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Abstract—Artificial multi-cellular organisms develop from a single zygote to 

complex morphologies, following the instructions encoded in their genomes. 

Small genome mutations can result in very different developed phenotypes. In 

this paper we investigate how to exploit genotype information in order to guide 

evolution towards favorable areas of the phenotype solution space, where the 

sought emergent behavior is more likely to be found. Lambda genome parame-

ter, with its ability to discriminate different developmental behaviors, is incor-

porated into the fitness function and used as a discriminating factor for genetic 

distance, to keep resulting phenotype’s developmental behavior close by and 

encourage beneficial mutations that yield adaptive evolution. Genome activa-

tion patterns are detected and grouped into genome parameter sub-transitions. 

Different sub-transitions are investigated as simple genome parameters, or 

composed to integrate several genome properties into a more exhaustive com-

posite parameter. The experimental model used herein is based on 2-

dimensional cellular automata.  

Keywords: Artificial Development, Evolution, Complexity, Emergence, Cellu-

lar Automata. 

1 Introduction 

Evolved artificial developmental (EvoDevo) systems have shown many favorable 

features that are also present in natural biological systems, such as the ability to 

evolve robust genomes [1]. However, robustness and evolvability may not be always 

rowing in the same direction. A biological organism may be considered robust if, after 

genome mutations, it keeps the same ability or functional properties. In contrast, 

evolvability is a property that promotes genetic variation in order to produce adaptive 

evolution, being able to evolve through natural selection. One may think that too high 

robustness would not provide enough genetic diversity whereas too high evolvability 

would cause more disadvantageous mutations, thus annihilating adaptation. In 

EvoDevo systems, small changes in the genome often lead to completely different 

emergent phenotypes. It is particularly difficult to understand which changes will be 
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produced to the developing organism by each genetic operator, e.g. mutation, crosso-

ver, and which phenotypic traits will be affected. As such, evolutionary algorithms 

spend a relevant amount of time generating low fitness solutions that may not give 

any genetic contribution to the population and thus being often discarded. We investi-

gate if genome information could be used to guide evolution. Our results indicate that 

genome parameters could predict the developing behavior based on genome composi-

tion and thus help to guide evolutionary search in the right area of the search space, 

where the sought behavior is more likely to be found.  

The article is laid out as follows: background information and motivation is pre-

sented in Section 2. In Section 3 the developmental model used in the experiments is 

presented. Section 4 describes Lambda genome parameter, meaning and usage. The 

experimental setup is illustrated in Section 5. In Section 6 and 7 the results of the 

experiments are presented together with the discussion. Section 8 concludes the work. 

2 Motivation and Background 

Artificial developmental systems can be considered as complex systems [2], where 

there is no central controller and the developed artificial organisms are the result of an 

emergent process out of the local interactions of simple cells. Many developmental 

systems target specific phenotypic structures or structural properties [3], whether 

some others execute a particular computational task that emerges out of the develop-

ment of the machine’ structure [4]. Programming an artificial developmental system 

to produce such emergent computation cannot be done using traditional engineering 

approaches. One solution could be to exploit nature’s way of tackling problems, 

namely evolution by natural selection. Evolutionary algorithms have been widely 

used as population-based metaheuristic optimization algorithms [5]. In general, those 

evolutionary techniques do not make any assumption about the underlying fitness 

landscape. An indirect genotype-to-phenotype mapping can result in two very similar 

genotypes developing into two very different phenotypes. A developmental mapping 

may be represented by a function that maps elements in the genotype space to ele-

ments in the phenotype space. Such spaces may have regions where small distances 

between genotypes are preserved into small differences between resulting phenotypes, 

whether in some other regions distances are hardly preserved at all [12]. In practice, 

small mutation can have a huge impact on the emergent phenotype. This can be prob-

lematic if solutions are to be discovered by evolutionary algorithms. Having a genome 

parameter that may predict the emergent behavior could be useful to reduce phenotyp-

ic distance. Such information could contribute to guide evolutionary search through-

out the solution space, where the target phenotype may plausibly appear. 

3 Evolution and Development 

The relation between natural evolution and development in biological systems is still 

a fairly unexplored area [13]. Investigation of natural evolution makes it hardly possi-

ble to obtain experimental proofs due to the time scale of evolution. In evolved artifi-



cial systems there is no such problem. It is possible to execute experiments in a rea-

sonable time and investigate different evolutionary factors that may influence on de-

velopmental paths. However, there is a lack of knowledge of what kind of information 

must be present in the genome in order to obtain a sought phenotypic behavior. We 

try to exploit genome regulatory information in a simple developmental model and 

investigate if such information could contribute to guide evolution in the vast solution 

space, i.e. toward where the target developmental trajectory is more likely to emerge. 

3.1 Cellular Developmental Model 

The developmental model used herein is based on cellular automata, i.e. synchronized 

cellular updates, parallel operation and discrete cell states. As such, the totality of 

regulative inputs can be coded completely in the genome (this does not imply that all 

of the genome information is expressed in the phenotype). To be able to have a com-

plete regulatory network for all possible input states the model needs to be minimalis-

tic. However, some features are not reduced to the minimum. The number of cell 

states is set to three instead of two. This was done to keep the concept of multi-

cellular organism and cells differentiation, i.e. two types of cells in addition to the 

cells that are defined to be dead (void/quiescent). To be able to keep the principle of a 

growing (expanding) organism there is a constraint on how a cell can come “alive”. 

This constrain is to only allow cells that have at least one neighbor expressing a cell 

type different from void to be able to come alive. The organisms develop in a two 

dimensional grid world, starting from a single cell placed in the grid (zygote). The 

placement of the first cell is of no importance as the grid uses cyclic boundary condi-

tions. The local cellular communication is based on von-Neumann neighborhood (5 

neighbors) and includes only cell type information, i.e. no environmental influence. 

With three cell types multicellularity is possible and at the same time the number of 

all possible cellular states in the defined neighborhood is not extremely large, i.e. max 

243 (or 35). A developing organism will consist of different construct of these three 

cells. A more detailed description on the developmental model is given in [7, 8]. 

 

Fig. 1. Genome developmental table: regulatory input and cellular actions. 

The table in Figure 1 is a scaled down illustration of all possible regulatory combi-

nations. For the first entry in the table, i.e. all regulatory inputs set to 0, the output of 

the development process is fixed at 0. This is done to fulfill the stated constraint relat-



ed to growth. All other regulatory inputs have a possibility of regulating the cell to be 

at any of the available cell types, indicated by the triplet {0, 1, 2}. 

Figure 2 shows an example of a developing organism. At Development Step (DS) 

0 the organism consists of only a single cell of type 1 (the zygote), at DS 1 the first 

cell has divided and differentiated into three cells of type 2. At DS 2 – DS 4 the 

change in phenotypic structure along the developmental path can be observed. The 

last shown organism is at DS 2000000. 

 

Fig. 2. Example of developing organism at intermediate development steps. 

3.2 Quantification of Phenotypes 

Having defined genetic information for the cellular model, a quantifiable measure has 

to be identified for the developed organisms. Properties that can be used need to pro-

vide information on the developing organism as a whole and the occurring phenotypic 

changes [11]. For a given organism, the initial cell (zygote) follows a developmental 

path and after a transient phase reaches an attractor, i.e. a final stable state or a self-

reorganizing cycle. A complete trajectory identifies the whole lifecycle of the organ-

ism [6, 8] together with morphology, size and behavior changes. Trajectory length is 

an abstract measure that does not code for any computational task, e.g. majority, syn-

chronization or a given phenotypic structure, since moving from node to node in a 

trajectory is the computation. For the scope of this research, no specific problem is 

implied and generalization is crucial. As such, trajectory length is the chosen metric 

of phenotypic complexity. 

3.3 Evolution of Genome Information 

In the model described earlier, the gene regulatory information is composed by the 

cell state of the five cells in the neighborhood. The evolvable information is then rep-

resented by the column C(t+1) in Figure 1, which describes the outcome of the gene 

regulation process. Moreover, such explicit representation of all possible cellular 

actions opens the possibility to identify sub-groups of developmental rules (sub-

transitions): 

 Growth rules: sub-transitions that represent a void cell (type 0) becoming alive 

(type 1 or type 2); 

 Differentiation rules: one of the alive cells switches to the other alive cell type; 

 Death rules: one of the alive cell types becomes void; 

 No-change rules: the cell does not change its state. 

Death sub-transitions are a special case of differentiation rules where alive cells 



differentiate to quiescent cells. This group of transitions is also used to calculate 

Lambda parameter, as described in the following section. 

The developmental trajectory from zygote to multi-cellular organism can be repre-

sented by the state transition in Figure 2. Such trajectory produces a genome activa-

tion pattern at each development step that can be measured in terms of sub-transitions 

activated in the genome. For example, from DS 0 to DS 1 only one differentiation 

sub-transition is activated, together with three growth sub-transitions and twenty one 

no-change sub-transitions. No death sub-transitions are triggered. 

4 Lambda Genome Parameter 

Parameters obtained from the genome information can be used to estimate the dynam-

ic developmental behavior of the emerging organisms. Langton [6] tried to find a 

relation between CA behavior and a parameter λ. He observed that the basic functions 

required for computation (transmission, storage and modification of information) are 

more likely to be achieved in the vicinity of phase transitions between ordered and 

disordered dynamics (edge of chaos). He hypothesized that it is easier to find rules 

capable of complex computation in a region where the value of λ is critical. Since the 

developmental model is composed by 35 regulatory combinations, all the possible 

regulatory inputs and relative outputs (growth, differentiation, death or no action) are 

fully specified in the developmental table. In order to calculate λ, it is necessary to 

define a quiescent state, the void cell (type 0) in our case. Lambda is defined as fol-

lows: 

  (1) 

 

λ can be calculated according to Equation 1, where n represents the number of 

transitions to the quiescent (dead) state, K is the number of cells types (three in our 

case) and N is the neighborhood size (five in the Von Neumann neighborhood). In 

this way, the value of λ is based only on local properties of the neighborhood and in 

particular the cellular actions that are present in every cell. 

Previous works [6, 7] have shown a clear relation between Lambda parameter and 

developed organisms’ trajectory length. In particular, it is possible to identify a pa-

rameter space interval where organisms are more likely to have long life cycles. As 

such, Lambda (or other genome parameters) could be used to guide evolution when 

the target fitness is based on organisms’ developing trajectories, as the work herein. 

As shown in Equation 1, Lambda is determined by the ratio of sub-transitions in 

the developmental table that lead to the quiescent state over the total number of sub-

transitions in the regulatory table.  As such, λ takes into account only developmental 

rules that describe a cell death, i.e. one of the alive cell types becomes void. In other 

words, it does not consider other sub-transition groups (growth, differentiation, no-

change). Lambda can be considered a single sub-transition genome parameter. 

4.1 Genome Parameter Sub-Transitions 

Lambda parameter has been shown to be able to differentiate different developmental 



behaviors (transient, attractor and trajectory length) for boolean CAs [6, 9, 10] and 

with organisms with 3 cell types [7, 8]. When the number of possible cell states gets 

bigger, Lambda may not be able to capture genome properties related to transitions to 

the chosen quiescent states. This is due to the presence of a growing number of sub-

transition classes. Lambda’s meaning would then be loose and be interpreted just as 

one of the many sub-transition classes in the genome table. On the other hand, there 

exist many sub-transitions parameters that hold the same parameter distribution as 

Lambda. Such sub-transition parameters could be then composed to create a custom 

parameter that captures the same genome properties as Lambda does.  

5 Experimental Setup 

In the experiment herein the presented developmental model with organism size of 

4x4 cells is used. This leads to a theoretical maximum trajectory length and attractor 

length of 316 development steps. 

The genetic algorithm uses a population of 24 genotypes with elitism. The 8 worst 

individuals are replaced in each generation by newly generated offspring, selected 

through proportionate selection. Each two selected genotypes undergo one-point uni-

form crossover with probability 0.7 and mutation with probability 0.02 per gene. The 

genotype initial population is initialized with void genomes, i.e. all the transitions in 

the developmental table lead to the quiescent state. This means that the resulting phe-

notypes are the most unfit and difficult to evolve, i.e. dead organisms that end-up in a 

point attractor after a single development step. This is done to provide an even start-

ing point for comparison.  

In the standard GA (used as reference), the fitness is proportional to the developed 

trajectory length (the longer the fitter). In the GA that uses Lambda genome parame-

ter contribution in the fitness function, the combined fitness (CFitness) is calculated 

as follows: 

  (2) 

In Equation 2, the used ratio is 0.2 (1) and HiLambda represents the Lambda value 

where the longest trajectory length is more likely to be found (0.66 in our model), i.e. 

critical Lambda [6]. 

6 Genome Parameter to Guide Evolution 

In this first experiment, performances of a conventional genetic algorithm are com-

pared to a GA that encapsulates Lambda in the fitness function. The chosen trajectory 

length targets are set as 1000, 5000, 10000 and 15000 development steps (average 

over 1000 runs for target 1000, average over 20 runs for the other targets due to 

runtime). Results are shown in Figures from 3 to 6 respectively. In all the four consid-

                                                        
1   The ratio that gave best results for GA with λ in fitness from randomized genomes is 0.05. Otherwise 0.2 is used in all the plotted results. 



ered cases, the effect of Lambda in fitness is clearly visible. 

In Figure 3 the target trajectory length was set as 1000 development steps. The 

conventional GA performs better than the one with Lambda contribution in the fitness 

function for few generations. From generation 17 the effects of Lambda driving evo-

lution are more evident and the algorithm converges faster toward the target.  

 

GA Void genomes (plotted) Randomized genomes 

Reference GA 443,60 - 372,00 - 

Lambda fitness 365,62 -17,57%     351,33 
(1)

 -5,56% 

Table 1. Comparison of reference GA and GA with Lambda contribution in the fitness 

function. Target trajectory length is 1000 development steps. Avg over 1000 runs. 

Table 1 shows numerical results when trajectory length target is 1000 development 

steps. This is analyzed from two different initial conditions: void initialized genomes 

(all the transitions in the developmental table lead to the quiescent state and the or-

ganism are the most unfit, plotted in Figure 3) and randomly initialized genomes (not 

plotted here). From void genomes the reference GA needs 443,6 generations on aver-

age (over 1000 runs), whether Lambda parameter in the fitness function is 17,57% 

faster (unpaired 2-tail t-test, p<0,0001). From randomized genomes the latter is still 

5,56% faster, finding solutions in 351,33 generations on average compared to 372 

generations needed by the conventional GA (it is important to mention that the GA 

with Lambda in fitness with void initialization is even faster than the reference GA 

with randomized initialization). 

The same trend is shown in Figure 4, where the target was longer. Here the differ-

ence in convergence speed is more accentuated. Results in Figure 5 and 6 confirm that 

there is a point where the two lines cross each other. After that specific generation the 

algorithm with Lambda contribution converges faster than the conventional approach.  

It is clear that the ability of Lambda to detect longer trajectories in certain areas of the 

parameter space is beneficial when trajectory length is the target behavior. In all the 

presented scenarios, both approaches show an asymptotic tail towards 0 (minimum 

distance from target fitness). The difference is in the speed of convergence to the 

asymptotic target distance. Lambda in the fitness function is promising.  

As a side experiment, λ was used outside the fitness function with a conventional 

GA. In such experiment λ was used as a discard parameter where genomes were dis-

carded after selection if the parameter value was not matching a defined interval of 

acceptance. Here the results were not promising and in some cases the system was not 

evolvable. 

7 Genotype Sub-Transitions 

Lambda genome parameter measures sub-transitions in the genome developmental 

table that lead to the quiescent state.  Other sub-transitions are present in the genome 



 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 
 

table, i.e. growth, differentiation and no-change. Here it is investigated if other sub-

transition classes could replace Lambda in forecasting the emergent behavior, thus 

being able to be used in multi-cellular developmental systems with more cell types. In 

such case, Lambda may represent too few genotype properties, thus not being able to 

drive evolution. Moreover, several sub-transitions could be used together to compose 

custom parameterizations of the rule-space. 

Figure 7 shows an example of sub-transition classes’ activation patterns for a spe-

cific developed organism, successfully evolved in the previous set of experiments. 

Here each line represents one of the sub-transitions (growth in red, death in blue, 

differentiation in green and no-change in purple). The plot shows the number of cells 

that trigger a specific sub-transitions class in each development step. Pattern repeti-

Fig. 3. Comparison of reference GA and 

GA with Lambda contribution in the 

fitness function. Target trajectory length 

is 1000 development steps. Distance from 

target (y) over generations (x). Avg over 

1000 runs.  

 

Fig. 4. Comparison of reference GA and 

GA with Lambda contribution in the fit-

ness function. Target trajectory length is 

5000 development steps. Distance from 

target (y) over generations (x). Avg over 

20 runs. 

 

Fig. 5. Comparison of reference GA and 

GA with Lambda contribution in the 

fitness function. Target trajectory length 

is 10000 development steps. Distance 

from target (y) over generations (x). Avg 

over 20 runs. 

 

Fig. 6. Comparison of reference GA and 

GA with Lambda contribution in the 

fitness function. Target trajectory length 

is 15000 development steps. Distance 

from target (y) over generations (x). Avg 

over 20 runs. 

 



tions may indicate that an attractor has been reached or that same pattern repetition 

happens in different areas of the grid world where the organism is developed. This 

may indicate self-regulation based on topologic properties. The top-line (purple) 

shows activation of no-change sub-transitions, which is often the most used sub-class, 

whether growth (red) and death (blue) are often overlapping and seem to have a simi-

lar trend.  

 

Fig. 7. Sub-transitions (growth, death, differentiation, no-change) activation pattern (y) over the 
generations (x) for the given example organism. 

 

Fig. 8. Cumulative sum of sub-transitions activation pattern for the given example organism. 

Figure 8 plots the cumulative sub-transition usage during development, for the 

same given organism. It is clear that growth rules and death rules have to be balanced. 

This was observed with target trajectories of different lengths. Differentiation rules 

and no-change rules did not show any specific trend. 

Figure 9 plots developed trajectory lengths for 100000 randomly generated geno-

types. As such, the distribution of transition rules in the genotype is scrambled and 

distributed in the rule sub-transition space. In Figure 9 only death sub-transitions are 

considered. The plot shows a similar distribution to Lambda parameter, since the 

death sub-transitions capture the same genome properties as Lambda. Figure 10 plots 

the same organisms when the considered genome parameter is differentiation sub-

transitions. Here the relation between the considered sub-parameter and trajectory 

length is weaker and organisms are less concentrated around the critical parameter 

value. Same results were obtained for other sub-transition groups.  



 

Fig. 9. Death sub-transition parameter distribution (x) and resulting trajectory length measured 

as #development steps (y). 100000 organisms. 

 

Fig. 10. Differentiation sub-transition parameter distribution (x) and resulting trajectory length 

measured as #development steps (y). 100000 organisms. 

In Figure 11 a composed sub-parameter is considered, namely the difference be-

tween number of death and growth sub-transitions. It is evident that when growth and 

death rules are balanced it is possible to develop long trajectories (as the target in our 

experimental work). On the other hand, when those sub-transitions are not balanced, 

the organism produces a very short trajectory cycle. This information may be im-

portant at the design stage of an EvoDevo system, when Lambda is not able to charac-

terize the behavioral regime due to a larger number of available cell types. In such 

case, Lambda would be no more than one out of the many sub-transition groups, thus 

lacking a clear relation between trajectory length and the parameter space.  

Finally, Figure 12 shows a zoomed-in plot of the same 100000 generated organ-

isms in Figure 9, 10 and 11, where genomes with unbalanced death-growth difference 

develop short trajectories. In contrast, balanced rule-sets develop longer trajectories, 

being able to filter-out unfit genomes. That was not possible if only a single sub-

transition class was considered. It is important to highlight that Lambda is a single-

transition parameter. 



 

Fig. 11. Growth-Death sub-transition parameter distribution (x) and resulting trajectory length 

measured as #development steps (y). 100000 organisms. 

 

Fig. 12. Genomes unfiltered vs. genome filtered with growth-death sub-transition parameter. 

8 Conclusion 

The presented experiments investigated how to exploit genotype information of artifi-

cial cellular organism to guide evolution in favorable areas of the solution space, 

where the sought phenotypic behavior is more likely to be found. Genome infor-

mation has been used to calculate Lambda genome parameter. Such parameter was 

incorporated into the fitness function to speed-up convergence to the target trajectory, 

as shown in the plots in Figure 3, 4, 5 and 6, for different target trajectory lengths. 

Previous work [8] has shown that other parameters besides Lambda, e.g. Sensitivity 

[14], Mean Field Parameters [15], have similar abilities to forecast emergent behav-

iors. Thus, it may be interesting to extend the investigation and compare results ob-

tained with other parameters. 

The used genome representation allowed identifying genome sub-transitions other 

than those used to calculate Lambda (transitions to the quiescent state). The identified 

sub-transition groups (growth, differentiation, death, no-change) can be considered 

single transition parameters and thus used as Lambda. They can also be composed 

together to produce a multiple-transition genome parameter when Lambda may not be 

able to characterize the phenotype behavior due to increased number of cell types. In 



particular, death-growth transition difference has been shown to be well suited to 

identify artificial organisms that produce long trajectory, as in Figure 11, and filter out 

organisms with short trajectories, as shown in Figure 12. It may be interesting to in-

vestigate sub-transitions’ potential the same way as Lambda was used here.   

The approach used herein shows that exploiting genome information during evolu-

tion could increase the evolvability of the system, when there is an indirect genotype 

to phenotype mapping and fitness is a measure of phenotypic properties. 

As a future work, it may be possible to investigate the robustness of solutions 

evolved with a fitness measure based on both phenotype and genotype information. In 

particular, how fragile evolved organisms are to external perturbation, both at geno-

type level, i.e. mutations in the rule table, and at phenotype level, i.e. perturbation of 

the system state during development.  
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