Summary: Today's graphics processing units (GPUs) compose the scene from individual triangles. As about 320 triangles are needed to approximate a single sphere-an atom-in a convincing way, visualizing larger proteins with atomic details requires tens of millions of triangles, far too many for smooth interactive frame rates. We describe a new approach to solve this 'molecular graphics problem', which shares the work between GPU and multiple CPU cores, generates high-quality results with perfectly round spheres, shadows and ambient lighting and requires only OpenGL 1.0 functionality, without any pixel shader Z-buffer access (a feature which is missing in most mobile devices).
Availability and implementation: YASARA View, a molecular modeling program built around the visualization algorithm described here, is freely available (including commercial use) for Linux, MacOS, Windows and Android (Intel) from www.YASARA.org.
Contact: [email protected]
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2014. Published by Oxford University Press.