Benjamin E. Ujcich (University of Illinois at Urbana-Champaign), Samuel Jero (MIT Lincoln Laboratory), Richard Skowyra (MIT Lincoln Laboratory), Steven R. Gomez (MIT Lincoln Laboratory), Adam Bates (University of Illinois at Urbana-Champaign), William H. Sanders (University of Illinois at Urbana-Champaign), Hamed Okhravi (MIT Lincoln Laboratory)
Software-defined networking (SDN) achieves a programmable control plane through the use of logically centralized, event-driven controllers and through network applications (apps) that extend the controllers’ functionality. As control plane decisions are often based on the data plane, it is possible for carefully-crafted malicious data plane inputs to direct the control plane towards unwanted states that bypass network security restrictions (i.e., cross-plane attacks). Unfortunately, due to the complex interplay between controllers, apps, and data plane inputs, at present it is difficult to systematically identify and analyze these cross-plane vulnerabilities.
We present EventScope, a vulnerability detection tool that automatically analyzes SDN control plane event usage, discovers candidate vulnerabilities based on missing event handling routines, and validates vulnerabilities based on data plane effects. To accurately detect missing event handlers without ground truth or developer aid, we cluster apps according to similar event usage and mark inconsistencies as candidates. We create an event flow graph to observe a global view of events and control flows within the control plane and use it to validate vulnerabilities that affect the data plane. We applied EventScope to the ONOS SDN controller and uncovered 14 new vulnerabilities.