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Macarena Dastis-Arias6, Laura Garcı́a-Tejada7, Fabrizio Sbraga8,
Pierre Malchair9, Nadia Garcı́a Muñoz10,
Alejandra Larrad Blasco2, Eva Molina Ramı́rez2,
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Introduction: Bacteremia is a life-threatening condition that can progress to

sepsis and septic shock, leading to significant mortality in the emergency

department (ED). The standard diagnostic method, blood culture, is time-

consuming and prone to false positives and false negatives. Although not

widely accepted, several clinical and artificial intelligence-based algorithms

have been recently developed to predict bacteremia. However, these

strategies require further identification of new variables to improve their

diagnostic accuracy. This study proposes a novel strategy to predict positive

blood cultures by assessing sepsis-induced immunosuppression status through

endotoxin tolerance assessment.

Methods: Optimal assay conditions have been explored and tested in sepsis-

suspected patients meeting the Sepsis-3 criteria. Blood samples were collected

at ED admission, and endotoxin (lipopolysaccharide, LPS) challenge was

performed to evaluate the innate immune response through cytokine profiling.

Results: Clinical variables, immune cell population biomarkers, and cytokine

levels (tumor necrosis factor [TNFa], IL-1b, IL-6, IL-8, and IL-10) were measured.

Patients with positive blood cultures exhibited significantly lower TNFa
production after LPS challenge than did those with negative blood cultures.

The study also included a validation cohort to confirm that the response

was consistent.

Discussion: The results of this study highlight the innate immune system

immunosuppression state as a critical parameter for sepsis diagnosis. Notably,
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the present study identified a reduction in monocyte populations and specific

cytokine profiles as potential predictive markers. This study showed that the LPS

challenge can be used to effectively distinguish between patients with

bloodstream infection leading to sepsis and those whose blood cultures are

negative, providinga rapid and reliable diagnostic tool to predict positive blood

cultures. The potential applicability of these findings could enhance clinical

practice in terms of the accuracy and promptness of sepsis diagnosis in the

ED, improving patient outcomes through timely and appropriate treatment.
KEYWORDS

bacteremia, sepsis, endotoxin tolerance, immunosuppression, blood culture, TNFa,
LPS, biomarkers
1 Introduction

The presence of bacteria in the bloodstream is a life-threatening

condition that can lead to the development of sepsis and septic shock,

one of the leading causes of death in the emergency department (ED)

(1–3). Bacteremia in the ED has a reported incidence of 140 to 160

cases per 100,000 person-years in the USA (4), with mortality rates

ranging from 5.3% to 14.4% (5). ED patients who present with

bacteremia have a higher risk of mortality at 30 days than those with

negative blood cultures, which is frequently linked to delayed or

inappropriate use of antibiotics (6–8).

Despite being commonly used for sepsis diagnosis, diagnostic

methods such as blood cultures and biomarker tests have significant

limitations. The time needed to assess the positivity of blood

cultures ranges from 16 hours to a few days (9, 10), which is too

long to help clinicians decide whether or not to start antibiotics.

Moreover, factors such as prior antimicrobial therapy, low pathogen

levels, and poor management during sampling, lead to a significant

portion of false negatives (11) and false positives: Unreliable results

are found in approximately 30% of samples, with large variability

across facilities due to a high risk of contamination when skin or

external bacteria are accidentally introduced during blood sampling

(12, 13). Nevertheless, blood cultures are still the gold standard for

sepsis diagnosis and the identification of possible causative

organisms (14) even if its inaccuracy may lead to prolonged

hospital stays and misuse of antimicrobial agents (15). Molecular

tests, while faster and more sensitive, still cannot always detect

clinically relevant pathogens. Therefore, ED practitioners need new

tools to identify patients with bacteremia causing sepsis accurately,

and as quickly as possible.

There are some point-of-care biomarker tests available that can be

easily performed directly from blood samples,most of which are based

on the identificationof serumbiomarkers suchasProcalcitonin (PCT),

C-reactiveprotein (CRP), orPancreatic StoneProtein (PSP).Themain

disadvantage of these biomarkers is their low specificity, as positive

results can be induced by other noninfectious conditions (16–18).

Othermolecular techniques, suchas rapidmicrobiological panels, have
02
a higher sensitivity than blood cultures. However, the higher

performance of T2Bacteria (T2 Biosystems, c., USA) (19), a rapid

molecular test for bacteria, cannot help clinicians detect the main

immunological derangements that define the presence of sepsis caused

by those pathogens.

Consequently, bacteremia prediction models have evolved. The

first models rely on the presence of fever and high levels of

inflammatory markers, such as CRP and neutrophil count (4, 20,

21). These variables are not sufficiently accurate to predict bacteremia.

Shapiro’s predictive algorithm have been used in some settings (22),

though current evidence does not support its clinical validity used as a

single tool to rule in or rule out the diagnosis of sepsis. In recent years,

new algorithms based on electronic health records (EHRs) and

machine learning have increased the number of variables included

and the accuracy of sepsis diagnosis, although they are not widely

applicable in clinical practice (23–25). These algorithms use data from

baseline clinical characteristics and laboratory results.

During sepsis, it is described that patients develop an

immunosuppression phase, also called endotoxin tolerance (ET),

whose physiological purpose is to prevent overwhelming

inflammation caused by the presence of pathogens in the blood, but

also having potentially detrimental effects such as failure to eradicate

the primary infectionor facilitating secondaryones (26–28). Inhealthy

patients, LPS activates toll-like receptor (TLR) family members, (in

particular, TLR4 is the most broadly described) leading to the

activation of NF-kB, MyD88, IRF3, and the production of pro-

inflammatory cytokines (29, 30). During endotoxin tolerance,

immune cells exhibit a transient state in which they cannot

adequately respond to endotoxin challenges through this pathway

(29). Also in vitro studies have demonstrated that immune cells from

patients with endotoxin tolerance are unable to trigger an adequate

innate immune response when challenged with endotoxin (31).

The study of the activation of the innate immune system by in

vitro stimulation of whole blood with TLR-specific agonists could

improve the performance of machine learning models and other

sepsis prediction algorithms. However, the proportion of ED

patients with bacteremia who present with immunosuppression
frontiersin.org
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has not been properly characterized, even though its study has the

potential to contribute to an early detection of sepsis.

We aimed to measure specific biomarkers related to innate

immune activation in response to a LPS stimulus as a new tool to

characterize sepsis patients according to their innate immune

system activation status and to predict positive blood cultures.
2 Materials and methods

2.1 Patient recruitment

Sepsis-suspected patients who fulfilled the diagnostic criteria for

Sepsis-3 of the Society of Critical Care Medicine and the European

Society of IntensiveCareMedicine international conferences (32)were

included (both cohorts). The criteria for preinclusion assessment were

adult patients aged 18 years or older presenting signs of systemic

infection on admission to the ED. The SOFA score and the

classification of sepsis according to the Sepsis-3 criteria were

determined within the first 24 hours following patient admission.

Blood sampleswere collected at the timeofEDpresentation andbefore

any treatment was administered. Exclusion criteria encompassed

patients with active chronic inflammatory diseases, including

autoimmune diseases or chronic inflammatory conditions (except

controlled asthma). Patients with hematological malignancies or

active cancers under treatment were excluded, as were those with

immunosuppression due to prior or current treatment with systemic

steroids and/or immunosuppressive drugs within the last month.

Severe hepatic dysfunction, evidenced by advanced liver disease (e.g.,

cirrhosis with Child-Pugh C classification), and severe renal

dysfunction, such as end-stage renal disease or patients on dialysis,

were also grounds for exclusion. Additionally, patients with chronic

viral infections—including a known diagnosis of HIV/AIDS or active

hepatitis B or C infections—were excluded, as were pregnant or

lactating women. Patients with organ transplants, intravenous drug

use, or any condition that, in the investigator’s judgment, could

compromise safe participation in the study were also not included.

The study was approved by the Ethics Committee of Bellvitge

University Hospital (PR358/20).

The baseline clinical characteristics for each group of the reference

cohort are described in Supplementary Table 1. Signed consent was

waived by the institutional ethics committee, as only anonymized data

were used for this part of the study. Patients who presented with

bacteremia were significantly older than those with negative blood

cultures (p value < 0.05). Validation cohort was enrolled after the

reference cohortwas completed and includedEDpatientswhoseblood

cultures were positive (Supplementary Table 2). In this case, blood

collected at the time of presentation to the ED (stored less than 24

hours) was used for LPS (10 ng/ml) challenge and TNF-a
measurement. Blood samples were obtained from anonymous

healthy donors and asymptomatic patients scheduled to undergo

elective cardiac surgery requiring cardiopulmonary bypass as

controls for the validation cohort. These patients agreed to

participate in the study, taking advantage of the remaining blood

after extraction of the routine or scheduled laboratory analysis

on admission.
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2.2 Cytometry

To detect and characterize monocytes, anti-CD14, fluorescein

isothiocyanate–conjugated a human leukocyte antigen–antigen D–

related (anti-HLA-DR), and anti-CD3 (Immunostep©, Salamaca,

Spain) antibodies were used [see Supplementary Figure 4 and (33)].

The samples were analyzed with a FACSCanto flow cytometer (BD

Biosciences) and FlowJo vX. 0.7 software (FlowJo©, LLC, BD, New

Jersey,U.S.A.). Tumor necrosis factor–a (TNFa), interleukin (IL)–1b,
IL-6, IL-8, and IL-10 protein levels were determined using a human

inflammatory cytometric bead array (CBA) kit (BDBiosciences©, New

Jersey, U.S.A.) following the manufacturer’s protocol. The samples

were collected by flow cytometry using a BD FACSCanto flow

cytometer (BD Biosciences©, New Jersey, U.S.A.). WBC,

lymphocyte, monocyte, and neutrophil total count and percentage

were obtainedbyaFACSCantoflowcytometer (BDBiosciences©,New

Jersey, U.S.A.), and FlowJo vX.0.7.
2.3 Reagents

The TLR-specific agonists x-1 and x-2 (both TLR2/TLR6-

specific) are purified preparations of lipoarabinomannan (LTA)-

like components; K and I (TLR2-TLR4-specific) agonists are

purified preparations of lipopolysaccharides (LPS) and

peptidoglycan (PGN)-like components. Lipopolysaccharide (LPS)

(TLR4 specific) from Salmonella abortus and Escherichia coli were

obtained from Sigma. Roswell Park Memorial Institute (RPMI)

medium (Invitrogen) was used to dilute the whole blood samples

1:1. After ex vivo TLR agonist stimulation, whole-blood samples

were stored at -80°C and quantified by cytometric bead array.
2.4 Statistical analysis

The normality of the distribution of quantitative variables was

assessed using the Kolmogorov-Smirnov test. Comparisons of

quantitative variables between two groups were performed using

the Mann-Whitney U test for non-normal distributions and the

unpaired two-tailed Student’s t-test for independent samples in

cases of normal distribution. Data were analyzed using SPSS

statistical software version 25.0 (IBM Corp., Armonk, NY, USA).
3 Results

3.1 Evaluating various TLR stimulators to
establish endotoxin challenge
test conditions

3.1.1 Evaluation of different TLR stimulators
TNFa is induced upon LPS stimulation in whole blood

obtained from healthy individuals (34, 35). However, other

pathogen-associated molecular patterns (PAMPs), in addition to

LPS, are recognized by toll-like receptor-4 (TLR4) and might be

good candidates for TLR stimulators (36). To determine the optimal
frontiersin.org
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conditions for ET detection, we aimed to identify which TLR

stimulators were most effective at eliciting innate immune

responses. Blood samples from 5 healthy donors were stimulated

with different Toll-Like Receptor (TLR)-specific agonists, namely,

TLR4-specific agonists; x-1 and x-2, TLR2-TLR6-specific agonists;

and K and I, TLR2-TLR4-specific agonists, and were compared to

LPS, which is the PAMP most commonly used as an effector. The

cells were incubated for 3 hours, after which the TNFa levels were

analyzed. As shown in Supplementary Figure 1A, LPS induced the

production of significant levels of TNFa, while the non-TLR4

agonists x-1 and x-2 barely induced the production of the

cytokine. The TLR2-TLR4-specific agonists K and I did not

significantly increase the production of TNFa , even at

concentrations higher than those of LPS. This demonstrates that

only TLR4-specific agonists are useful for characterizing the innate

immune response, and among them, LPS has the greatest potential.
3.1.2 Comparison of two different bacterial
LPS sources

Another point to be considered to optimize the conditions for

challenging the innate immune system is identifying the best LPS

source for the procedure. Therefore, the ability of LPS from E. coli

and S. abortus to induce a cytokine response was compared. TNFa
production after ex vivo E. coli and S. abortus LPS stimulation (10

ng/mL, 3 h) of hospitalized non-septic patients’ whole blood was

quantified by cytometric bead array (n=25). As shown in

Supplementary Figure 1B, no differences were detected when

blood samples were stimulated with different LPS compounds.

Therefore, S. abortus LPS (10 ng/mL) was selected for further

stimulation experiments due to its greater availability.
3.2 Variable identification in the
reference cohort

Once optimal endotoxin challenge conditions were defined, blood

samples were obtained from 41 patients who fulfilled the Sepsis-3

criteria at ED admission. Blood was sent straight to the hospital

facilities for analysis, except for one 1 ml aliquot that was challenged

with LPS (see methods). After obtaining the blood culture results, 22

patients were negative, and 19 were positive for bacteremia.

The baseline variables most used for predicting bacteremia were

collected. Temperature, heart rate, respiratory rate, pH, bicarbonate

levels, SaO2, Lactate, Acute Physiology and Chronic Health Disease

Classification System II (APACHE II) score, Quick-SOFA score,

and Glasgow score were obtained from the hospital EHR. Notably,

SaO2 was significantly reduced in patients with bacteremia, and the

APACHE II score, Quick-SOFA score, and Glasgow score were

significantly increased. Serum CRP and PCT were measured by

standard biochemistry, and no significant differences were detected

between the groups. White blood cell, lymphocyte, monocyte, and

neutrophil total counts and percentages were also measured.

Interestingly, only the monocyte population was reduced in the

bacteremia cohort. Basal HLA-DR was also measured, and no

differences were found between the groups (Table 1).
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Subsequently, potential new variables of interest upon whole

blood LPS challenge were identified. A sample of 1 ml of whole

blood obtained at ED admission was challenged ex vivo with LPS

(10 ng/mL) for 3 h, and the production of TNFa, IL-1b, IL-6, IL-8,
and IL-10 was quantified by cytometric bead array. A significant

decrease in TNFa, IL-1b, and IL-8 production was observed in

patients with documented bacteremia (p value < 0.05), and a

significant increase in IL-10 was also detected (p value < 0.05).

HLA-DR levels were measured and compared to basal values,

although no significant differences induced by endotoxin

exposure were found (Figure 1).

Some previous works defined a TNFa cut-off value of 200 pg/ml

upon LPS challenge to define ET (37, 38). Although this threshold

has been stablished in almost exclusively pediatric population and is

not yet widely used, we performed statistical measures of sensitivity,

specificity and NPV (Negative Predicting Value), by using this cut-

off value (see Supplementary Figure 2). Moreover, ROC curve was

plotted and AUC (Area Under the Curve) was estimated (see

Supplementary Figure 3).
3.3 Validation cohort

To confirm low TNFa production after LPS challenge as a

feature of bacteremia, we measured this response in a new ED

cohort of patients whose blood cultures were positive within the

first 24 hours of ED admission (n = 35). The average age of this

cohort was 74.3 years, and 40% were female (Supplementary

Table 2). Anonymous healthy volunteer (HV) donors (n = 10)

and non-septic patients scheduled for cardiopulmonary bypass

surgery (CS, n = 48) were enrolled as controls. The cardiac

surgery group was selected due to the routine performance of

preoperative assessments to corroborate an otherwise healthy

condition, fitness for elective surgery, and the absence of sepsis.

The average age of this group was 66.5 years, and 20.5%

were female.

There was significantly lower TNFa production after LPS

challenge in patients with bacteremia than in HV (p = 1.1 × 10-6) or

CS patients (p = 5.14 × 10-11) (Figure 2). While patients with

bacteremia produced an average of 54.1 (+/-72.5) pg/ml, HV and CS

patients produced an average of 528.3 (+/-258.7) pg/ml and 563.8

(+/-565.1) pg/ml, respectively. In 26 patients, only gram-negative

bacteria were detected; in 7 patients, only gram-positive bacteria

were detected; and in 2 patients, both gram-negative and gram-

positive pathogens were detected. Comparing gram-negative vs

gram-positive patients, no significant difference in ET was observed

inpatientswith sepsis causedbyeither typeof bacteria (pvalue=0.122)

(Figure 3A). No significant differences were detected between the

different suspected primary sources (Figure 3B).
4 Discussion

This study reports a significantly lower TNFa production after

LPS challenge in patients with sepsis and bacteremia than in healthy

volunteers and patients undergoing elective cardiac surgery. We
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showed that ET, which reflects the immunosuppressive state of the

innate immune system (26, 34), can contribute to the early

diagnosis and characterization of patients with bacteremia and

sepsis. Failure to respond to an LPS challenge is correlated with

sepsis and can predict a worsening condition if prolonged over

time (39).

The success of sepsis management depends on prompt and

accurate interventions. Although scientific progress has been made

in recent years, a widely accepted method for the early prediction of

positive blood cultures in clinical practice is lacking. Identification

of new parameters to define the presence of bacteremia in patients is

an urgent priority. Baseline variables, including vital signs, are

widely used to predict bacteremia, although they are not specific

and can be influenced by ongoing treatments. For instance, arterial

blood pressure and heart rate may be affected by vasopressors or

antihypertensive drugs, and oxygen delivery may affect blood

oxygen saturation and respiratory rate. Models based on complete

blood count (CBC) and differential count test (CBC/DC test)

showed promising results in predicting positive blood cultures,
Frontiers in Immunology 05
particularly when combined with other parameters such as CRP

(40). Similar results were obtained in neonates (41).

The availability of algorithms that include a combination of

clinical and laboratory variables to reliably predict the presence of

bacteremia in sepsis patients is a cornerstone in emergency

medicine. A few years ago, an algorithm was used to predict

bacteremia based on the EHR data of 41280 adult patients, and

this algorithm has been further validated in 4 different cohorts

(24, 25). The main predictor variables are clinical parameters, such

as temperature, creatinine, and CRP, including a total of 49 features

in its simplified version. This model achieved AUROCs ranging

from 0.75 to 0.81 in different cohorts. Other models based on

machine learning have been developed, but only a few have been

validated (43).

There have been other attempts to identify new variables that

can contribute to improving the current algorithms. A model

developed through machine learning obtained remarkable results

in predicting positive blood cultures by including CBC/DC tests

together with cell population data (CPD) through flow cytometric
TABLE 1 Reference cohort basal variables.

Variable Bacteremia negative (n=22) Bacteremia positive (n=19) p.value

Mean (SD) Median
[Q1-Q3]

missing Mean (SD) Median
[Q1-Q3]

missing

Temperature 37.81 (1.44) 38.4 [37.78-38.5] 0 37.73 (1.59) 38.1 [36.4-38,6] 0 0.674

Heart rate 99.5 (20.91) 105 [84.25-110.75] 0 106.5 (25.22) 110 [88-124.5] 0 0.339

Resp. rate 24.14 (5.55) 22 [20-29.50] 0 25.47 (5.45) 26 [20-30] 0 0.443

SaO2 94.82 (4.26) 96 [93.25-98] 0 91.84 (5.05) 92 [90-95] 0 0.047

APACHE II 14 (5.12) 14 [11.25-16] 0 17.84 (5.55) 17 [14-22.5] 0 0.027

Q-SOFA 1.41 (0.73) 2 [1-2] 0 1.95 (0.85) 1.5 [2-2.5] 0 0.035

Glasgow 14.41 (1.18) 15 [14-15] 0 12.84 (1.98) 13 [11.5-15] 0 0.003

pH 7.42 (0.07) 7.42 [7.37-7.46] 0 7.4 (0.07) 7.41 [7.36-7.45] 0 0.466

HCO3- 24.36 (4.63) 23.3 [21.55-26.83] 0 22.18 (4.06) 21 [19.05-25.2] 0 0.121

Lactate 2.98 (1.44) 2.7 [2.03-4.05] 0 3.66 (1.99) 3.4 [2-4.8] 0 0.213

CRP 164 (115) 163 [70-248] 0 176 (98) 180 [107-270] 0 0.708

PCT 10.06 (20.19) 1.74 [0.23-4.5] 0 14.23 (17.31) 7.73 [2.24-16.54] 4 0.061

WBC 17810 (7504) 17450
[12750-22625]

0 14959 (8631) 15400
[8750-18700]

0 0.265

Lymphocyte 1221 (932) 920
[575-1332]

0 914 (583) 830
[500-1055]

0 0.222

Monocyte 1111 (849) 950
[593-1268]

0 519 (313) 570
[330-685]

0 0.007

Neutrophil 15477 (7231) 15150
[10098-19850]

0 14017 (7841) 12800
[9450-17100]

0 0.112

HLA-
DR (Basal)

163.1 (147.8) 110.5 [73-224] 2 111.01 (74.57) 94.9 [625-150] 4 0.333
Temperature is expressed in Celsius degrees (°C). Heart rate is expressed in beats per minute, Respiratory rate is expressed in breaths per minute, SaO2 (functional oxygen saturation) is expressed
in %, APACHE II=Acute Physiology and Chronic Health disease Classification System II, Q-SOFA = quick Sepsis Related Organ Failure Assessment, Glasgow states for Glasgow coma score,
HCO3

- (Bicarbonate) is expressed in mmol/L, Lactate is expressed in mmol/L, CRP (C-reactive protein) is expressed in mg/L, PCT (Procalcitonin) is expressed in µg/L. WBC (white blood cell
count), Lymphocyte, Monocyte and Neutrophil are expressed in cells per microliter. HLA-DR values are cell-bound HLA-DR on monocytes expressed as mean intensity fluorescence (MIF) in
arbitrary units (A.U.). Values in italics follow a non-normal distribution and have been analyzed by Mann-Whitney U Test. Values in bold have a p.value <0.05.
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parameters such as side scatter light (SSC) and forward scatter light

(FSC), allowing features such as cellular volume, granularity,

density, or membrane surface to be obtained (43, 44).

Most positive blood culture prediction models have been

developed in the ICU setting, reaching a much higher prediction

rate (45, 46). Only a few algorithms have been designed and

validated for ED patients, where heterogeneity is even higher (20,
Frontiers in Immunology 06
25). Our results may improve the current algorithms, as it is highly

unlikely that a patient who responds normally to LPS challenge

would have a positive blood culture.

The challenge of immune cells with endotoxin allows the

gathering of information on the immune state of patients that

cannot be obtained otherwise. We investigated the role of several

molecules involved in the ET stage after LPS challenge of whole
FIGURE 1

Quantification of biomarkers in the reference cohort after LPS challenge. TNFa, IL-1b, IL-6, IL-8, IL-10, and HLA-DR whole-blood production after
ex vivo B. abortus LPS stimulation (10 ng/mL, 3 h) was quantified by cytometric bead array, comparing patients whose blood culture results were
positive to patients whose blood culture results were negative. Box plots showing the medians, interquartile ranges (IQRs), minimums and
maximums by group. Values over the maximum +1.5x IQR or below the minimum -1.5xIQR are considered outliers and are plotted outside the
minimum and maximum range. X indicates the mean. *** = p<0.05; according to the Mann-Whitney U test. HLA-DR values are cell-bound HLA-DR
on monocytes expressed as mean intensity fluorescence (MIF) in arbitrary units (A. U.).
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blood and identified TNFa as a promising biomarker and a new

variable to be included in modern algorithms for sepsis

classification. TNFa after ET challenge shows similar sensitivity

for gram-positive and gram-negative bacteria. The combination of

TNFa with other cytokines, such as IL-1b, IL-8, or IL-10, did not

increase sensitivity. Yet, the significant variation in IL-1b, IL-8, and
IL-10 levels upon LPS challenge make them good candidates for

further exploration in future works.

Some reports have identified immunoparalyzed patients by

detecting a reduction in HLA-DR expression in circulating

monocytes and observing a consistent reduction in HLA-DR in

monocytes in sepsis patients (47, 48). According to Leventogiannis

et al. (49), a reduction in HLA-DR receptor/monocyte ratio of less

than 50000 can occur in approximately 42% of patients with

different types of infection who fulfill the sepsis-3 criteria.

Interestingly, a reduced expression of HLA-DR in monocytes

correlates with an impaired capacity to present antigens

effectively (50), indicating its potential role in measuring

adaptative immunity activity rather than in innate immunity.

This finding aligns with our observations that monocyte HLA-DR
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was not significantly reduced at baseline or after LPS stimulation in

samples from ED patients whose blood cultures were positive. A

correlation between ET and reduced monocyte HLA-DR expression

in sepsis patients has been described in several studies (51, 52). LPS

challenge and monocyte HLA-DR expression showed potential in

predicting the risk of nosocomial infections in pediatric patients

(37). These two biomarkers are similarly reduced in critically ill

patients with sepsis or after trauma or surgery (39). Notably,

persistence in this reduction is a predictor of more severe outcomes.

The production of several cytokines is impaired upon LPS

challenge in sepsis patients with bacteremia. The dynamics of IL-

10 are opposite to those of TNFa, although this variation is less

sensitive. The correlation between IL-6 and TNFa production after

LPS challenge was previously described (53). A decrease in TNFa
production after LPS challenge is a good indicator of bacteremia, as

a decrease in TNFa production and in the number of circulating

monocytes has been reported to correlate with bacteremia (54).

The results of this study are relevant to continue the study of the

clinical applicability of ET test and further change clinical practice

on early diagnosis of sepsis. Sepsis-3 criteria are not sensitive or

specific enough to confirm or rule out bacteremia causing sepsis at

presentation of patients to the ED. Overt clinical signs of organ

dysfunction are extremely late markers of an underlying

complicated infectious process leading to dead. To date, there are

zero objective tools quickly available in clinical practice to confirm

or refute a suspicion of sepsis at time of presentation to the ED.

Clinical data, clinicians’ criteria and other late markers of organ

dysfunction (lactate, creatinine, hypotension) or unspecific

inflammation markers (leucocytes, CRP, etc.) are not useful to

triage ED patients with a potential infection leading to sepsis. Blood

cultures are usually too slow for the early diagnosis of sepsis,

although, when eventually positive, can help target antimicrobial

treatment when patient´s clinical condition improves. Rapid

molecular tests could detect infections or bacteremia, though it

does not imply the presence of sepsis and their false-positive rates

leading to overdiagnosis are concerning. Improving triage of

patients with an infection who are incubating a bacteremia and

sepsis (detection of ET pre-clinically or in patients with established

organ dysfunction) in the ED, will allow clinicians to intervene

priority patients with a positive test to suppress the development of

further events leading to clinical deterioration and organ

dysfunction. The early diagnosis of high-risk patients, detecting

sepsis-induced immunosuppression state with ET would substitute

the current late clinical and laboratory diagnosis of sepsis,

potentially improving patient outcomes.

The identification of culture negative sepsis is a clinically

relevant finding of our work. In some patients of this study, ET

test was positive in some patients fulfilling sepsis-3 and SOFA

criteria who later had negative blood cultures. In clinical practice

this situation occurs in up to 60% of sepsis cases (55), and the

diagnosis can be overlooked and detected later when overt clinical

signs of sepsis or septic shock are present. Despite innate immune

system suppression has been observed in other inflammatory

conditions, such as severe trauma, major surgery, burns, viral

infections, and pancreatitis (39, 56–59), a significant and
FIGURE 2

The ED patients in the validation cohort (green) were compared
with healthy volunteers (anonymous donors) and patients who were
scheduled to receive cardiac surgery (CS) the next day.
Quantification of TNFa after LPS challenge (10 ng/mL, 3 h) by
cytometric bead array. Box plots showing the medians, interquartile
ranges (IQRs), minimums and maximums by group. Values over the
maximum +1.5x IQR or below the minimum -1.5xIQR are
considered outliers and are plotted outside the minimum and
maximum range. X indicates the mean. *** = p<0.05 according to
the Mann-Whitney U test.
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prolonged failure to produce TNFa upon LPS challenge is a specific

parameter of bacteremia and sepsis, which is certainly an advantage

of this assay. This potential application needs further study

for validation.

Patients fulfilling the sepsis-3 criteria and whose blood culture is

negative, can have an underlying serious condition. We cannot

provide sufficient evidence to suggest that a negative ET could skip

broad spectrum antibiotics in patients who meet sepsis-3 criteria.

Moreover, further validations in clinical studies are needed to have a

clear framework for the use of ET test in these patients, as the delay

in empiric antibiotic administration leads to increase mortality in

sepsis (60, 61).

Themain relevance of ET test relies on its potential to be easily and

quicky implemented as a point-of-care test for the early triage of

patients with infections presenting to the ED, and to rule out sepsis in

those patients who have an overwhelming inflammatory response not

due to sepsis, and therefore, to consider non-complicated infections or

other alternative diagnoses when the test is negative. Rapid

microbiological tests could be complimentary to ET test to delineate

the etiology of the immunological diagnosis of sepsis, and to further

narrow antimicrobial treatment. The development of point-of-care

devices for the detectionofET specific for sepsis at timeofpresentation

toED triage and used together with novel rapidmicrobiological tests is

promising. It could improve current algorithms or be combined with

other tools, such as MALDI-TOF or other molecular diagnostics.

Also, the detection of immunoparalysis may have potential for

application in predictive enrichment and personalized therapeutic

approaches to anticipate clinical responses to immunostimulatory

therapy (62). For instance, interferon g (IFNg) has been proposed as

a potential therapeutic approach to reverse immunoparalysis,
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although the best strategy for monitoring its effects is unknown

(49, 63, 64). Other potential drugs that could be used to reverse

immunoparalysis include GM-CSF (26), IL-4 (65), IL-7 (66), IL-15

(67) or immunoglobulin (68). However, none of them led to a clear

clinical benefit so far (42).

Our work has several limitations. First, as in other studies (24),

we did not consider other medications the patients were receiving at

the time of the study beyond those specified in the exclusion criteria.

Additionally, our validation cohort included healthy patients. In

subsequent studies, we plan to select patients who fulfill the sepsis-3

criteria and correlate the presence of ET between bacteremia-

positive patients and bacteremia-negative patients. Second, the

onset of sepsis timing and the duration of innate immune system

paralysis are unknown, leading to suboptimal characterization of

different subsets of sepsis patients in this report, however, this was

not the main objective of the study at this phase. Finally, we

acknowledge that the small sample sizes in both cohorts limit our

ability to thoroughly characterize responses across different patient

subgroups. Therefore, further studies with larger and more diverse

patient populations are essential to validate and generalize the

findings presented here.

In conclusion, challenging whole blood cells with LPS allows the

identification of a hitherto largely overlooked variable, such as ET,

as a variable of interest for the early diagnosis of bacteremia and

sepsis. This feature is a good candidate for inclusion in further

algorithms aimed at timely prediction of positive/negative blood

cultures in ED patients. New tools are needed to predict sepsis and

bacteremia accurately and as quickly as possible in the ED. Further

clinical studies on sepsis-induced immunosuppression at the

bedside are urgently needed.
FIGURE 3

The ED patients in the validation cohort were grouped by feature. (A) Grouped according to Gram+ or Gram– infection status (excluding 2 patients
who had a mixture of both). Quantification of TNFa after LPS challenge (10 ng/mL, 3 h) by cytometric bead array. Box plots showing the medians,
interquartile ranges (IQRs), minimums and maximums by group. Values over the maximum +1.5x IQR or below the minimum -1.5xIQR are
considered outliers and are plotted outside the minimum and maximum range. X indicates the mean. P values were obtained via unpaired, two-
tailed t tests. (B) Groups according to the suspected primary infection site. Quantification of TNFa after LPS challenge (10 ng/mL, 3 h) by cytometric
bead array. Box plots showing the medians, interquartile ranges (IQRs), minimums and maximums by group. Values over the maximum +1.5x IQR or
below the minimum -1.5xIQR are considered outliers and are plotted outside the minimum and maximum range. X indicates the mean.
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