
Executive Summary of the Thesis

Interruptible Remote Attestation via Performance Counters

Laurea Magistrale in Computer Engineering - Ingegneria Informatica

Author: Davide Li Calsi

Advisor: Prof. Vittorio Zaccaria

Academic year: 2022-2023

1. Introduction

Low-power Microcontrollers (MCU) are a set of
devices characterized by reduced cost, scarcity of
computational power, and little memory. They
also lack common hardware protections such as a
Memory Management Unit. Despite these limi-
tations, MCUs are widespread in several applica-
tive scenarios (such as Smart Objects, Health-
care Devices, and Smart Sensors), making their
security is a mandatory aspect. However their
constraints drastically increase the di�culty of
this task. In this struggle, Remote Attestation
(RA) [2] is a powerful ally. It is a challenge-

and-response protocol allowing an external en-
tity, the Veri�er, to verify the integrity of a
target device, the Prover (in our setting, the
MCU whose security is at stake). RA introduces
has an inherent limitation: interrupts must be
disabled during its execution. That is meant to
guarantee the Attestation's atomicity, and en-
sures that no agent modi�es the MCU's memory
to escape detection. In fact some roving mal-
ware could use interrupts to move to previously
attested memory, producing a misleading attes-
tation response. Some solutions exist, yet they
either provide modest detection probabilities or
are simply unfeasible for low-end devices. Our
work investigates innovative ways to perform in-
terruptible RA on low-end MCUs.

2. State of The Art

2.1. Remote Attestation

Several types of RA exist. The most basic pro-
tocol consists in the Veri�er sending a random
challenge to the Prover, usually in the form of a
nonce or a timestamp. The Veri�er then ex-
pects the Prover to compute some evidence of
its integrity using the challenge and its memory
content. For simplicity, we restrict the computa-
tion to Program Memory only, as attesting Data
Memory and Runtime Integrity is much more
challenging. The evidence can be a simple check-
sum, a digest or an HMAC. The randomness of
the challenge ensures that replay attacks are un-
feasible. Upon reception the Veri�er veri�es the
received evidence. This is possible because Pro-
gram Memory is assumed to be quite static, with
few known legitimate con�gurations. There-
fore the Veri�er can pre-compute evidences as-
sociated with benign con�gurations of the Pro-
gram Memory. Several variations and classi-
�cations were formulated in the last decade.
Software Attestation is run entirely via soft-
ware, and is generally less secure than other
forms. Hardware Attestation uses stronger
Hardware protections to secure the Attestation
Response. Finally Hybrid Attestation con-
sists of a hardware-software codesign made of
minimal hardware modi�cations that support

1



Executive summary Davide Li Calsi

software-based checks. You can also di�erenti-
ate based on what you attest. Static Attesta-
tion only attests Program Memory, while Dy-
namic Attestation also attests Runtime In-
tegrity and Data Memory. Recent developments
have also introduced Swarm Attestation, a
protocol that attests a group of devices faster
than point-to-point RA. Most protocols require
interrupts to be disabled during the execution
of the Attestation Routine (AR). This prevents
attackers from exploiting interrupts to modify
memory at runtime and escape detection. How-
ever interrupts are a key feature that ensures the
responsiveness of the device. It is never a good
idea to keep them disabled for too long. This
is especially true when dealing with real-time
applications. Motivated by these problems, re-
searchers have investigated techniques for inter-
ruptible RA.
SMARM [4] addresses the issue by attesting
memory in a pseudorandom order. The chal-
lenge also contains a seed s to determine a
pseudorandom permutation of memory blocks.
SMARM provides probabilistic guarantees de-
pending on the attacker's knowledge of the sys-
tem. The asymptotic detection probability, as-
suming malware �tting in s memory blocks and
knowing only how much memory still needs to
be attested, is 1 − e−s. For s = 1 this value
is around 63%. Malware knowing which mem-
ory blocks were already attested has a detection
probability of 1

n (n is the number of blocks).
Furthermore interrupts are only partially al-
lowed, since single block attestations still require
atomicity.
Memory Locks [5] guarantee safe interrupts by
locking memory. Locked memory is temporar-
ily read-only. Because write operations are for-
bidden, roving malware is successfully stopped.
The major shortcoming is that implementing
memory locks require an underlying microker-
nel. The authors themselves state that microker-
nels of this complexity are unfeasible for low-end
devices. This makes memory locks not applica-
ble to this class of MCUs.

2.2. Performance Counters for Mal-

ware Detection

Malware Detection is a broad research �eld.
Among all possible means, Performance Coun-
ters play a key role. They are hardware compo-

nents natively present in many modern architec-
tures. In practice, they comprise several hard-
ware registers that are incremented whenever
an event of interest occurs. Architectures often
count low-evel events such as branches taken,
CPI, cache hits/miss rates and so on. Their
original purpose is di�erent, either debugging or
pro�ling, but they can also be exploited for se-
curity purposes [1, 9]. The majority of mod-
ern methods consist in two phases: an o�ine
phase, in which you reproduce some attacks and
collect a dataset of counters to train a Binary
Classi�er; an online phase, in which you read
the available counters and feed them to the pre-
trained classi�er. Across the years researchers
have tested several classi�ers, such as Decision
Trees, SVM, K-NN and many others.

3. A new approach to Inter-

ruptible RA

We believe that it is possible to combine RA
and Counters-based Malware Detection to al-
low interrupts during the AR's execution. In
fact, even low-end devices possess Performance
Counters for debugging. By activating them be-
fore the AR's beginning and reading them at
its end, it is possible to determine whether rov-
ing malware has attempted to relocate or not.
The implicit assumption is that malicious relo-
cations signi�cantly di�er from legitimate appli-
cations, and Performance Counters allow to cap-
ture and measure this di�erence. The result is
trivially a counter vector c in which each en-
try c[i] stores the value of a counter monitoring
a speci�c event. Like most existing techniques,
our method requires a Binary Classi�er to pre-
dict whether a target counter vector is the re-
sult of benign or malicious activity. We also in-
vestigated the e�ectiveness of adding high-level
counters and feeding them to the classi�er as
well. While they add further complexity, due
to their de�nition and secure management, we
expect them to enhance the models' detection
rates. We call these high-level counters applica-
tive, while low-evel counters are labeled as ar-
chitectural.

2



Executive summary Davide Li Calsi

3.1. The target system's architecture

3.1.1 Uncontrollable Parameters

We start by analyzing the attacker and its char-
acteristics. We do this by introducing a �rst
class of parameters that determine the type of
attack. We call them uncontrollable because
they are out of our control. In fact, trivially we
cannot choose in advance which type of attack
our MCU is subject to. In this context, we fo-
cused on two such parameters: malware size,
simply the size in KB;malware type, i.e. tran-
sient or self-relocating. Transient malware
is a type of roving malware that self-overwrites
with benign content in order to escape detection.
Conversely, self-relocating malware moves to
a new location and writes benign code to its pre-
vious location. Both parameters are relevant be-
cause they determine the number of operations
required by a malicious relocation. It is reason-
able to assume that more operations lead to a
signi�cant di�erence between malicious and be-
nign counter vectors. Hence this should facili-
tate the classi�cation task.

3.1.2 Controllable Parameters

Controllable parameters characterize the ap-
plication running on the MCU. We call them
controllable because they are under the system
designer's control. However, it is important to
keep in mind that they are �xed : once the stake-
holders have chosen the type of application run-
ning on the MCU, we can hardly modify it.
These parameters are particularly relevant be-
cause of their impact on benign counter vectors
produced by the MCU. We de�ned two such
parameters: Entropy Level (or simply En-
tropy), measuring the unpredictability of benign
counter vectors; Activity Level (or simply Ac-
tivity), measuring how large the counters are on
average. Mathematically, Entropy is de�ned as
the entry-wise Shannon Entropy of the counters
vector

H[c] = [H(c[0]) ...H(c[n− 1]) ]

Similarly, the Activity is de�ned as the ex-
pected value of counter vectors E[c]. We argue
that Entropy is a meaningful parameter because
the more unpredictable the benign activity, the
harder it is for a Classi�er to learn it and distin-
guish from malicious relocations. Similarly, the

higher the MCU's Activity, the harder it is to
tell it apart from a large malware sample that is
relocating.

High
Entropy

High
Activity

Facial Recognition 
Lock e

Remote Sensor 
(High Frequency) 

b

Smart Lights
c

Smart Lock
d

Remote Sensor 
(Low Frequency) 

a

Autonomous Agents
on MCU 

f

Low
Activity

Low
Entropy

Remote Sensors periodically sample and broadcast some quantities at �xed
rates. At low sampling rates (a) they show low Activity and Entropy.

Higher rates (b) do not a�ect Entropy, but the Activity skyrockets. Smart
Lights (c) are simple remotely controlled lightbulbs. They typically do not

undergo intense Activity, but interacting with a user makes them
moderately unpredictable. Smart Locks (d) secure entrances, and can be
triggered via smartphone. They require intense computation, resulting in
high Activity. Entropy is also moderately high due to higher variability in
the types of events. Facial Recognition Locks (e)[10] are Smart Locks using

Machine Learning algorithms for Face Recognition. They sustain
demanding computation, resulting in massive Activity levels and slightly
higher Entropy. Finally MCUs implementing Autonomous Agents respond
to external environments in a complex manner. This implies on average

high Entropy and moderate-high Activity.

Figure 1: Example of real applications in the
Activity-Entropy space

3.1.3 Hyperparameters

Both Controllable and Uncontrollable parame-
ters concern the Prover. We now move on to
discuss the major Veri�er-side aspects. Our
method only a�ects the Veri�er by deploying a
Binary Classi�er on it. We therefore de�ne hy-
perparameters as those parameters that char-
acterize the Binary Classi�er. Although they
are also controllable (in a literary sense) we
consider them separately to highlight the fact
that they are not Prover-related. In practice by
Hyperparameters we mean all those preprocess-
ing techniques, enhancements and modi�cations
that decades of Machine Learning have devised.

3.2. Goals

Our approach is de�ned and evaluated with two
goals in mind. They are key drivers to the de-
sign of experiments aimed at validating the tech-
nique. The �rst goal G1 is to achieve an ade-
quate detection capability. In simpler terms,
we want our models to successfully tell apart
malicious activity from benign one. For a quan-
titative evaluation, we use the well-known eval-
uation metrics: Precision, Recall, F1 Score, Ac-

3



Executive summary Davide Li Calsi

curacy. Our primary focus is on Recall and F1
score, although we also monitored the other two
quantities for completeness. We are interested
in Recall over Precision because raising a false
alarm is a lot less dangerous than labelling a ma-
licious counter as benign. Instead we prefer F1
Score over Accuracy because it provides a good
estimate of the Classi�er's general performance,
and unlike Accuracy it is also reliable for im-
balanced datasets. This consideration is helpful
because our datasets are inherently imbalanced
due to the technical limitations of Flash Mem-
ories. The second goal G2 is to achieve G1 by
introducing an acceptable computational over-
head. The latter is dependant on the type of
counters that you monitor and the mechanisms
that you use for logging. The overhead is com-
puted w.r.t. the e�ective attestation time, i.e.
the time the AR would take to attest memory if
it was not interrupted.

4. Experimental Validation

4.1. Experimental Setup

We show the setup for our experiments aimed
at verifying whether G1 is attainable. Section

4.2.4 illustrates how we varied this setup to test
G2's attainability.

4.1.1 What to test? Why?

The answers are a natural consequence of Sec-
tion 3.2. We monitor our target metrics on a
subset of classi�ers. All G1-related experiments
investigate how the type of application running
on the MCU (actually its metaparameters) af-
fect the classi�cation task. We analyzed two
opposite extremes: using all counters vs drop-
ping applicative counters. The latter is due to
applicative counters being more demanding in
terms of performance (see Section 4.2.4). This
analysis was also complemented by a Feature
Importance analysis, which we do not report
here for sake of brevity. Finally, we are inter-
ested in understanding how the induced over-
head is in�uenced by the available hardware and
the type of counters that you choose.

4.1.2 Hardware/Software Setup

We evaluated our methodology on a
STM32L552ZEQ development board. It

incorporated a Cortex-M33 MCU with 512 KB
of Flash Memory and 256 KB of SRAM. Despite
its low price, it is endowed with ARM TrustZone
[8] protection. We relied on the Data Watch-
point and Trace (DWT) Unit to count low-level
events. This component o�ers 6 registers, each
counting a speci�c microarchitectural event.
We also monitored some high-level events,
which we will present in a few lines. From
a software standpoint, we implemented some
tasks managed by the FreeRTOS microkernel.
Tasks are in charge of mimicking the appli-
cation's behavior and stimulate architectural
counters. Each task stimulates one architectural
counter, by executing instructions that trigger
the corresponding events. However, they also
indirectly stimulate other counters, though with
minor impact. To each task we also associate
an applicative counter. More precisely, we log
each task iteration and store the total number
in a dedicated counter. Finally we added two
more tasks: one implementing the Attestation
Routine and a Malicious Task in charge of
emulating malicious activity.

4.1.3 Tested Classi�ers

Testing every existing Classi�er is obviously un-
feasible. Thus we selected three models for our
experiments: Logistic Regression (LR), Decision
Tree (DT), and Support Vector Machine (SVM).
Logistic Regression is a simple yet powerful
generalized linear model. In spite of its linearity,
using an appropriate feature expansion of the in-
puts allows to consider even non-linear relations.
Decision Trees are used worldwide, and past
works already showed their e�ectiveness in clas-
sifying Performance Counters for Malware De-
tection. SVM too showed its e�ectiveness in
Malware Detection tasks, and it provides the re-
markable bene�t of considering complex features
at little extra cost.

4.1.4 Handling Metaparameters

To validate our method in a broad range
of settings, we tested several con�gurations
of Entropy and Activity. The full space of
these parameters is very large, so we sam-
pled 16 con�gurations of the form (a, e) ∈
{VERY_LOW,LOW,MEDIUM,HIGH}2. Each
of these labels represents concrete values of Ac-

4



Executive summary Davide Li Calsi

tivity and Entropy. This mapping is achieved
by modeling the applicative tasks' iterations as
discrete random variables with a uniform dis-
tribution U(x, y). We de�ned 16 tuples (x, y),
one for each (a, e) con�guration. We then tuned
the (x, y) tuples to establish a partial ordering
among Entropies and Activities. Once a con�gu-
ration of Activity and Entropy levels was �xed,
we ran several Attestation Routines. Some of
them were interrupted by benign code only, oth-
ers were subject to a malicious relocation. Be-
cause we want a Classi�er that is able to de-
tect a broad range of attacks, relocations were
run by picking random Uncontrollable Param-
eters. While there are only two types of rov-
ing malware (transient and self-relocating), the
space of malware sizes is quite large. We se-
lected a reasonable subset based on researches in
public malware repositories. After some prelim-
inary results with high performance metrics, we
reduced the tesed-sizes range to [2KB, 16KB].
This was meant to thoroughly stress our method
and possibly highlight its limits.

4.1.5 Overhead Estimation Setup

The setup for Overhead Estimation was slightly
di�erent. We neglected both Controllable and
Uncontrollable parameters, as the overhead is
independent of them. We also activate the ARM
TrustZone protection and ran the AR in the Se-
cure World. This is meant to simulate a real-life
deployment context in which hardware protec-
tion is required.

4.2. Experimental Results

This section presents our experimental results.
We omit the Recall for the sake of brevity. How-
ever, since Recall showed a behavior that is quite
similar to F1 Score, this is not a signi�cant loss.

4.2.1 Full Set of Counters

Figure 2 shows the F1 Score in every Activity-
Entropy con�guration. Using the full set of
counters shows promising results. DT has
decent performance, despite being the worst-
performing model. LR and SVM achieve high
F1 and Recall scores, with SVM showing excel-
lent results. The high scores obtained by SVM
are likely caused by the high frequency of the
applicative events that we log. This represents

an extreme case, and we do not expect the aver-
age set of applicative events to provide detection
rates just as high.

VERY_LOW LOW MED. HIGH
Entropy

VERY_LOW

LOW

MED.

HIGH

Ac
tiv

ity

0.932 0.951 0.971 0.968

0.743 0.969 0.978 0.987

0.995 0.995 0.752 0.995

0.989 0.996 0.987 0.982

F1 of LR

VERY_LOW LOW MED. HIGH
Entropy

Ac
tiv

ity

0.97 0.955 0.953 0.943

0.954 0.816 0.879 0.867

0.832 0.749 0.751 0.827

0.676 0.741 0.628 0.755

F1 of DT

VERY_LOW LOW MED. HIGH
Entropy

Ac
tiv

ity

1.0 1.0 1.0 0.999

1.0 1.0 1.0 1.0

0.997 1.0 0.99 0.995

1.0 0.999 0.998 0.986

F1 of SVM

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: F1 score in every Metaparameter Con-
�guration

4.2.2 Architectural Counters Only

After dropping applicative counters we obtain
the scores in Figure 3. LR undergoes massive
performance degradation. SVM is still a robust
model, though it loses quite a bit in some chal-
lenging con�gurations. Finally DT is not sig-
ni�cantly a�ected by dropping applicative coun-
ters. This setting represents yet another extreme
case, but dual w.r.t. the previous one (that is,
the case of applicative events occurring at fre-
quency 0 Hz). We chose to show both extremes
to provide a sort of upper and lower bounds to
realistic detection power.

VERY_LOW LOW MED. HIGH
Entropy

VERY_LOW

LOW

MED.

HIGH

Ac
tiv

ity

0.926 0.938 0.88 0.863

0.639 0.591 0.361 0.549

0.233 0.126 0.194 0.122

0.116 0.076 0.125 0.169

F1 of LR

VERY_LOW LOW MED. HIGH
Entropy

Ac
tiv

ity

0.978 0.97 0.965 0.945

0.952 0.824 0.888 0.862

0.842 0.746 0.758 0.821

0.688 0.747 0.635 0.748

F1 of DT

VERY_LOW LOW MED. HIGH
Entropy

Ac
tiv

ity

0.986 0.997 0.987 0.991

0.932 0.923 0.922 0.882

0.89 0.761 0.662 0.865

0.693 0.787 0.595 0.772

F1 of SVM

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: F1 score after dropping Applicative
Counters

4.2.3 Enhancements

The performance degradation of LR and SVM
when you drop architectural counters is quite
unpleasant. Therefore we searched for possible
enhancements to improve those situations. In
fact, as reasoning on overhead shows, achieving
satisfactory detection rates using only architec-
tural counters is the ideal situation. Among
all the tested techniques, spherical Box-Cox
transformations [3] provide great improvement
at little computational cost. Figure 4 shows
the improvements obtained on LR. SVM also
showed non-negligible improvements,though not

5



Executive summary Davide Li Calsi

as sharp as LR. Labels of the form (λ, s) in each
cell indicate that for that con�guration the best
test score s was the result of applying a trans-
formation with hyperparameter λ.

VERY_LOW LOW MEDIUM HIGH
Entropy

VERY_LOW

LOW

MEDIUM

HIGH

Ac
tiv

ity

(0.3, 0.91) (1.7, 1.0) (0.5, 0.89) (0.1, 0.89)

(0.3, 0.88) (0.5, 0.5) (0.3, 0.89) (0.3, 0.9)

(0.3, 0.85) (0.5, 0.46) (0.3, 0.51) (0.3, 0.9)

(0.7, 0.56) (0.7, 0.48) (0.5, 0.59) (0.7, 0.54)

f1 of Logistic, Cross Validation Score

VERY_LOW LOW MEDIUM HIGH
Entropy

Ac
tiv

ity
(0.3, 0.98) (1.7, 0.93) (0.5, 0.98) (0.1, 0.89)

(0.3, 0.94) (0.5, 0.67) (0.3, 0.92) (0.3, 0.89)

(0.3, 0.84) (0.5, 0.72) (0.3, 0.67) (0.3, 0.82)

(0.7, 0.67) (0.7, 0.69) (0.5, 0.55) (0.7, 0.67)

f1 of Logistic, Test Score

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Validation (left) and Test (right) F1
score of LR using Box-Cox transformations

4.2.4 Overhead

Our primary focus is on Prover-side overhead.
This is in line with the scienti�c literature on
RA, which often assumes unbounded computa-
tional power for the Veri�er. The best-case sce-
nario is that in which you are able to achieve
G1 with architectural counters only. We mea-
sured the corresponding overhead and plotted
the measured results in Figure 5.

0 2 4 6 8 10 12 14
Memory size [32 kB]

0.314

0.316

0.318

0.320

0.322

0.324

Ov
er

he
ad

 [%
]

OVH_TZone_ArchCounters

Figure 5: Experimental overhead using Archi-
tectural counters only. Sizes in the x-axis are
represented as multiples of 32 KB

The overhead is very low and tends to zero as
the attested memory size increases. This is a
consequence of the fact that architectural coun-
ters are updated via hardware, and the only ex-
tra software operations are few writes and reads
to activate, read and reset counters. Note that
all these operations are performed in constant
time. Some architectures might be subject to
performance degradation due to over�ow. In
fact, some counters are implemented by regis-
ters with few bits, requiring to manually up-
date the real counters' values on over�ow. How-
ever in practice we have always witnessed that

32 bits are enough to avoid this issue. Finally,
the most adversarial situation is that in which
you need Applicative Counters to enhance the
model's performance. A precise estimation of
the overhead induced by applicative counters is
a complex task that is beyond this work's scope.
This is due to the several sets of events that
you can choose to monitor. Intuitively, if one
is able to achieve G1 by logging events that on
average occur at low frequency, the overhead ex-
periences a signi�cant but acceptable increase.
If instead you need high-frequency events, it is
likely that the overhead becomes too cumber-
some. By searching real-life use-cases [6, 7, 11],
we found a decent number of examples charac-
terized by low-frequency real life events. The
latter prove that despite everything, using ap-
plicative counters can be a viable option at least
for a non-negligible subset of practical use-cases.

5. Conclusions

We claim we achieved G1. The tested models
showed high detection capabilities overall. Our
experiments also prove that applicative coun-
ters are extremely bene�cial, especially for Lo-
gistic Regression and SVM. Decision Trees are
instead not particularly relying on them. Ev-
idence shows that even if you lose some accu-
racy by dropping applicative counters, some en-
hancements can compensate for that. Specif-
ically, Box-Cox transformations showed to be
an easy and convenient method for that pur-
pose. Despite causing possibly severe losses in
detection power, using only architectural leads
to low overhead. The latter increases when you
introduce applicative counters. Logging low-
frequency applicative events is likely to intro-
duce moderate performance degradation. How-
ever, if you require high-frequency events to
achieve G1, performance is likely to become un-
acceptable. This represents a possible limit of
our approach. Overall, we noticed the emer-
gence of a detection-overhead tradeo�. Log-
ging high-frequency applicative events provides
more detailed information for the Binary Classi-
�er. However, at the same time this increases
the computational overhead. Conversely, us-
ing low-frequency applicative events introduces
smaller overhead, but might jeopardize the Clas-
si�er's performance. In real-life applications we
recommend logging several events of interest at

6



Executive summary Davide Li Calsi

various frequencies, and managing this tradeo�
by selecting the event set that best suits your
requirements.

6. Acknowledgements

To my family, for their constant struggle and
sacri�ces for my education and independence.
To those friends and beloved ones who have mo-
tivated me in the darkest times.
To Professor Zaccaria, for his guidance, and for
showing me the beauty of Scienti�c Research.
To my other Mentors, for inspiring me to pursue
my dreams.
Thank you.

References

[1] Mohammad Bagher Bahador, Mahdi
Abadi, and Asghar Tajoddin. HPCMal-
Hunter: Behavioral malware detection
using hardware performance counters and
singular value decomposition. In 2014 4th

International Conference on Computer and

Knowledge Engineering (ICCKE), pages
703�708, 2014.

[2] Alexander Sprogø Banks, Marek Kisiel, and
Philip Korsholm. Remote Attestation: A
Literature Review, 2021.

[3] Manuele Bicego and Sisto Baldo. Properties
of the Box�Cox transformation for pattern
classi�cation. Neurocomputing, 218:390�
400, 2016.

[4] Xavier Carpent, Norrathep Rat-
tanavipanon, and Gene Tsudik. Remote
attestation of IoT devices via SMARM:
shu�ed measurements against roving
malware. In 2018 IEEE International

Symposium on Hardware Oriented Security

and Trust (HOST), pages 9�16, 2018.

[5] Ivan De Oliveira Nunes, Karim Elde-
frawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. VRASED: a veri-
�ed hardware/software co-design for remote
attestation. In 28th USENIX Security Sym-

posium, 07 2019.

[6] Roberto López-Blanco, Miguel A. Velasco,
Antonio Méndez-Guerrero, Juan Pablo
Romero, María Dolores del Castillo, J. Ig-
nacio Serrano, Eduardo Rocon, and Julián

Benito-León. Smartwatch for the analysis of
rest tremor in patients with Parkinson's dis-
ease. Journal of the Neurological Sciences,
401:37�42, 2019.

[7] Paci�c Marine Enviromental Laboratory
OCS: Ocean Climate Station. Sampling
rates in a weather monitor. https://www.

pmel.noaa.gov/ocs/sampling-rates.

[8] Sandro Pinto and Nuno Santos. Demystify-
ing ARM TrustZone: A comprehensive sur-
vey. ACM Computing Surveys, 51:1�36, 01
2019.

[9] Martin Rosso, Joost Renes, Nikita
Veshchikov, Eduardo Alvarenga, and
Jerry den Hartog. Actionable malware
classi�cation in embedded environments
using hardware performance counters. In
SPACE 2021: Eleventh International Con-

ference on Security, Privacy and Applied

Cryptographic Engineering, SPACE 2021

; Conference date: 10-12-2021 Through

13-12-2021, December 2021.

[10] ST-Microelectronics. Arti�cial intel-
ligence (AI) face recognition func-
tion pack for STM32Cube. https:

//www.st.com/en/embedded-software/

fp-ai-facerec.html.

[11] Xueyi Wang, Joshua Ellul, and George Az-
zopardi. Elderly fall detection systems: A
literature survey. Frontiers in robotics and

ai, 7, June 2020.

7

https://www.pmel.noaa.gov/ocs/sampling-rates
https://www.pmel.noaa.gov/ocs/sampling-rates
https://www.st.com/en/embedded-software/fp-ai-facerec.html
https://www.st.com/en/embedded-software/fp-ai-facerec.html
https://www.st.com/en/embedded-software/fp-ai-facerec.html

	Introduction
	State of The Art
	Remote Attestation
	Performance Counters for Malware Detection

	A new approach to Interruptible RA
	The target system's architecture
	Uncontrollable Parameters
	Controllable Parameters
	Hyperparameters

	Goals

	Experimental Validation
	Experimental Setup
	What to test? Why?
	Hardware/Software Setup
	Tested Classifiers
	Handling Metaparameters
	Overhead Estimation Setup

	Experimental Results
	Full Set of Counters
	Architectural Counters Only
	Enhancements
	Overhead


	Conclusions
	Acknowledgements

