alleles can affect protein expression and

binding strength (74–76). Therefore, KIR diversity might impact

NK cell regulatory function and determine the outcome of T

cell responses.

A third level of diversity is conferred by KIR ligands. Each KIR

binds a subset of ligands with similar if not higher levels of

polymorphism, the HLA-I molecules. iKIRs bind HLA-I

molecules in broad allele groups i.e. KIR2DL1 binds HLA-C2

allotypes whereas KIR2DL2/L3 bind C1 bearing molecules, with

weak binding to C2 also reported for KIR2DL2 (77, 78). KIR3DL1,

on the other hand, binds HLA-A and HLA-B molecules with the

Bw4 motif (79). Therefore, combinations between the highly

polymorphic and unlinked KIR and HLA loci shape functional

KIR polymorphism and we have recently reported that these

genotype combinations might affect NK cell regulatory function.

Specifically, we have shown that the number of iKIR-HLA receptor-

ligand genes present in the genome affects T cell lifespan in humans

in vivo (68). In addition, we showed that the number of iKIR-ligand

pairs was associated with an aging CD57+ phenotype in both CD4+

and CD8+ T cell subsets consistent with the increase in T cell

lifespan. This effect is not driven by T cells expressing iKIRs,

indicating that another population expressing iKIRs, possibly NK

cells, is responsible for modulating T cell lifespan, probably by one

of the mechanisms discussed in the previous sections.

Another NK cell regulatory pathway that is affected by genetic

polymorphism is NKG2A/CD94-HLA-E. Although NKG2A, CD94,

and HLA-E are highly monomorphic, a polymorphic site in the

HLA-B leader region determines whether HLA-B-derived leader

peptides can bind to HLA-E or not and thus engage with NKG2A/

CD94 (80). Consistent with this, NK cells from individuals carrying

the HLA-B variant that generates functional peptides for HLA-E

display higher degranulation capacity (81). To our knowledge,

whether this polymorphism affects T cell survival has not

been explored.
Clinical relevance of NK cell
modulation of T cell survival

As we have seen, genetic variation at the receptor and ligand loci

might affect NK/T cell interactions and thus shape disease

outcomes. We have immunogenetic evidence that this may be the

case in chronic viral infections and type 1 diabetes [reviewed in

(82)]. Briefly, we have found that the number of iKIR-HLA gene

pairs enhances HLA class I associations in three different persistent

viral infections (83, 84). Given that the 11 HLA class I associations

studied are all thought to be T cell mediated (85), we suggest that

this effect on HLA class I risk indicates that iKIRs affect HLA-

restricted CD8+ T cell responses. On the contrary, iKIR-HLA gene
Frontiers in Immunology 08
pairs weaken the protective effect of HLA class II protective

genotypes in T1D and thus contribute to T1D risk (86).

We speculate that inhibitory signals mediated by iKIR-HLA

interactions dampen the NK cell regulatory effect and may explain

the observed correlation between functional iKIR genotype and T

cell survival (68). This experimental observation fits well with our

immunogenetic findings; increased T lifespan has beneficial effects

in the context of viral infections but exacerbates autoimmune T cell

responses. Accordingly, dampening of NK cell regulation seems to

affect human B cell responses as well; HIV-1-infected individuals

that make broadly neutralising antibodies (bnAbs) have higher

levels of dysfunctional NK cells compared to HIV-1 individuals

that do not produce bnAbs (87).

It is worth noting that the HLA-B haplotype that delivers

functional leader peptides for NKG2A recognition via HLA-E –

the 21M haplotype – does not contain iKIR ligand genes (80). This

MM genotype has been associated with improved outcome in acute

myeloid leukaemia patients undergoing immunotherapy (81). The

21M variant has also been associated with faster HIV-1

seroconversion (88), suggesting that NKG2A-mediated NK cell

inhibition or possible lack of iKIR inhibition influences immune

responses. Whether the NK cell immunoregulatory role is the

underlying mechanism of this effect has not been directly

explored yet.

Finally, indirect immunogenetic evidence hinting at the

relevance of NK/T cell interactions also comes from cancer

patients undergoing immunotherapy. In the context of immune

checkpoint blockade – where immune checkpoint inhibitors

unleash the antitumour T cell response – two studies have found

that KIRs predict overall survival and progression-free survival.

Specifically, (89) found that in non-small cell lung cancer patients

treated with anti-PD-L1 therapy, those with 2 functional iKIR genes

had increased survival compared with those with one or no

functional iKIRs. Along the same lines, carriage of the KIR3DS1

allele (activating KIR) was associated with worse progression-free

survival in another non-small cell lung cancer study with patients

treated with anti-PD-1 (90). Therefore, inhibition of NK cell

function might prevent the elimination of activated T cells,

promoting T cell survival and thus leading to more effective

antitumour T cell responses.
The role of innate receptor diversity
during NK cell regulation of
T cell responses

It’s unclear whether having multiple regulatory checkpoints

represents redundancy which guarantees robust regulation, or if

different inflammatory signals activate specific regulatory pathways

– either positive or negative –, or if both factors are at play.

Redundancy in NK cell regulatory pathways might be a result of

the evolutionary pressure of pathogens on the host immune system.

To keep up with the ever-changing nature of pathogens, hosts need

to constantly develop new immune defence mechanisms.

Diversification of the innate germline-encoded receptors
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represents one strategy to ensure robust responses against pathogen

subversion (91). These diverse innate pathways might have been

subsequently co-opted for NK cell regulation of adaptive T cell

responses. In this scenario, NK cell regulation can be viewed as

collateral damage due to close proximity between NK cells and T

cells in the sites of T cell activation (44). Therefore, T cells had

multiple pathways available to escape NK cell effects through the

expression of different ligands for NK cell receptors. A different

explanation would be that the existence of a complex regulatory

circuit was the pre-condition for the radical innovation of adaptive

immunity to happen (92); robust peripheral regulatory mechanisms

might have allowed safe (and controlled) exponential growth of

somatically diversified immune responses.
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Another plausible explanation is that the different receptor-ligand

systems serve in different contexts (93, 94). Similarly, the existence of

multiple signalling pathways might represent a cross-validation

mechanism; regulation is activated or deactivated in the presence or

absence of certain receptor-ligand interactions. So different T cell

activation conditions like acute viral infection, autoimmunity or

chronic inflammation, might trigger the expression of different NK

receptor ligands on T cells. In turn, the pattern of ligand expression on

T cells might determine the outcome of NK cell regulation.
Conclusions

NK cells are one of the main effectors of the innate immune

system. In addition, NK cells regulate adaptive T cell responses

through multiple mechanisms (Table 1). Various NK cell receptors

and their ligands have been found to be involved in this NK cell

regulatory function (Table 3). Whilst there are a large number of

important studies in mice and in vitro, the consequences of these

regulatory effects for human health remain underexplored.
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TABLE 3 Receptor-ligand pairs involved in NK cell regulation of T cells.

Receptor Ligand

Death receptors

FAS FASLG

TNFRSF10A (DR4, TRAIL-R1)
TNFRSF10B (DR5, TRAIL-R2)

TNFSF10 (TRAIL)

Activating receptors

KLRK1 (NKG2D)
MICA
MICB

ULBP1-3

KLRC2 (NKG2C) HLA-E

CD226 (DNAM-1)
PVR

NECTIN2

KIR2DS1 HLA-C*

KIR2DS2 HLA-C*

KIR2DS4
HLA-A*
HLA-C*

KIR3DS1 HLA-B*

NCR2 (NKp44) HLA-DP¨

Inhibitory receptors

KLRC1 (NKG2A/CD94) HLA-E

KIR2DL1 HLA-C*

KIR2DL2/L3 HLA-C*

KIR3DL1
HLA-A*
HLA-B*

PDCD1 (PD-1) CD274 (PD-L1, B7-H)
Death, activating and inhibitory receptors that have been related to NK cell regulation of T cell
responses in humans. Note that this list is a subset of the receptor-ligands that control NK cell
function and those receptor-ligands interactions that have not been reported to participate in
NK cell regulatory roles are not included e.g. KIR3DS1 and HLA-F interaction. Receptor and
ligand symbols are reported according to HUGO gene nomenclature. Symbols in brackets are
commonly used aliases. *KIR2DL1, KIR2DL2/L3 and KIR3DL1 recognise a subset of HLA-I
molecules, namely C2, C1 and Bw4 allotypes respectively. This is also the case for the paired
activating KIRs KIR2DS1, KIR2DS2 and KIR3DS1 albeit with higher peptide specificity.
NCR2 also recognises a subset of HLA-DP molecules, namely HLA-DP401 allotypes.
Receptors and ligands implicated in a NK cell regulatory function that are expressed on
NK cells (for regulatory function) are showed in purple bold font. Conversely, corresponding
ligands or receptors expressed on T cells (to acquit their regulatory function) are showed in
blue normal font.
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