Hyaluronic acid, or hyaluronan, is a polymer made of the repetition of a unique disaccharidic unit, D-glucuronic acid and D-N-acetylglucosamine, that can reach a molecular mass of 10(7) daltons. This primitive polymer has emerged as a remarkable extracellular matrix component by its viscoelastic properties, its hygroscopic capacities and the diversity of cell processes it controls. Identified in all vertebrate tissues, more than 50% of acid hyaluronic of the organism is present in skin. Having no protein core, its synthesis is performed through a unique process, depending on enzymatic activity of hyaluronan synthases acting at the internal face of the plasmatic membrane and extruding the nascent polymer to the extracellular medium. This polymer constitutes a scaffold on which a large number of sulfated proteoglycans, up to one hundred, can be linked. These supramolecular structures of considerable size are able to entrap large amounts of water and ions to provide tissues with hydration and turgescence. Hyaluronic acid is recognized by cell membrane receptors, notably CD44 which is the best known. Interaction of hyaluronic acid with its receptors triggers several intracellular signaling pathways regulating proliferation, migration and differentiation. Cell response is largely influenced by the size of the polymer and by that of the fragments generated upon degradation by hyaluronidases or free radicals. Hyaluronic acid is metabolically very active, as, for example, its half-life in skin is less than one day. Detected in epidermis where it could play a role in the control of proliferation and differentiation of basal cells, it is however prominent in dermis in association with versican. The remarkable physicochemical properties of hyaluronic acid as well as the diversity of biological processes it controls largely surpass the primitive character of this polymer.
Copyright 2010 Elsevier Masson SAS. All rights reserved.