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Background: The Epithelial–Mesenchymal Transition (EMT) is a very important

process involved in cancer invasion and metastasis. Additionally, the Cathepsin K

(CTSK) gene is closely related to the degradation of the extracellular matrix,

which is a critical component of the EMT. The purpose of this study was to

determine the relationships between EMT-related genes and immune cell

infiltration and their prognostic value in Thyroid carcinoma (THCA). The effect

of the CTSK gene on the aggressive biological features of THCA was assessed.

Methods: Within the framework of the present study, the THCA cohort was

analyzed in detail based on data obtained from The TCGA database in the context

of the EMT. The TCGA-THCA cohort was then divided into two groups, namely,

high- and low-risk groups, based on the calculated EMT scores. Finally, based on

the findings from the Weighted Gene Co-Expression Network Analysis (WGCNA)

algorithm, LASSO regression analysis, and Kaplan−Meier plotter, we selected five

genes (CTSK, C3ORF80, FBLN2, PRELP and SRPX2) associated with patient

prognosis. Furthermore, this study examined the presence of various immune

cells within the THCA samples using three distinct algorithms, namely ssGSEA,

xCell, and MCPcounter. Additional studies have been conducted to establish the

roles of CTSK in THCA cell proliferation and migration using various assays, such

as CCK8, colony formation, EdU proliferation, Transwell migration and wound

healing assays. Additionally, the involvement of CTSK in the regulation of various

EMT-related markers was confirmed using Western blot analysis.

Results: Based on EMT scores, TCGA-THCA patients were further divided into

two groups, and the study revealed that patients in the high-risk group had a

worse prognosis than those in the low-risk group. Among the five genes linked to

the prognostic value of EMT (CTSK, C3ORF80, FBLN2, PRELP, and SRPX2), CTSK

exhibited notably elevated expression in the high-risk cohort. This group also

exhibited pronounced immune cell infiltration, with a marked correlation

observed between CTSK expression and the levels of macrophages, MDSCs,

and various T-cell subtypes. Furthermore, in vitro studies demonstrated that

reducing CTSK expression led to significant reductions in THCA cell viability;

clonogenic, proliferative, motility and migratory capacities; and the expression of

key EMT-related proteins, including N-cadherin, vimentin, slug, and snail.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1463258/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1463258/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1463258/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1463258&domain=pdf&date_stamp=2024-11-04
mailto:thyroid2018@126.com
mailto:429146964@qq.com
https://doi.org/10.3389/fimmu.2024.1463258
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1463258
https://www.frontiersin.org/journals/immunology


Wu et al. 10.3389/fimmu.2024.1463258

Frontiers in Immunology
Conclusion: Our results suggest that the expression of CTSK, a gene associated

with the EMT, may be associated with THCA onset and progression and thus may

serve as a promising prognostic biomarker.
KEYWORDS
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1 Introduction

Thyroid cancer (THCA), which originates from either follicular

or parafollicular epithelial cells within the thyroid gland, is the

predominant malignant endocrine tumor, accounting for

approximately 90% of all malignancies within this system (1–3).

Despite the generally favorable prognostic outlook for most cases of

THCA, specific forms, such as anaplastic, medullary, and

treatment-resistant thyroid cancers, demonstrate a propensity for

recurrence and metastasis, ultimately leading to detrimental

outcomes (4, 5). In response to these challenges, recent

therapeutic advancements have included the adoption of

sorafenib, a multitargeted small-molecule tyrosine kinase

inhibitor that acts on VEGFR, BRAF, and RET. Although

beneficial for managing advanced or metastatic forms of THCA,

the application of sorafenib is frequently hampered by its potential

to trigger a spectrum of adverse effects within patients (6). The

limitations of current treatment options emphasize the pressing

necessity of identifying and validating novel genetic markers. These

markers not only gauge the aggressive nature of tumors but also

facilitate the development of targeted treatments, thereby

enhancing management strategies for patients suffering from

THCA with an otherwise poor prognosis.

The epithelial–mesenchymal transition (EMT) is a process in

which epithelial cells transform into mesenchymal cells, as

described previously (7). This process is indispensable for

embryonic development and wound healing and has a major

impact on tumor growth and metastasis. This dual role of EMT

in normal wound healing and pathophysiological processes such as

cancer portrays the significance of EMT in living organisms. These

interactions include promoting tumor cell motility and invasion,

increasing tumor cell stemness, and increasing tumor cell

chemoresistance and immunoresistance. The process known as

EMT is intricately governed by an extensive range of factors that

originate both internally within cells and externally from the

cellular environment. These regulatory elements include

numerous transcription factors, diverse mechanisms of

posttranslational modification, comprehensive epigenetic changes,

and various noncoding RNAs (8). Various studies have established

that the EMT does not operate as a straightforward binary

mechanism. In contrast, this process occurs in a step-by-step

manner through several well-coordinated cellular stages (9).
02
The connection between EMT and MSCs in THCA is crucial, and

their interaction might be responsible for the poor outcome of

patients with certain THCA subtypes through the stimulation of

MSC-like cell proliferation for metastasis (10). Some papillary

tumors are associated with metastatic and invasive behaviors

despite the fact that most of the thyroid tumors are well

differentiated because of dedifferentiation. This finding can be

explained by the EMT, whereby thyroid epithelial cells undergo a

transition, assume a fibroblastic morphology, become less cohesive

and more motile and express mesenchymal markers (11). The

tumor microenvironment (TME) has been described as a complex

structure composed of both living and nonliving components.

Other cell types that constitute this environment include

endothelial cells, adipocytes, fibroblasts, epithelial cells and

immune cells in addition to primary tumor cells. Moreover, the

TME includes acellular components, including the extracellular

matrix (ECM), cytokines, chemokines, growth factors and

antibodies, which are involved in carcinogenesis and tumor

advancement (12, 13). Several works have emphasized a strong

correlation between a high level of immune cell infiltration in tumor

tissue and patient survival. The relationships between the elements

of an individual’s antitumor defense and the features of the tumor,

including the rates of tumor growth, invasion, and metastasis,

influence the response to therapy and the predicted course of

THCA (14). Cathepsin K (CTSK) is a ubiquitously expressed

protease that plays enzymatic and nonenzymatic roles in

numerous pathologies (15). Several recent studies have shown a

strong correlation between increased CTSK levels and the onset and

poor prognosis of pancreatic and hepatocellular carcinomas.

Additionally, higher CTSK levels promote disease progression to

the lymph nodes in patients with oral squamous cell carcinoma

(16–18). It should be noted that CTSK is reportedly involved in the

promotion of an M2-like macrophage phenotype in castration-

resistant prostate cancer (19). However, it remains unclear how

CTSK levels are associated with THCA patient prognosis or exactly

how CTSK is involved in the development of THCA.

In the present study, we applied the WGCNA technique to

systematically identify genes integral to the EMT and to formulate

related coexpression networks. Patients within the TCGA-THCA

dataset were stratified based on their EMT scores, yielding two

distinct groups—those with high EMT and those with low EMT.

Our analysis focused on exploring differences in prognosis and
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immune cell infiltration between these categorizations. Notably,

this study identified CTSK as a critical gene associated with the

EMT, emphasizing its substantial role in modulating both

tumor proliferation and the metastatic process in THCA. These

insights could improve our understanding of the influence of the

EMT on THCA pathophysiology and could significantly refine

approaches to develop personalized treatment modalities for

affected patients.
2 Methods

2.1 Data sources

Thus, the present study used an analytical dataset consisting of

501 THCA samples derived from the TCGA dataset. This cleaning

of the initial data was performed using Perl programming to remove

any duplicates or incomplete observations from the dataset. The

next procedures were the normalization and annotation of the data

to meet the requirements of the subsequent analysis. To determine

the genes that were significantly differentially expressed between

normal and THCA tissues, the ‘limma’ package within the R

environment was used. This analysis used a stringent threshold

for statistical analysis where only genes that had a log fold change of

±1 and a P value of less than 0.05 were considered significant. DEG

visualization was informative; the chromosomal positions of the

DEGs were presented in a circular form using the ‘RCircos’ package.

Furthermore, to increase the applicability of this study on the EMT,

genes connected to the EMT were selectively incorporated into the

analysis. These genes were obtained from the MSigDB and

complemented the study with a focused view on biological

processes that could underlie the development of THCA and its

metastatic spread.
2.2 Construction of WGCNA and
identification of modules related to
the EMT

In this comprehensive analysis, the ‘WGCNA’ package in R was

used to identify the gene modules related to the EMT using the

TCGA-THCA dataset. The flow of the study began with the

identification of the first 1000 genes that showed the highest

variability between samples split into two groups with low and

high EMT scores. To make the data more suitable for analysis, two

suspicious samples, which were determined using cluster analysis,

were removed. This was followed by the analysis of scale

independence as well as the mean connectivity across the

modules at different power levels. This step was necessary for

establishing the most appropriate soft threshold that would help

in providing a stable analysis of the network with a signed R² value

of 0. The 95% confidence interval is considered an adequate level of

scale independence. After fixing the soft threshold, the next step was

to examine the relationship between the gene expression modules

and the EMT parameters. To this end, only those modules that had
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detectable correlations with the EMT were chosen for further

assessment at the level of individual GO terms within the

modules. This approach was proposed to uncover not only genes

that are highly relevant to the EMT but also genes that are strongly

associated with the selected modules based on eigengenes. The GS

for each gene in these crucial modules was defined as the absolute

value of the correlation with the clinical phenotypes. Moreover,

MM was established by plotting the correlation of each gene’s

expression pattern to the module eigengene. To depict these

findings, scatter plots were created to show the relationship

between GS and MM for the genes in the highlighted modules

and highlight the complexity of the relationship between these

genes and their potential for clinical application.

In our WGCNA analysis, we meticulously selected genes for

inclusion in the network based on a series of rigorous criteria aimed

at enhancing the validity and interpretability of our findings.

Initially, we filtered out genes with low expression levels by

setting a threshold where only those genes exhibiting a mean

expression value greater than 1 Transcripts Per Million (TPM)

across all samples were retained. This step ensured that we focused

on genes with sufficient expression for meaningful analysis.

Subsequently, we calculated the coefficient of variation (CV) for

each gene, which is defined as the ratio of the standard deviation to

the mean expression. We included only the top 50% of genes

exhibiting the highest CV values, thereby prioritizing those genes

that demonstrated significant variability in expression across

samples, indicative of their potential biological relevance.

Furthermore, to align our analysis with existing biological

knowledge, we cross-referenced our gene list with cancer-related

genes obtained from well-established databases such as The Cancer

Genome Atlas (TCGA) and GeneCards. This additional filtering

step allowed us to focus specifically on genes that have documented

associations with cancer pathways and processes. After these

selection steps, the remaining genes were subjected to the

standard WGCNA procedures to construct the co-expression

network, wherein we employed a soft-thresholding power to

achieve scale-free topology, followed by hierarchical clustering to

identify modules of co-expressed genes. This comprehensive

approach facilitated the identification of biologically relevant gene

modules that may contribute to cancer pathology.
2.3 Enrichment analysis of key DEGs

Enrichment analysis of the 68 selected DEGs was performed

using the R program’s clusterProfiler package (20). This systematic

review included assessments based on both GO and KEGG

analyses. To ensure rigorous statistical evaluation, the study

adhered to stringent criteria. Therefore, the significance levels

were set at an adjusted P value and adjusted q value of less than

0.05. Genes or pathways for which the p value was less than 0.05

were considered to be significantly enriched; this defined the

biological relevance of the gene or pathway. In this analysis, the

FDR level was set at 0.05 or less to ensure the credibility of the

identified gene relationships and pathway impacts.
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2.4 Construction and validation of the
EMT signature

The DEGs were then analyzed using univariate Cox regression

analysis with the “tinyarray” package, and LASSO regression, which

is a machine learning method, was used. The proposed approach

facilitated improved evaluation of the probability effects of specific

genes. Of the 68 DEGs, five (CTSK, C3ORF80, FBLN2, PRELP, and

SRPX2) had clinical prognostic significance and were included in the

prognostic model. In selecting CTSK, C3ORF80, FBLN2, PRELP, and

SRPX2 for our EMT signature model, we based the decision on both

their statistical significance and biological relevance to EMT and

THCA. Each of these genes was identified through a rigorous

screening process using WGCNA and LASSO regression, followed

by functional enrichment analysis. These five genes stood out due to

their significant association with poor patient prognosis and strong

involvement in key EMT-related pathways. CTSK was selected

because of its well-established role in extracellular matrix

degradation, a critical component of EMT. C3ORF80 is involved in

cellular processes that contribute to immune regulation and cancer

progression. Its expression was correlated with immune infiltration,

particularly macrophages and T cells, which are crucial to the tumor

microenvironment in THCA. This made C3ORF80 a relevant marker

for both immune-related and EMT-driven tumor progression.

FBLN2 is part of the extracellular matrix, where it plays a role in

stabilizing the structural integrity of tissues. Thus, FBLN2 contributes

to our understanding of EMT by highlighting extracellular matrix

remodeling in THCA. PRELP is involved in cell-matrix interactions

and has been associated with the regulation of EMT through matrix

reorganization. SRPX2 was chosen due to its role in angiogenesis and

tumor cell invasion, two processes integral to EMT. These five genes

together form a robust model that captures both the epithelial and

mesenchymal aspects of EMT.

Additionally, to categorize the patients into low-risk and high-

risk groups, a median risk score was used. This method highlighted

the differences in prognosis between these groups. Risk score: CTSK *

0. 286 + C3ORF80 * 0. 478 - FBLN2 * 0. 636 - PRELP * (-0. 166) +

SRPX2 * 0. 310. Subsequently, the TCGA-THCA cohort was split

into training and validation sets based on a 2:1 ratio and an 8:1 ratio,

respectively. The EMT prognostic model was developed using

multiple regression analysis of the coefficients of five critical genes.

This robust model facilitated the stratification of the TCGA-THCA

cohort into two distinct groups, namely, the high-risk group and the

low-risk group, depending on the likelihood of disease progression.

To determine DEGs between these risk groups, the Wilcoxon rank-

sum test was applied, which demonstrated the genetic differences that

led to the different prognoses. To compare the discriminative ability

of the EMT model for predicting the 1-, 2-, and 3-year PFIs, ROC

curves were constructed. The AUC was calculated using the

‘survivalROC’ package to determine the efficiency of the model in

predicting patient prognosis. Furthermore, a Kaplan–Meier estimator

was used to compare PFIs among the various risk categories of

patients. Statistical analysis of the differences in survival rates was

performed using the log rank test at a significance level of p < 0.05,

hence validating the model’s ability to identify patients with higher

and lower risks of disease progression.
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2.5 Genomic mutation analysis

The step-by-step approach for obtaining CNV data for the

THCA cohort was performed using the R-based ‘TCGAbiolinks’

package through which the GDC portal was accessed. All these

analyses were performed using the Genome Reference Consortium

Human Build 38 (GRCh38) to avoid variation in genomic

alignment. CNV analysis was subsequently performed using the

advanced GISTIC2.0 algorithm hosted on the GenePattern platform

(21). Genetic analysis was performed on the website http://

cloud.genepattern.org/gp/pages/index.jsf using default parameters,

including a confidence level of 0.9 to provide statistically accurate

results. To display the CNV data that were obtained in the study, the

‘Maftools’ package (22) in R was used to generate a clear map of

genomic alterations within the patient population. Furthermore, to

better visualize the distribution of highly mutated genes among the

clinical subtypes within the THCA samples, waterfall plots were

created. These plots were created with the most current version of

‘maftools’ (version 2.12). This process allowed for the compilation

and depiction of precise mutation information alongside clinical

categorizations, thus improving the understanding of the genomic

environment in patients with this type of cancer.
2.6 Analysis of immune infiltration

We used three computational algorithms, namely, ssGSEA,

xCell, and MCPcounter, to calculate immune infiltration scores,

which were visualized using boxplots, stacked plots, correlation

scatter plots, and heatmaps. xCell (https://xcell.ucsf.edu/) was used

to quantify the infiltration abundance of 67 immune cell types

based on transcriptomic data. xCell employs advanced machine

learning techniques to derive gene signatures from thousands of

diverse cell types, significantly reducing correlations among similar

cell types. This approach has been validated using detailed

computer simulations that analyze both features and cellular

immunophenotyping, demonstrating the effectiveness of xCell in

precisely delineating cellular heterogeneity across tissue expression

profiles. Next, the ssGSEA method was applied to compute

enrichment scores for individual samples and pairs of gene sets,

enabling the assessment of the extent of immune infiltration within

these samples. Furthermore, the MCPcounter tool was utilized to

measure the presence of ten different immune cells within the

transcriptomic data, providing a quantitative analysis of immune

cell abundance.
2.7 Prognostic analysis using CTSK

Using transcriptome data from 513 patients with THCA

obtained from the TCGA database, patients were categorized into

groups based on high or low CTSK expression, with an established

optimal threshold of 3.7326 for gene expression levels. Kaplan–

Meier survival curves were then constructed to depict the survival

outcomes for both the high-expression and low-expression groups,

enabling a comparative analysis of their survival durations.
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2.8 Cell culture and cell transfection

In this study, the THCA cancer cell lines CAL-62 and KTC-1

were acquired from the American Type Culture Collection (ATCC)

and cultured under controlled conditions at 37°C in an atmosphere

containing 5% CO2. This study employed negative control(NC) and

siRNAs specifically targeting CTSK, which were produced by the

Tsingke Company (Beijing, China), and the sequences of siRNAs

were as follows: siNC(5’-UUCUCCGAACGUGUCACGUTT-3’);

siCTSK-1(5’-CAGCAAAGGTGTGTATTATGATGAA-3’); and

siCTSK-2(5’-GGUUCAGAAGAUGACUGGA(dT)(dT)-3’). For

gene silencing experiments, cells were transiently transfected with

either the negative control or CTSK-targeted siRNAs utilizing

Lipofectamine 2000 reagent following the protocols provided

by Invitrogen.
2.9 Quantitative real-time PCR

RNA was isolated from THCA cells with TRIzol reagent

(AC0101-B; SparkJade, China). Subsequently, 1 mg of extracted

RNA was converted to cDNA utilizing a High-Capacity cDNA

Reverse Transcription Kit (Vazyme, R223-01). This cDNA served

as the template for subsequent exponential amplification, which was

performed using 2 × HQ SYBR qPCR Mix (ZF501; ZOMANBIO;

Beijing, China). ACTB served as the internal control for

normalization. The forward sequence and reverse sequence of the

primers for CTSK were 5’-ACACCCACTGGGAGCTATG-3’ and

5’-GACAGGGGTACTTTGAGTCCA-3’, respectively, and the

forward sequence and reverse sequence of the primers for ACTB

were 5 ’ -CATGTACGTTGCTATCCAGGC-3 ’ and 5 ’ -

CTCCTTAATGTCACGCACGAT-3’, respectively.
2.10 Western blotting

For protein analysis, the collected cell samples were disrupted

using RIPA lysis buffer (Catalog No. R0020; Solarbio, Shanghai,

China), ensuring thorough cellular breakdown for protein

extraction. After cell lysis, protein concentrations were accurately

determined with a BCA protein assay kit, allowing for the

quantification necessary for further analysis. The proteins were

then resolved on SDS−PAGE gels to achieve separation based on

molecular weight. After electrophoretic separation, the proteins

were carefully transferred onto PVDF membranes obtained from

Millipore. The membranes were then incubated with a 5% solution

of nonfat milk from Solarbio to block nonspecific binding sites.

Primary antibodies directed against CTSK(rabbit polyclonal,

1:1000, A1782, ABclonal), GAPDH(rabbit polyclonal, 1:4000,

A19056, ABclonal), N-cadherin (rabbit polyclonal, 1:1000,

A21308, ABclonal), vimentin(rabbit polyclonal, 1:4000, A19607,

ABclonal), slug(rabbit polyclonal, 1:1000, 9585T, CST) and snail

(rabbit polyclonal, 1:1000, 3879T, CST) were applied to the

membranes, which were then incubated overnight at a steady
Frontiers in Immunology 05
temperature of 4°C. Following primary antibody binding, the

membranes were exposed to appropriate secondary antibodies,

and the appropriate settings were established for detection. The

detection phase employed the chemiluminescent method using the

Western blotting Detection Kit (ECL; Catalog No. ED0015-A,

Sparkjade), ensuring sensitive visualization of the protein bands.
2.11 Cell proliferation assay

After transfection, the cells were allowed to adapt for 48 hours

before cell activities were assessed. Assessment was conducted using

the CCK-8 Cell Proliferation Assay Kit (catalog no. C6005M; US

Everbright; Silicon Valley, CA, USA), which strictly adhered to the

manufacturer’s instructions. Simultaneously, to evaluate the

proliferative responses, the EdU Cell Proliferation Assay Kit

(Catalog No. C6015M; US Everbright) was used, which provides a

parallel quantitative measure of cell division and growth. For the

colony formation assays, an initial seeding density of 1000 cells per

well was maintained in six-well plates, and the cultures were

incubated for a period ranging between one and two weeks to

allow for sufficient colony development. At the conclusion of the

incubation period, the colonies were fixed in 4% paraformaldehyde

solution for 20 minutes to ensure optimal preservation. Then,

colonies were stained with a 0.5% crystal violet solution for 20

minutes to enhance visual contrast for subsequent analysis.
2.12 Transwell assay

This study employed Transwell migration assays using 24-well

plates with polycarbonate membranes that had an 8-μm pore size

(Corning, USA). In these experiments, we filled each lower chamber

with 500 μl of RPMI 1640 medium enriched with 10% fetal bovine

serum to facilitate cellular growth and migration. In parallel, 200 μl of

a serum-free cell suspension, prepared at a density of 1 × 106 cells/ml,

was gently pipetted into the upper chamber of the setup. This

configuration was maintained in an incubator set at the optimal

growth conditions of 37°C and an atmosphere containing 5% CO₂ for

a 24-hour period to allow for effective cell migration. After incubation,

the cells within the Transwell chambers were fixed in a 5%

glutaraldehyde solution to preserve their structure and morphology.

Staining was then performed using 0.1% crystal violet dye, allowing

the visualization and subsequent analysis of cell migration patterns.
2.13 Wound healing

In the described experiment, six-well plates were seeded at a

density of 1 × 106 cells per well. Following an overnight incubation

period, a deliberate wound was introduced into the confluent cell

monolayer utilizing the tip of a 10-μl pipette. Subsequently, the

induced scratch was visualized using a high-resolution microscope

equipped with options for 10× magnification.
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2.14 Statistical analysis

Statistical evaluations in this study were conducted utilizing R

software, version 4.1.1. Data analysis was performed by using

GraphPad Prism 9.0 (San Diego, CA, USA). The two-sided

Student’s t-test was used to compare unpaired data. The Cox

hazard regression model was used for univariate analysis, P value

< 0.05 was considered statistically significant.

The analyses included one-way and multifactorial Cox regression

using ‘survival’ and ‘survminer’ packages available within R,

respectively. The criterion for statistical significance was set such

that a p value less than 0.05 indicated statistical significance.
3 Results

3.1 Construction of the coexpression
network in THCA

In this detailed study, we harnessed the EMT gene set from the

MSigDB website to conduct gene pathway assessments for 501

patients diagnosed with THCA using the ssGSEA algorithm.

Patients were divided into two groups according to a median EMT

score of 0.67. The group with scores above this median, termed the

EMT-High group, demonstrated significantly elevated EMT scores

that were greater than those in the EMT-Low group, with statistical

analyses confirming a significant difference (p < 2.2e-16), as detailed

in Figure 1A. Furthermore, to explore the gene expression profiles

across these patients, WGCNA was employed to scrutinize the

expression data of 14,564 genes collected from the 501 THCA

samples. Through meticulous determination, a soft-thresholding

power of 15 was established based on achieving a scale-free

topology criterion with an R² value of 0.9, as depicted in Figure 1B.

The analytical process led to the identification of ten distinct gene

modules after setting the dissolution threshold (DissThres) to 0.2 to

merge dynamic modules. Notably, cluster dendrogram analysis

revealed that the pink module had the most substantial correlation

with the EMT scores, with a Pearson correlation coefficient of 0.58

and a statistically significant p value of 0, as illustrated in Figure 1C.

Given the focus of our research on the EMT phenomenon within the

TCGA-THCA dataset, the green module was identified as a hub

module. This module’s pivotal role is highlighted in Figure 1D,

underscoring its relevance in our ongoing analysis. To further

refine our study, thresholds for GS and MM were set at greater

than 0.5 and 0.7, respectively. This stringent criterion facilitated the

identification and selection of 68 key genes that exhibited strong

associations with EMT characteristics, paving the way for subsequent

detailed investigations. These pivotal genes are shown in Figure 1E,

setting the stage for future exploratory and confirmatory studies.
3.2 Functional analyses of EMT-
related genes

The functional enrichment analysis conducted in this study

revealed a significant concentration of GO terms associated with
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components of the extracellular matrix. Notably, these included

terms related to collagen-enriched extracellular matrices, the

structural constituents of such matrices, and the organization of

encapsulating structures external to cells. The analysis also

highlighted significant enrichment in terms related to the broader

organization of extracellular structures and matrices themselves

(Figure 1F). KEGG pathway analysis revealed the enrichment of

specific pathways that play pivotal roles in cellular interactions and

signaling mechanisms. The identified pathways included the PI3K-

Akt signaling pathway, protein digestion and absorption, ECM-

receptor interactions, and focal adhesion, which are all essential for

cellular communication and adhesion processes (Figure 1G). The

enrichment of these pathways suggested that genes associated with

EMT may actively contribute to the malignant progression of

THCA by enhancing the activation of these critical signaling

pathways. This activation potentially facilitates the invasive and

metastatic behavior of cancer cells, underlining the importance of

these pathways in the context of cancer progression and the

potential for targeted therapeutic interventions.
3.3 Construction of the EMT-
based signature

In this analysis, a LASSO regression approach was utilized to

scrutinize the prognostic potential of 68 genes, and a critical

minimum value of 5 was determined (Figure 2A). This analysis

identified five genes with significant characteristics related to EMT:

C3ORF80, CTSK, FBLN2, PRELP, and SRPX2. These genes were

then used to construct a robust EMT risk score model. The model

was formulated as follows: EMT risk score = (CTSK * 0.286) +

(C3ORF80 * 0.478) + (FBLN2 * -0.636) + (PRELP * -0.166) + (SRPX2

* 0.310). Using this predictive model, patients with THCA were

stratified into two distinct risk categories based on the median risk

score of the cohort. The categorization placed 84 patients in the high-

risk group, which corresponded with a markedly increased mortality

rate. In contrast, the classification identified 83 patients as belonging

to the low-risk group, which was associated with significantly

enhanced survival rates, as depicted in Figures 2C, D. The disparity

in survival probabilities between these groups was starkly illustrated

in the Kaplan−Meier survival plots (Figure 2B), indicating a

significantly shorter survival duration for patients in the high-risk

group than for those in the low-risk group. Furthermore, the

reliability of the EMT risk score was evaluated using receiver

operating characteristic (ROC) curve analysis, yielding areas under

the curve (AUCs) for 1-year, 2-year, and 3-year survival predictions

of 0.87, 0.87, and 0.81, respectively, for the TCGA-THCA cohort

(Figure 2E). This analysis underscores the prognostic accuracy of the

EMT risk score model in predicting patient outcomes. Additionally, a

comparative analysis of gene expression within these risk groups

revealed that CTSK and SRPX2 were expressed at higher levels in the

high-risk group, whereas FBLN2 and PRELP showed reduced

expression levels in the same group compared to the low-risk

group (Figure 2F). This differential expression pattern further

corroborates the link between these genes and the aggressive

clinical behavior associated with higher EMT risk scores.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1463258
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1463258
3.4 Validation of the training set and
validation set

The dataset was divided into two comprehensive sections:

approximately 80% were assigned to the training set, and the
Frontiers in Immunology 07
remaining 20% formed the validation set. Subsequent analyses of

the training data indicated that the prognosis for patients identified

as belonging to the high-risk group was significantly less favorable

than that for those assigned to the low-risk group. This disparity

was particularly evident in the elevated mortality rates observed
FIGURE 1

Elucidating EMT dynamics and key genetic players in THCA using TCGA data. (A) Classification of TCGA-THCA samples into EMT-High and EMT-
Low groups using the ssGSEA algorithm. (B) Determination of the optimal soft-thresholding power at 3, illustrated using graphs depicting scale
independence and mean connectivity for assessing scale-free network topology. (C) Correlation analysis between gene modules and EMT scores to
identify relevant genetic interactions. (D) Construction of a coexpression network using WGCNA based on RNA-seq profiles from the TCGA-THCA
dataset. (E) Scatter plot highlighting the pink module, where key genes with a GS greater than 0.5 and MM above 0.7 were identified, indicating
significant topological overlap. (F, G) Functional enrichment analyses using GO and KEGG pathway analyses to explore the biological implications of
genes within the EMT-based signature.
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among individuals in the high-risk category (as detailed in

Figure 3A). Similarly, evaluation of the validation set

demonstrated consistent results with both the training set and the

entire dataset, confirming the reproducibility and robustness of the

findings across different subsets of data (Figure 3B). Based on the

previously described LASSO linear regression, after removing

redundant genes and constructing a risk model, we ultimately

screened five DEGs (SRPX2, PRELP, FBLN2, CTSK, and

C3ORF80). Of these, C3ORF80 expression showed a significant

positive correlation with prognosis, whereas the expression of the

other four genes exhibited no significant correlation with prognosis

(Figure 3C). In addition, the chromosome circle plot illustrated the
Frontiers in Immunology 08
chromosomal locations of SRPX2, PRELP, FBLN2, CTSK and

C3ORF80 (Figure 3D). Additionally, Spearman correlation

analysis revealed significant negative correlations between the risk

score and EDRNB and VEGFA, whereas positive correlations were

observed with VTCN1, CD276, and TNFRSF4 (Figure 3E).
3.5 Construction of the nomogram and
mutation analysis

Among the five DEGs screened, only FBLN2 exhibited a

significant association with the hazard ratio (p=0.001), which was
FIGURE 2

Development of a 68-gene prognostic signature based on differential expression analysis in two subtypes. (A) LASSO regression was applied to refine the
gene selection for the prognostic model. (B) Kaplan−Meier survival curves delineating the outcomes of 509 patients stratified into high-risk and low-risk
groups according to their EMT scores. (C, D) Presentation of risk curves illustrating the distribution of prognostic scores along with patient survival time
and status. (E) Time-dependent ROC curves evaluating the predictive accuracy of survival probabilities based on DEGs. (F) Comparative analysis of the
expression levels of five critical DEGs between patients in the low-risk and high-risk groups. Significance levels are denoted as ***P<0.001.
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lower in patients in whom FBLN2 was highly expressed (Figure 4A).

The interrelationships among these 5 genes are depicted in

Figure 4B, where FBLN2 displayed the strongest correlation with

PRELP. To evaluate the recurrence risk of individual THCA

patients, a nomogram incorporating four predictive factors,

namely, gender, age, risk score, and cancer stage, was developed.

This tool indicates that for THCA patients with a high genetic risk

score (GRS) and N0 stage disease, the probabilities of recurrence at

12, 36, and 60 months are estimated to be 0.127, 0.403, and 0.426,

respectively (Figure 4C). Additionally, analysis of single nucleotide

variants revealed that missense mutations were the predominant

type of DNA mutation found within the five DEGs. Among these,

single nucleotide polymorphisms (SNPs) are the most frequently
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occurring mutations, with transitions from cytosine to thymine

representing the most common type of base substitution observed.

In addition, BRAF, NRAS and HRAS were the most commonly

mutated genes in THCA, and most of their mutations were

missense mutations (Figure 4D).
3.6 Evaluation of the
immune microenvironment

Using the ssGSEA algorithm to analyze the composition of

tumor-infiltrating immune cells, we observed distinct profiles in

different risk groups of tumor patients. This study revealed
FIGURE 3

Prognostic evaluation in training and validation sets with examination of key genes. (A) Visualization of the risk curves showing the distribution of
prognostic scores and survival statuses within the training cohort. (B) Risk curves depicting the prognostic scores and survival statuses across the
validation cohort. (C) Analysis of the correlation between key genes and patient prognosis. (D) A circular chromosome plot illustrating the genomic
positions of key genes relevant to the study. (E) Evaluation of the associations between the risk score model and 43 immune checkpoint genes
conducted using Spearman’s correlation coefficient. Significance levels are denoted as *P<0.05, **P<0.01, and ***P<0.001.
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increased levels of various immune cells, including CD56dim

natural killer cells, gamma delta T cells, CD56bright natural killer

cells, immature dendritic cells, macrophages, MDSCs, activated

dendritic cells, regulatory T cells, and type 17 T helper cells, in

the high-risk group, all of which demonstrated statistically

significant differences (p < 0.05). Conversely, the low-risk group

exhibited significantly greater numbers of activated B cells,

eosinophils, and type 2 T helper cells (p < 0.05), as shown in

Figure 5A. Higher levels of macrophage infiltration, MDSC

infiltration, and regulatory T-cells (Tregs) in the high-risk group

suggest that the high-risk group may have more significant signs of

immune evasion. The correlation scatter plot illustrates that the

EMT risk score is positively associated with the infiltration of
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certain immune cells, including macrophages, activated dendritic

cells, and gamma delta T cells. Conversely, this score showed a

negative correlation with plasmacytoid dendritic cells, activated B

cells, and monocytes, as depicted in Figure 5B. This analysis

highlights the differential relationships between the EMT risk

score and specific immune cell types, suggesting varying

influences of these cells on EMT progression. In this analysis, we

also selected 23 immune cells expressed in the TCGA cohort for

analysis and calculated the correlation coefficients between the

expression levels of the five genes and their infiltration levels. The

results of the thermographic analysis are shown in Figure 5C.

Among them, CTSK showed a significant positive correlation

with regulatory T cells, macrophages, type I T helper cells, and
FIGURE 4

Development of a nomogram and analysis of genetic mutations. (A) Multivariate analysis was conducted to confirm the independent prognostic
factors influencing patient outcomes. (B) Pie chart illustrating the interrelationships among the genes included in the model. (C) A nomogram was
constructed that incorporates sex, age, risk score, and cancer stage to predict the risk of recurrence at 12, 36, and 60 months. (D) Waterfall plot
displaying the spectrum of single nucleotide variant (SNV) mutations in the genes modeled, highlighting the genetic alterations within the study
cohort. **P<0.01, ***P<0.001.
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natural killer cell (all R>0.6 and all p<0.001). SRPX2 also showed a

positive correlation with regulatory T cells (R>0.6 and all p<0.001).

Using the xCell algorithm, our research investigated the

correlation between tumor-infiltrating immune cells and the EMT

risk score in THCA patients. This study revealed a robust positive

correlation between the risk score and NK T cells, with a correlation
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coefficient exceeding 0.3 and a p value less than 0.001, confirming

statistical significance (Figure 6A). Conversely, the most substantial

negative correlation was observed with HSCs, where the correlation

coefficient was less than -0.4, and the p value was less than 0.001.

Moreover, boxplot analyses highlighted that immune infiltration

levels varied significantly between risk groups. Individuals categorized
FIGURE 5

Analysis of tumor immune microenvironment variations in the high-risk and low-risk groups of the TCGA-THCA cohort. (A) Box plots reveal the
variation in the levels of 23 different immune cell types between groups classified as high- and low-risk, as established by ssGSEA. (B) A scatterplot
illustrates the correlation between the risk score and the distribution of different immune cell types within the tumor microenvironment. (C) The
heatmap visualizes correlation coefficients linking crucial genes with immune cells, where red dots represent positive correlations, blue dots signify
negative correlations, and the star symbol (*) highlights statistically significant findings. *P<0.05, **P<0.01, ***P<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1463258
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1463258
within the low-risk group displayed elevated levels of MSCs,

microvascular endothelial cells, myocytes, and HSCs relative to their

counterparts in the high-risk group. Conversely, the high-risk group

was characterized by increased quantities of monocytes, NK T cells,

sebocytes, Tregs, immature dendritic cells (iDCs), and macrophages.

Additionally, high-risk patients had a greater overall immune score,

whereas low-risk patients had an elevated stromal score, indicating a
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differential stromal contribution to the tumor microenvironment

(Figure 6B). The stacked diagrams provided a detailed view of the

immune cell infiltration landscape across individual patients, revealing

notable differences in the proportions of infiltrating immune cell

subsets among them (Figure 6C).

In the extended analysis of the THCA, we applied the

MCPcounter algorithm to determine the associations between the
FIGURE 6

The correlation between risk score and immune cells types in THCA using the xCell algorithm and the TCGA dataset. (A) Bar graph of the risk score
based on the xCell immune infiltration algorithm, (B) correlation boxplots of the risk score and 23 xCell immune cells, and (C) immune cell stacking
plots of xCells from 501 thyroid cancer patients. ns = non-significant, *P<0.05, **P<0.01, ***P<0.001.
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concentrations of immune cells infiltrating tumors and risk scores.

Detailed boxplot assessments demonstrated significantly greater

numbers of B lineage cells, endothelial cells, neutrophils, and NK

cells in the high-risk group than in the low-risk group. These

findings suggest a pronounced immunological signature that

correlates with an increased risk of tumor development

(Figure 7A). Additionally, using stacked diagrams, we observed

that the proportions of infiltrated immune cell subsets varied

significantly across patients, highlighting the diverse immune

landscape present within the patient cohort (Figure 7B). The

heatmap showed that all five EMT-related genes were positively

associated with fibroblasts, whereas SRPX2 and CTSK were

negatively associated with endothelial cells and neutrophils, as

shown in Figures 7C, D.
3.7 CTSK potentially play an important
oncogenic role in THCA

Further investigations have been conducted to explore the

correlation between CTSK expression levels in overall THCA

patient and individual patient outcomes. According to previously
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published data, the CTSK scores in the group at high risk were

much greater than those in the group at low risk (Figure 2F). Our

recent analysis builds on these findings, demonstrating that

increased CTSK expression is significantly correlated with a

decrease in patient prognosis (p=0.015, Figure 8A).

To investigate the impact of CTSK suppression on cellular

dynamics, functional experiments were conducted using the

KTC-1 and Cal-62 thyroid carcinoma cell lines. Initially, the

effectiveness of CTSK knockdown was validated using RT−qPCR

and Western blot analyses, demonstrating a significant reduction in

CTSK expression (p < 0.001, Figures 8B, C). Subsequently, a series

of assays were performed to assess cellular functions after

knockdown. After CTSK elimination, the CCK-8 assay, colony

formation assay, and EdU assay all revealed significant reductions

in cell activity, colony development, and proliferation. This

reduction was statistically significant (p < 0.01, p < 0.001;

Figures 8D–F). Furthermore, Transwell and wound healing

experiments demonstrated that cell motility and migration were

substantially impaired in response to CTSK knockdown (p < 0.01, p

< 0.001; Figures 9A, B). Following CTSK knockdown, Western blot

analysis revealed a significant decrease in the expression of N-

cadherin, Vimentin, Slug, and Snail (Figure 9C).
FIGURE 7

Analysis of the association between the risk score and immune cell types in the THCA using the MCPcounter approach. (A) A boxplot illustrates the
variation in immune cell infiltration among the high-risk and low-risk categories as determined using the MCPcounter algorithm within the TCGA
dataset. (B) Stacked bar chart illustrating the distribution of immune cells across 501 thyroid cancer patients as analyzed using MCPcounter.
(C) Heatmap displaying the correlations between five key genes and the levels of various immune cell types, as quantified using MCPcounter.
(D) LINKET map showing the relationships between the abundances of immune cells linked to ten specific immune cell genes and model genes
within the immune microenvironment. ns = non-significant, *P<0.05, ***P<0.001.
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4 Discussion

The majority of differentiated thyroid cancers exhibit a

favorable prognosis. For these patients, the primary treatment

modality is surgery, followed by subsequent radioactive iodine

ablation (iodine-131) or thyroxine therapy. However, given that
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some patients with THCA are prone to tumor metastasis and

recurrence or even progression to fatal THCA, systemic treatment

is needed, and targeted therapies are preferred (23). The EMT is

strongly associated with poor prognosis in THCA patients, and the

EMT properties of THCA make therapy targeting EMT-related

genes an attractive therapeutic option (24). Remarkably, the
FIGURE 8

CTSK knockdown inhibits cell proliferation and metastasis. (A) Correlation between the CTSK expression level and overall survival of THCA patients.
(B, C) The knockdown efficiency of CTSK at the gene level was verified using RT−qPCR and western blotting. (D) CCK-8 assays revealed that KTC-1
and cal-62 cells with CTSK knockdown exhibited significantly weaker cell activity than siNC cells. (E) The colony formation assay demonstrated that
the colony formation ability of KTC-1 and cal-62 cells in which CTSK was knocked down was substantially lower than that of cells from the siNC
control group. (F) The results of the EdU incorporation assay showed that the proliferation of CTSK-knockdown KTC-1 and CTSK-knockdown cal-62
cells was significantly lower than that of siNC-transfected cells. **P<0.01, ***P<0.001. Scale bar =100 mm.
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potential and functions of EMT-related genes in THCA remain

largely unexplored.

In recent years, precision medicine has revolutionized cancer

treatment by aiming to personalize disease prevention and

treatment strategies through the analysis of individual variations

in genomics, the external environment, and lifestyle. An increasing

number of researchers have already established subgroups based on

the molecular profiles of patients, representing different

phenotypes, prognoses and treatment responses. In the context of

precision medicine, recent studies have illustrated the importance of

gene expression profiling in various cancers. For example, in acute

myeloid leukemia (AML), profiling based on the expression of

genes linked to ferroptosis can identify a subset of patients with a

poorer prognosis who may benefit from ferroptosis-inducing

treatments (25). Patients with colorectal cancer (CRC) are

stratified into high-risk and low-risk groups using patterns of

autophagy-related gene expression, and this information

facilitates decision making regarding more aggressive treatments
Frontiers in Immunology 15
(26). Moreover, in gastric cancer (GC), categorizing patients into

subtypes based on RNA n6-methyladenosine-related regulator

expression revealed that those patients in certain high-risk

subtypes demonstrate significant resistance to immunotherapy (27).

During this investigation, we identified two distinct expression

profiles linked to the EMT, designated as the EMT-high and EMT-

low categories. These groups exhibited significant differences in terms

of prognosis, with the EMT-high group demonstrating a poorer

prognosis than the EMT-low group. ssGSEA showed more

macrophage infiltration, MDSC infiltration and regulatory T cell

(Treg) expression in the EMT-high group compared to the EMT-low

group, all three of which modulate the immune response by

inhibiting the activity of effector T cells and other immune cells,

thereby suppressing the anti-tumor immune response and promoting

tumor growth. The xCell algorithm revealed that Treg levels were

generally greater in patients in the high-risk subgroup than in those in

the low-risk subgroup, indicating a potential association between the

EMT-high subgroup and immune evasion through Treg activation.
FIGURE 9

CTSK knockdown inhibits cell motility and migration. (A) A Transwell assay revealed reduced cellular mobility in CTSK-knockdown KTC-1 and cal-62
cells compared to control cells, demonstrating a significant reduction in the ability of these cells to traverse membrane pores. (B) Wound healing
assays at 24 hours postwound creation revealed decreased motility in CTSK-knockdown KTC-1 and CTSK-knockdown cal-62 cells compared with
that in the siNC group, as indicated by decreased closure rates. (C) Western blot analysis showing decreased levels of EMT markers, including
Vimentin, N-cadherin, Snail, and Slug, in KTC-1 and CAL-62 cells following CTSK knockdown, with GAPDH serving as the loading control. The
reduction in these proteins underscores significant suppression of EMT progression. ***P<0.001. Scale bar =100 mm.
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Numerous studies have reported that oncogenes induce malignant

progression of tumors by activating both Treg cells and the EMT and

that Treg cells can also induce the EMT in tumor cells (27, 28). The

findings from this study indicate that Treg cells significantly influence

THCA progression.

Based on the DEGs from the two groups, we identified five

genes (SRPX2, PRELP, FBLN2, CTSK and C3ORF80) for the

construction of prognostic models using one-way and LASSO

Cox analyses. The five EMT-related genes identified here offer

significant potential for clinical application, particularly in

personalized medicine for THCA. These EMT biomarkers can

categorize patients into distinct risk groups based on their EMT

signatures. Patients with higher EMT scores, associated with

elevated CTSK and SRPX2 expression, tend to have a worse

prognosis. This stratification provides clinicians with valuable

information on disease progression risk, enabling more intensive

monitoring for high-risk individuals. For example, such patients

could be prioritized for frequent imaging and biomarker

assessments to ensure early detection of recurrence or metastasis.

Integrating EMT-related biomarkers into clinical practice could

significantly enhance precision medicine approaches. By

considering the EMT signature in treatment planning, oncologists

can customize therapies based on the tumor’s molecular

characteristics. Additionally, the EMT signature could identify

patients who may be less responsive to conventional treatments

like radioactive iodine, guiding them toward alternative

therapies.Moreover, these EMT-related genes could be developed

into a biomarker panel for early detection and regular screening of

THCA patients. Detecting elevated levels of these genes in blood

samples or biopsy tissues could help identify patients at higher risk

of disease progression or recurrence before clinical symptoms arise.

This early detection could improve survival outcomes by enabling

prompt interventions.

Research has indicated an association between CTSK

expression and the malignant advancement of various tumors. In

prostate cancer, molecules downstream of CTSK act as control

elements that regulate the expression of EMT-related genes and

promote PC cell metastasis and hyperproliferation (19). CTSK has

emerged as a crucial mediator linking gut microbiota dysbiosis to

CRC metastasis, thereby contributing significantly to the invasive

phenotype of CRC cells both in vitro and in vivo (29). Research on

hepatocellular carcinoma (HCC) revealed that CTSK significantly

influences cell proliferation. This action is accomplished through its

interaction with the SIAH1/protein kinase B (AKT) signaling

pathway, where CTSK enhances SIAH1 protein ubiquitination,

thereby promoting HCC cell growth and proliferation (17).

Although extensive research has been conducted on the biological

functions of CTSK in various tumors, limited knowledge exists

regarding its involvement in the biological processes of THCA. This

study demonstrates that CTSK is linked to poor prognosis in

thyroid cancer (THCA) and actively promotes the proliferation

and migration of THCA cells. Additionally, it increases the

expression of key epithelial-mesenchymal transition (EMT)

markers, including N-cadherin, vimentin, slug, and snail, as

shown by in vitro experiments. CTSK, a critical factor in

extracellular matrix degradation and immune modulation,
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emerges as a promising therapeutic target in THCA. Targeting

CTSK, especially in patients with high CTSK expression, may

improve outcomes for those in the high-risk EMT group.

Additionally, the relationship between EMT signatures and

immune cell infiltration, particularly macrophages, myeloid-

derived suppressor cells (MDSCs), and regulatory T cells, opens

pathways for combining these biomarkers with immunotherapy.

High-risk patients with increased immunosuppressive cell

infiltration might benefit from treatments that reactivate the

immune system, such as immune checkpoint inhibitors.

Furthermore, EMT profiles could serve as predictive biomarkers

for selecting suitable candidates for immunotherapy. We can also

explore whether the combination of CTSK-targeted therapy with

immunotherapy or chemotherapy can further improve the

therapeutic efficacy of THCA, which can provide a basis for

clinical personalized treatment.

Although we obtained the above analyses in this study and some

of the results have been validated by in vitro experiments, there are

still some shortcomings in this study. Firstly, there are inherent

limitations of the data in the TCGA database, for example, the

number of samples in the TCGA-THCA dataset is relatively small,

which may lead to insufficient efficacy of statistical analyses to detect

biomarkers or gene variants with small effect sizes. In addition,

although the TCGA database provides a wealth of transcriptomic

data, these data originate from multiple technology platforms, and

technical differences between these platforms may also lead to

inconsistencies in the data, as well as increasing the complexity of

data integration and data analysis. Finally, we have only validated

our analyses by in vitro cytological experiments and have not yet

completed in vivo experiments; in the future, further refinement of

the in vivo experiments as well as exploring the role of CTSK in

immune cell infiltration will be the main focus of our research.
5 Conclusions

In conclusion, we identified and validated the key gene CTSK,

which is closely related to the EMT in THCA, and we concluded

that CTSK could serve as an important biomarker to assist in the

diagnosis of THCA.
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