
POLITECNICO DI MILANO

Facoltà di Ingegneria dell’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

AN APPROACH FOR ENERGY EFFICIENT
CO-SCHEDULING OF PARALLEL
APPLICATIONS ON MULTI-CORE

PLATFORMS

Autore:

Simone LIBUTTI

matr. 755283

Relatore: Correlatori:

Prof. William Fornaciari Dott. Ing. Giuseppe Massari

Ing. Patrick Bellasi

Anno Accademico 2012-2013

Any acknowledgments?

I do not think so.1

Legnano, July 2013

1But I would like to express my sincere footnote gratitude to Giuseppe. He footnotely deserves it.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

Contents

1 Introduction 3

1.1 From single to multiple cores . 3

1.2 Applications co-scheduling on multi-core processors 4

1.2.1 Resource utilization aware co-scheduling 5

1.2.2 Prior art . 6

1.3 Objectives of this thesis work . 9

1.4 Organization of the thesis . 10

2 The BarbequeRTRM Framework 13

2.1 Overview . 13

2.2 Reconfigurable applications . 15

2.3 YaMS: a multi-objective scheduler . 17

2.3.1 Resource binding domains . 18

2.3.2 Scheduling contributions . 19

2.3.3 The algorithm . 23

2.4 Our proposal . 25

3 CoWs: Co-scheduling Workloads 27

3.1 Resource-aware co-scheduling . 27

3.1.1 Performance counters exploitation 29

3.1.2 Application profile: CPU-bound versus memory-bound . . . 35

3.1.3 Functional units balance . 37

3.2 Extending YaMS with CoWs support 37

3.2.1 Resource binding algorithm . 40

3.3 Methodology . 44

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

ii CONTENTS

3.3.1 Application working modes (AWMs) characterization 46

3.3.2 Performance counters statistics 48

3.3.3 Scheduler training . 49

3.3.4 Workload results evaluation . 51

4 Experimental Results 53

4.1 Analysed multi-core based systems . 53

4.1.1 Single multi-core processor . 54

4.1.2 Multiple multi-core processors 55

4.2 Methodology exploitation . 56

4.2.1 Application working modes characterization 57

4.2.2 Performance counters statistics 62

4.2.3 Scheduler training . 64

4.3 Run-time scenarios . 66

4.3.1 Single multi-core processor . 68

4.3.2 Multiple multi-core processors 70

5 Conclusions 73

5.1 Achieved results . 73

5.1.1 Co-scheduling workloads in a resource-aware perspective . . 74

5.1.2 CoWs integration application flow 76

5.2 Future developments . 76

5.2.1 Migration and reconfiguration vs optimal co-scheduling . . . 77

5.2.2 From training to learning . 79

A Tools 81

A.1 Performance counters sampling with RTLib 81

A.2 MOST: a tool for design space exploration 83

A.3 LIKWID: Lightweight performance tools 86

6 Estratto in lingua italiana 91

6.1 Da core singolo a multi-core . 91

6.2 Co-scheduling di applicazioni su processori multi-core 92

6.2.1 Co-scheduling basato sull’utilizzo di risorse 93

6.2.2 Co-scheduler basati sull’utilizzo di risorse negli ultimi anni . 94

6.3 Obiettivi del lavoro di tesi . 98

6.4 Organizzazione della tesi . 99

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

LIST OF TABLES iii

List of Tables

2.1 BarbequeRTRM: functions to implement in order to integrate an ap-

plication . 17

2.2 YaMS: currently supported metrics . 20

3.1 Candidate performance counters groups 31

3.2 Candidate memory related counters 31

3.3 Candidate stalls related counters . 32

3.4 Candidate instructions related counters 32

3.5 Candidate floating point operations related counters 32

3.6 Correlation between selected counters and power consumption . . . 35

4.1 Intel Core i7-2670QM CPU information 55

4.2 AMD Opteron 8378 CPU information 57

5.1 Our contributions . 74

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

LIST OF FIGURES v

List of Figures

2.1 BarbequeRTRM framework . 14

2.2 Application recipe, containing different AWMs 16

2.3 Application execution flow . 18

2.4 Logical partitioning of the resources 19

2.5 YaMS multi-objective AWM evaluation 21

2.6 YaMS scheduler behaviour . 24

3.1 Intel i7 processor socket graphical representation 28

3.2 Intel i7 processor viewed as combination of a unmanaged device and

a three-BDs managed device . 29

3.3 Sampled performance counters and power consumption for PAR-

SEC benchmark applications. Values are normalized to 1. 34

3.4 CoWs scheduler behaviour . 40

3.5 Application development, integration and evaluation flow. 45

3.6 MOST - BarbequeRTRM integration schema. 47

3.7 Interaction between the tools during weights training. 50

4.1 Intel i7 resource partition . 55

4.2 AMD NUMA resource partition . 56

4.3 Bodytrack: DSE for 50% CPU usage case 58

4.4 Bodytrack: DSE for 100% CPU usage case 59

4.5 Bodytrack: DSE for 150% CPU usage case 59

4.6 Bodytrack: DSE for 200% CPU usage case 60

4.7 Ferret: DSE for 50% CPU usage case 60

4.8 Ferret: DSE for 100% CPU usage case 61

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

LIST OF FIGURES 1

4.9 Ferret: DSE for 150% CPU usage case 61

4.10 Ferret: DSE for 200% CPU usage case 62

4.11 Influence of CPU quotas on bodytrack and ferret execution time 62

4.12 Normalized resource utilization statistics versus CPU quota 64

4.13 Ferret recipe, showing the 200% CPU quota AWM 65

4.14 EDP results for the three workloads 67

4.15 Average EDP results for the weights test 67

4.16 Intel case: Gains with respect to Linux case, with and without CoWs

support . 69

4.17 Intel case: Managed device temperature with and without CoWs

support, with respect to Linux case . 70

4.18 AMD NUMA: average EDP results for the weights test 71

4.19 AMD NUMA case: Gains with respect to Linux case, with and with-

out CoWs support . 72

5.1 Results of CoWs support with or without migration and reconfigura-

tion encouraging, with respect to the Linux case 78

A.1 MOST architecture . 85

A.2 MOST simplified behaviour . 86

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

Chapter 1
Introduction

Today the majority of computing devices exploits multi-core processors. The con-

cept is now a consolidated one; in 2001 the first general purpose processor featuring

multiple processing cores on the same CMOS die was released: the POWER4 pro-

cessor of IBM [12]. It exploited two cores on a single die, which had never been seen

among non-embedded processors. Since then, multi-core processors have quickly

replaced single-core ones on the market. That is not strange indeed, since exploiting

more cores has become one of the few effective ways to achieve good speed-ups,

having the rate of clock speed improvements slowed after decades of aggressive

rising [4].

1.1 From single to multiple cores

Exploiting multiple cores on the same die leads to numerous advantages. For ex-

ample, circuitry sharing leads to savings in terms of circuit area and allows the com-

panies to create products with lower risk of design error than devising a new wider

core design. Moreover avoiding signals to travel off-chip lessen signal degradation,

allows the cache-coherence circuitry to operate at higher frequencies (snooping cir-

cuitry, for example, can operate much faster), and reduces power consumption. In

fact, both avoiding rooting signals off-chip and exploiting several small cores in-

stead of a several-time bigger monolithic core leads to lower energy consumption

[15]. This is a very important feature given the recent trends toward mobile and

embedded computing. The increasing number of cores, unfortunately, has lead to

serious problems. As for CPU clock speed in single core processors, the number

or cores in multi-core processors cannot reach arbitrary high values. For instance,

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4 Introduction

exploiting too much cores on the same die leads to communication congestions and

elevate power consumption. In recent years, the trend is moving from multi-core to

many-core devices. The idea is to exploit a high number of symmetric low-power

and performing processing elements (PEs) connected by a network-on-chip (NoC).

NoC provides an infrastructure for better modularity, scalability, fault-tolerance,

and higher bandwidth compared to traditional infrastructures. From now on, with

the term processor we will refer to either a multi-core or many-core processor, ex-

ploiting more than one PE.

1.2 Applications co-scheduling on multi-core processors

The advancements in processor technology mentioned above have opened new

and interesting scenarios; one of these is the study of the concept of co-scheduling,

introduced in 1982 by J. K. Ousterhout [16], now more actual than ever. Hav-

ing multiple PEs at disposal (or even more, in the case of many-core processors),

the concept of scheduler has evolved to the concept of co-scheduler. While the

main goal of a scheduler is to perform multitasking (execute more than one pro-

cess at a time) and multiplexing (transmit multiple flows simultaneously), a co-

scheduler aims to schedule in parallel different tasks on given sets of resources.

While lots of effort had been placed in parallel programming and resource man-

agement, few effective solutions had been proposed regarding resource utilization

aware co-scheduling heuristics and algorithms. That using a random co-scheduling

approach would be in general a sub-optimal solution is obvious; every application

has different characteristics in terms of resource utilization, so scheduling two ap-

plications on the same PE is not a priori an intelligent choice. It depends, essentially,

on which applications we are scheduling. Unfortunately, determine which applica-

tions will run on the same PE is not the only issue; a large part of today’s operating

systems schedulers treat each PE of a processor as a distinct device. This is not

necessarily true, because there are interdependencies among the PEs. For instance,

it could be thought that two memory-intensive applications should not run on the

same PE. But what if we schedule them on different PEs sharing a significant part

of the cache hierarchy? It would anyway lead to contention, which would slow

down the execution of the applications and induce inefficient use of energy, since

cores stalling due to resource contention dissipate power without making any real

progress. Memory hierarchies are not always shared among all the PEs; in complex

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

1.2 Applications co-scheduling on multi-core processors 5

systems such as non uniform memory access devices (NUMAs), each group of pro-

cessing elements (node) has a private memory, giving the opportunity to avoid the

problem mentioned above. Unfortunately, the issue persists: being the number of

nodes limited by technology and scalability issues, even when running light work-

loads we can not schedule each application on a different node. However, we can

co-schedule applications on the nodes in a way that minimizes performance losses.

A number of additional causes of contention can be found; in a certain way, what a

scheduler should achieve is not only a fair allocation of resources, viewed as a set

of distinct PEs of the applications. It should aim to fairly distribute applications’

resource utilization considering the impact on the functional units of the processor.

1.2.1 Resource utilization aware co-scheduling

As mentioned in Sec. 1.2 on page 4, the co-scheduling problem is about scheduling

m applications on n PEs, with m greater than n. Looking at the modern multi-core

processors, each PE is not completely isolated from the others; each of them shares

certain resources with a number of other PEs. The main problem in the manage-

ment of processing resources is certainly related to the cache hierarchy. Running

concurrently n applications characterized by the same execution time on n PEs, the

theoretical expected speed-up would amount to n in comparison with the case of

a serial execution on a single PE. In our case, however, PEs are not independent;

sharing a portion of the cache hierarchy, we have levels of cache where a certain

number of tasks concurrently read and write data, conditioning the respective per-

formance. Reading data from a shared cache is evidently a problematic activity; let

us think about a totally fair sharing of a cache: if a cache is shared among n PEs,

each PE ”effectively exploits” only 1/n of the cache. This virtual reduction of the

cache size leads - as the reader can certainly guess - to a massive raise of cache miss

ratio. With the term cache miss we refer to the situation when a task tries to read

or write a piece of memory in the cache, but the attempt fails. In this cases, to exe-

cute the action the main memory has to be accessed, which has a very long latency.

What about co-scheduling two applications on the same PE? This scenario is even

more complex than the previous one; in fact, in this case the performance degrada-

tion induced by shared caches could lead to scenarios where both the applications

are stalled waiting for data and the PE wastes cycles, with negative effects on both

performance and power consumption. This problem, indeed, comes along the one

mentioned above: the resulting performance degradation, in certain cases, could

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

6 Introduction

even discourage concurrent execution, because speed-ups would be too low with

respect of the number of PEs exploited by the system.

How is possible to minimize performance losses caused by resource sharing?

These losses are typically workload dependant, being correlated to the character-

istics of the single applications. In the last years, a number of solutions regard-

ing resource-utilization aware co-scheduling had been proposed, which are briefly

shown in the next section. These solutions are often based on the concept of preven-

tive training phase; this term refers to the phase, at design time, when applications

information is collected and analysed. Thus, having at disposal resource utilization

information about the applications, a scheduler can perform optimal scheduling

choices at runtime.

1.2.2 Prior art

In [9], a rather old but interesting work, an approach is proposed that does not re-

quire a training phase. Their approach is based on the identification, at runtime,

of groups of activities characterized by high mutual interaction. The idea is that

applications which frequently access to the same area of data - thus sharing the

data - are probably characterized by strong mutual interactions. Here the man-

aged resources amount to a single-core processor but the article shows how, even

twenty years ago, the idea of paying attention on which groups of applications

were to be co-scheduled together (in this case, co-scheduled in the same slice of

time) to reduce performance losses was present in literature. Another interesting

work focuses on bus utilization to better co-schedule applications in symmetric

multiprocessors systems (SMPs)1. This approach, proposed by [5], aims to reduce

bottlenecks caused by system bus congestion. They demonstrate that, exploiting

thread bandwidth request information collected during design time, the scheduler

can avoid bus overuse, thus reducing performance degradations running heavy

workloads. The scheduler is validated running two different benchmarks: the for-

mer is characterized by heavy bus utilization, the latter by very light bus utilization.

The experimental platform is a dedicated 4-processor SMP with Hyperthreaded In-

tel Xeon processors, clocked at 1.4 GHz. It is equipped with 1 GB of main memory

and each processor has 256 KB of L2 cache. The system bus of the machine run at

400MHz. The operating system is Linux, kernel version 2.4.20. Their approach lead

1Here we refer to an architecture composed of two or more identical processors connected to a

single shared main memory. Communication is based on system bus or crossbar.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

1.2 Applications co-scheduling on multi-core processors 7

to a maximum throughput increment of 26% with respect to the standard Linux

scheduler. Bus bandwidth utilization information is collected using performance

counters, which is the main approach in these works. One could wonder which

counters are best-suited to be exploiting during the schedule phase; in [8] sev-

eral performance counters are analysed, trying to answer to this question. Their

study, carried out on a system exploiting two dual-threaded processors, is centred

on a comparison between four schedulers: RFUS scheduler (register file utilization

scheduling), RFCS scheduler (register file conflict scheduling), DCCS scheduler

(data cache conflict scheduling), IPCS scheduler (IPC-based scheduling), and RIRS

scheduler (ready in-flight ratio scheduling). Each of these schedulers exploits dif-

ferent performance counters to characterize the applications and compute the opti-

mal scheduling choice. Running heterogeneous workload mixes, they demonstrate

that the maximum performance losses of RIRS amounts to 2%, while it reaches

10%, 13%, 11% and 14% with DCCS, RFUS, RFCS, IPCS respectively. Thus, general

information as the number of ready and in-flight instructions resulted much more

consistent than first level cache misses and register file utilization.

In [13], the focus has shifted to memory utilization. Here two important con-

cepts are introduced: first of all, running several benchmarks from SPEC CPU 2006

benchmark with a modified Linux scheduler, they show that co-scheduling appli-

cations characterized by different memory usage can lead to performance and en-

ergy efficiency improvements. Second, they choose energy-delay product (EDP)

as evaluation metric for their scheduler. Their extension of Linux 2.6.16 kernel

to allow memory-utilization aware scheduling granted a maximum EDP reduc-

tion of 10% with respect to the standard Linux scenario, using an IBM xSeries 445

eight-way multiprocessor system (eight Pentium 4 Xeon Gallatin processors with

2.2 GHz each processor). The system consists of two NUMA nodes with four two-

way multi-threaded processors on each node. The choice of the EDP metric to

evaluate the scheduler is important because [11] shows that EDP is a relatively im-

plementation neutral metric that causes the improvements that contribute the most

to both performance and energy efficiency to stand out. In other words, using EDP

we have at disposal a single metric which characterize both performance and en-

ergy efficiency.

The works mentioned above aim to demonstrate that certain resource usage

statistics are well suited to be taken into account during the co-scheduling phase.

The major weakness of these works is that they take into account only one type of

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

8 Introduction

resource; each work demonstrates that the others are not taking into account re-

sources whose overuse had been proven to be cause of performance degradation

and higher power consumption. To respond to this issue, in [14] the concept of task

activity vector is introduced. An activity vector describes to what degree a running

task utilizes various processor-related resources. The dimension of this vector is

equal to the number of resources we want to consider. Each component of the vec-

tor denotes the degree of utilization of a corresponding resource. The goal of their

scheduler is to co-schedule applications so that each resource in the system is used

by applications having very different usage ratios on that resource. Doing so, for

example, two applications which are characterized by a high degree of utilization

of a certain resource would not be co-scheduled on the same PE. To investigate the

effects of resource contention and frequency selection, they choose a 2.4GHz In-

tel Core2 Quad Q6600 processor. When suitable combinations of tasks can not be

found, contention is mitigated by frequency scaling. This allows to achieve up to

21% EDP saving across various applications from SPEC CPU 2006 benchmarks.

In the last years, several approach have been proposed. In our opinion, how-

ever, there are still important issues to resolve:

o Real implementations are not always provided. In fact, validation is often

performed with the aid of simulators.

o None of the works featuring a real implementation is portable. New schedul-

ing policies are implemented with the aid of modified Linux kernels.

o The only work which takes into account arbitrary amounts of resources to

compute possible co-scheduling combinations does not provide a method

to evaluate which resources are the best suited to be modelled; additionally,

users cannot define which resources are the most important to monitor dur-

ing co-scheduling phase, nor can find out if any of them needs actually to be

valued more than the others.

o Architecture-dependant information is often required for training and evalu-

ation purposes (e.g. processor floorplans).

o A complete and standardized flow spanning from application characteristics

collection to energy efficiency/performance improvements evaluation is not

provided.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

1.3 Objectives of this thesis work 9

Currently, the literature lacks the design of a scheduling policy taking into ac-

count multiple resources which the user can effectively prove to be highly corre-

lated with power consumption and performance. This approach should be char-

acterized by portability and adaptability on any multi-core device. Moreover an

entire flow is needed, spanning from application characteristics collection to per-

formance/energy efficiency improvements evaluation to guide the user through

the training phase and the execution of workloads on a real system.

1.3 Objectives of this thesis work

The goal of this work is to prove that a smart resource utilization aware co-sche-

duling policy can lead to a wide variety of benefits, such as performance speed-

ups, energy efficiency improvements, reduction of thermal hotspots. The policy

has been designed and implemented as an extension of one of the policies ex-

ploited by the BarbequeRTRM [7], a highly modular, extensible and portable run-

time resource manager developed at DEIB - Politecnico di Milano - under the con-

text of the European Project 2PARMA [17] which provide support for management

of multiple applications competing on the usage of one (or more) shared MIMD

many-core computation devices. We prove that, focusing not only on which are the

best tasks to schedule but also on how to co-schedule them, further improvements

in performance and energy efficiency can be achieved with respect to the current

BarbequeRTRM case. We validate the policy, codename CoWs. (CO-scheduling

WorkloadS), on two different platforms: the first one featuring a 2nd Generation

Intel Core i7 Quad-core Processor (eight cores with hyper-treading), the second a

NUMA device featuring four AMD 10h Family Opteron 8378 Quad-core proces-

sors with distinct cache hierarchies. The validation is based on the comparison

of energy-delay product of different workload scenarios in Linux, the resources

being managed by Linux standard scheduler, BarbequeRTRM framework, Barbe-

queRTRM framework with CoWs support. The benchmark used for the validation

is the PARSEC benchmark v.2.1 from Princeton University [19]. We also design a

standard flow which drives the user through application creation and design space

exploration, training phase, scheduler optimization with respect to the user work-

load and EDP evaluation.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

10 Introduction

1.4 Organization of the thesis

In Chapter 2 the BarbequeRTRM framework will be introduced. A high-level

view of the framework will aid the reader to better understand the advantages

offered by this resource manager, ad why it is a good starting point to apply our

co-scheduling theories. The policy which we will extend, codename YaMS, will be

introduced. Its main concepts explanation will be followed by an analysis of its

weak spots in terms of resource utilization aware co-scheduling, and the first basic

ideas on how an extension to this policy can bring benefits on performance and

energy efficiency will be introduced.

In Chapter 3 the concept of resource utilization aware co-scheduling will be de-

fined, focusing on which application characteristics one should exploit in order to

achieve an efficient scheduling. An analysis of architectural and non-architectural

events will lead to the selection of the counters which are best-suited to our pur-

poses. Then CoWs scheduler will be designed, pointing out its interaction with the

BarbequeRTRM framework. The entire flow from application creation to results

evaluation will be defined, along with the role of all the tools exploited.

In Chapter 4 the implementation will be validated, focusing on each phase of the

work and on the interaction among the different tools exploited to collect resource

utilization information. This chapter will also guide the reader from the creation of

an application to its scheduling on the PEs, passing through the integration with the

BarbequeRTRM framework and the resource-usage information collection. Then,

the results will be discussed. We will see how the BarbequeRTRM framework can

achieve better results in resource management than the standard Linux scheduler,

and how CoWs support is able to improve energy efficiency and performance on

even higher levels.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

1.4 Organization of the thesis 11

In Chapter 5 We will discuss why CoWs policy is able to achieve such results,

and what could be done in the future to further improve its performance.

In appendix A The main tools exploited during our work will be introduced,

along with the main advantages we gained using them during our work.

In Chapter 6 an abstract in Italian language is provided.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

Chapter 2
The BarbequeRTRM Framework

Given the recent trend toward many-core devices, resource utilization has become

an important research area. As mentioned in Chap. 1 on page 3, this devices could

be thought of as general purpose GPUs composed by increasing numbers of sym-

metric processors. Exploiting single instruction multiple data (SIMD) program-

ming model, this processors are able to execute the same code, concurrently, on

huge amounts of data. Having lots of resources at disposal, as mentioned above,

one feels the increasing need to get help for resource managing and allocation, pro-

vision of QoS and similar services and so on. This is, from a very high level point

of view, the goal of a resource manager. The next section will introduce the Barbe-

queRTRM framework, a resource manager by Politecnico di Milano.

2.1 Overview

The BarbequeRTRM is a framework being developed at DEIB - Politecnico di Mi-

lano - under the context of the European Project 2PARMA [17] and it has been

partially funded by the EC under the FP7-ICT-248716-2PARMA grant. It features

an highly modular and extensible run-time resource manager which provide sup-

port for an easy integration and management of multiple applications competing

on the usage of one (or more) multi-core processors and shared MIMD many-core

computation devices. Among its numerous features, it provides:

o Support for pluggable policies for both resource scheduling and the manage-

ment of applications coordination and reconfiguration.

o Automatic application instrumentation to support Design-Space-Exploration

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

14 The BarbequeRTRM Framework

(DSE) techniques.

o Easy porting of the framework on different platforms and integration with

specific execution environments such as the Android run-time. This is pro-

vided by the framework design itself, consisting in platform abstraction lay-

ers, built on top of Linux kernel interfaces (see Fig. 2.1).

o Easy coding of resource management policies which support an optimized

assignment of resources to demanding applications considering;

– Application properties (e.g. priorities, requirements, operating modes).

– Resources availability and state (e.g. power and thermal conditions).

– Tunable run-time optimization goals (e.g. power reduction, energy op-

timization, performance maximization).

Figure 2.1: BarbequeRTRM framework

Th BarbequeRTRM runtime is the core of the framework: a layer masking the

Linux kernel, the runtime is the key for portability of and comprehends the re-

source manager and the scheduler policies. A suitable library, RTLib, provides to

the application the interface towards the resource manager, with support for pro-

filing and Design Space Exploration (DSE). Aim of this framework is to manage

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

2.2 Reconfigurable applications 15

resources granting fairness of the resources allocated to the applications, achiev-

ing in the meanwhile the desired quality of service and leading to performance

improvements and energy efficiency executing critical applications. The intended

usage of the framework is to execute critical applications on a managed device.

The framework itself is executed on a set of resources called host device, along with

the unmanaged applications, that is, the applications which are not managed by the

resource manager. The managed device, which is an external device or a system par-

tition isolated from the host one, is exploited to run only the managed reconfigurable

applications.

2.2 Reconfigurable applications

A key concept that the framework aims to exploit is related to the reconfigurable

applications. The idea is that an application can be reconfigured during runtime,

choosing among one of its possible execution configurations to execute. These con-

figurations, which are user defined, are characterized by different resources usage

(currently memory and CPU usage), thus providing different levels of performance

and quality of service and granting the application the capability to be executed in

a wide range of scenarios and possible system loads. To facilitate the development

of run-time reconfigurable applications, the RTLib provides an Abstract Execution

Model (AEM). The AEM ”embeds” the execution flow of the managed applications

in a way that let the BarbequeRTRM to manage their life-cycle. The structure of

an application is split in one or more Execution Contexts (EXC), which can be de-

fined as ”schedulable tasks”. Having more EXC in the same application can come

from the need of schedule parts of the application with different priorities and re-

source usages. This is made possible associating many execution modes to each

EXC. This modes, called application working modes (AWMs), define all the pos-

sible configurations of the application in terms of CPU and memory usage. Thus,

an application can be run (”cooked”) in many different ways. The AWM choice is

based on the current system status, the application needs in terms of QoS, and so

on. The application AMWs are placed in a container, called recipe (see Fig. 2.2).

The priority levels for the managed applications are in [0, n], where a priority level

amounting to zero is exploited to characterize critical applications, while a priority

level in [1,n] denotes a best-effort application, that is, an application without strict

and critical requirements.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

16 The BarbequeRTRM Framework

Figure 2.2: Application recipe, containing different AWMs

To integrate a BarbequeRTRM-managed reconfigurable application is quite easy.

The application must define its execution contexts (EXCs) as intstances of a C++

class derived from a specific C++ base class provided by the RTLib, i.e., Bbque-

EXC. For each EXC a recipe, that is, the XML file describing the AWMs, must be

provided. The BbqueEXC class has five private methods to implement, which are

described in Tab. 2.1.

Once these functions have been implemented, the EXC are registered and the

application is integrated with the framework. Fig. 2.3 shows the application exe-

cution flow. After the setup phase, the application is configured and run. It there

are no resources to allocate to the application, it is suspended. At the end of the

processing, if the application has finished release method is called. Else, monitor

method computes QoS and application specific objectives to provide a feedback

on the current AWM performance. This feedback will be exploited during the nex

workload processing phase to help AWM selection.

After this simple and abstract introduction of the framework, the reader should

have achieved a general idea of its main concepts. In the next section, YaMS sched-

uler will be introduced. For more information on the framework itself, consult the

project website [7].

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

2.3 YaMS: a multi-objective scheduler 17

onSetup() Function to be implemented with initialization

and thread creation stuff.

onConfigure() Called when a AWM has been assigned for the

first time, or a change of AWM has been

necessary. Here must be placed the code to

setup the execution of the next runs, taking

into account the set of resources related to

the AWM.

onRun() This is the entry point of our task. Here

must be implemented the code to execute a

computational run. It is very important each

run would last some tens, or at maximum a few

hundreds of milliseconds, in order to make

the task interruptible with a "reasonable"

time granularity. This would prevent the

application from being killed by the RTRM.

onSuspend() There are no resources for the EXC. Its

execution must be stopped. Here should

be coded whatever is needed to leave the

application in a safe state.

onMonitor() After a computational run, the application may

check whether the level of QoS is acceptable or

not. In the second case, some action could be

taken.

Table 2.1: BarbequeRTRM: functions to implement in order to integrate an application

2.3 YaMS: a multi-objective scheduler

YaMS is a modular multi-objective scheduler designed and implemented as a plug-

in module of BarbequeRTRM. The resources available to the system are split into

sets called binding domains (BDs); once partitioned the system resources into BDs,

the goal of this scheduler is to bind the applications to the BDs. For each priority,

a list of the ready applications’ possible bindings is created. Its size, obviously,

amounts to the number of BDs times the number of AWMs related to the ready

applications at the current priority (see Eq. (2.1) on page 17). Strictly speaking, for

all priorities, for all applications, all AWMs are to be evaluated on all the BDs.

sizeo f (bindings(priority p)) = sizeo f (BDs list) ∗ sizeo f (AWMs(p)) (2.1)

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

18 The BarbequeRTRM Framework

Figure 2.3: Application execution flow

The binding, that is, the atomic unit under analysis is the single couple [AWM -

BD], meaning a particular AWM if bound on a certain BD.

2.3.1 Resource binding domains

Let us further clarify the concept of resource binding domain, which from now on will

be referred to with the term binding domain, or BD: BarbequeRTRM provides logi-

cal partitioning of the resources. The partition layout is arbitrarily decided by the

user, according to his particular needs; for example, a managed device consisting

of 16 CPUs can be divided in 4 BDs, 16 BDs, or even divided asymmetrically into

heterogeneous-sized BDs (see Fig. 2.4). In any case the scheduler’s job is to decide,

for each application ready to run, which BD should it be allocated on.

Inside the list containing all the AWMs of the ready applications at the same

priority, the optimization process takes place. The optimization is, strictly speak-

ing, an imposition of relative priorities in the list. Every application has multiple

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

2.3 YaMS: a multi-objective scheduler 19

Figure 2.4: Logical partitioning of the resources

AWMs present in the list and, obviously, only one will be chosen. So, AWMs must

be ordered by importance. The evaluation is performed taking into account multi-

ple goals. The set of goals, easily extendible, currently features the metrics shown

in Tab. 2.2

Each combination [AWM,BD] is evaluated taking into account the above men-

tioned goals (see Fig. 2.5). Then, the AWMs of the current priority are ordered by

the value obtained by the evaluation and scheduled on the resources. Obviously,

AWMs related to a scheduled application (that is, an AWM referring to the same

application has already been scheduled) are skipped.

2.3.2 Scheduling contributions

Optimization performed by YaMS takes into account bound AWMs which, by def-

inition, are AWMs associated with a BD. As mentioned in Chap. 1 on page 3, this is

the key concept in co-scheduling: migrating from a pure time model to a time-space

model. Evaluating an AMW not per se, but in association with a location in the re-

source set is a great idea, following the concept previously delineated. The problem

is: is it really a resource-aware approach? Let analyse the single contributions of

the scheduling policy.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

20 The BarbequeRTRM Framework

AWM value An user-defined value. It represents the

importance of this AWM only among its

competitors in the related application recipe

(in other words, among the AWMs related to the

same instance of the application).

Reconfiguration Represents the time overheads to reconfigure an

already running application (if any) from its

current AWM to this AWM.

Fairness Represents the degree of fairness of this

AWM. For instance, rewarding a heavy

resource-demanding AWM when there are currently

several applications ready to run would not be

a fair choice.

Migration As mentioned above, each AWM is evaluated on

each BD. Similar to reconfiguration metric,

it represents the time overheads to migrate an

already running application (if any) from its

current BD to this BD.

Congestion Represents the congestion contribution of an

AWM-BD choice. The goal is to balance the load

among the different binding domains.

Table 2.2: YaMS: currently supported metrics
Main features

2.3.2.1 AWM value

AWM Value is an application dependant metric. That is not a flaw, since giving a

resource aware-flavour to a policy is not about avoiding all references to pure appli-

cation dependant values. In fact, being able to value an application above another

regardless of its placement in the system is often crucial. This value, though, is def-

initely not exploitable from a pure resource-aware point of view, being it capable

to discriminate an AWM importance only among the AWMs contained in the same

recipe. To be more clear, the AWM value is an indication of how much an AWM

is desirable from the user point of view. So, AWMs of two distinct applications or

of two instances of the same application cannot be confronted in term of value. In

fact, the metric is exploited to characterize performance or QoS (or whatever is the

metric chosen by the user) of an AWM with respect to the other AWMs contained

in the same recipe.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

2.3 YaMS: a multi-objective scheduler 21

Figure 2.5: YaMS multi-objective AWM evaluation

2.3.2.2 Reconfiguration overhead

This contribution is one of the many hindrances to a resource-aware policy. Often,

better configurations than the current running one are rejected due to reconfigura-

tion penalties. In any case, one can not avoid to take this goal into account. Rather,

a good balance between theoretical reconfiguration benefits and reconfiguration

penalties is to be found, and this is exactly what YaMS does. The only problem

is the definition of the concept of benefit; in this case, we should think about it in

terms of ”union of the other goals”. As we will show in this section, the other goals

are not fully able to characterize resource usage of applications. This lead to a sub-

optimal usage of this metric: the balance,Main features in this case, is more about

reconfiguration penalties versus theoretical speed-up and system load balancing

improvement induced by that reconfiguration.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

22 The BarbequeRTRM Framework

2.3.2.3 Fairness

Fairness metric represents the degree of fairness of this AWM. This is an important

and required metric, and it relates more to resource management than to resource-

aware scheduling. The system has the duty to give a fair amount of resources

to application characterized by a certain level of priority. So, this metric is not

a significant one from our point of view, but but nevertheless crucial to a good

quality scheduling.

2.3.2.4 Migration overheads

This is a metric that, from our point of view, is strongly similar to reconfiguration.

Application reconfiguring and migrating are means to react to certain environmen-

tal changes. The application is reconfigured in its current BD or moved to another

BD because something happened, and this led to an environment variation that

caused this operations to be taken into account. However, migration metric Main

features is somewhat more important from our point of view, since the main goal of

a co-scheduler is to compute where (which BD, in this case) an application should

be run. So, deciding whether to migrate an application to a more convenient BD

or not is a crucial question. This is indeed the most interesting metric regarding

resource aware co-scheduling among the ones currently exploited by YaMS. Unfor-

tunately, the main goal of a resource-aware scheduler is not deciding whether to

migrate an application or not, it is deciding where to migrate the application to. So,

this metric is not a meaningful one to characterize resource utilization features of

an application.

2.3.2.5 Resource congestion

As mentioned in Chap. 1 on page 3, schedulers tend often to treat each PE of a pro-

cessor as a distinct device, and this is absolutely the case. This metric is exploited

to achieve load balancing, trying not to overload a BD. The problem, here, is that

the applications are viewed as atomic objects. Could an application be ”heavier”

than another under a certain point of view? Running two instances of an applica-

tion A on the same BD is equal to run an instance of A and an instance of another

application B, even if the two applications require the same resources? This is what

we want to characterize, and from our point of view this metric is not a great help.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

2.3 YaMS: a multi-objective scheduler 23

2.3.3 The algorithm

From a very general point of view, YaMS scheduler’s behaviour is summarized as

follows:

o For the priority level currently under analysis, the list of ready applications is

considered.

o For each application, the set of AWMs is evaluated, considering at the same

time the binding of the resources against every BD defined in the managed

device. Therefore, the evaluation is performed for each binding (e.g. each

[AWM, BD] pair), by computing a metric as a result of the combination of

the following contributions:

– AWM base value.

– Reconfiguration overheads due to an AWM change.

– Fairness index of the assignment of AWM requested resources taking

into account current system load.

– Overhead in migrating the application among BDs.

– Congestion impact of the binding choice on the binding domain itself.

o AWM list is ordered by the metric computed in the previous step.

o Applications are scheduled one by one according to the binding with the high-

est metrics, skipping those already scheduled having competitors in earlier

positions in the list.

o Continue with the ready applications of the next (lower) priority level.

The process explained above, which is shown in Fig. 2.6, has a main limita-

tion: the selection of the best AWM is not separated from the selection of the best

AWM placement. This causes the list to explode: in a x-BD-sized managed device, co-

scheduling y applications (for simpleness sake, at the same priority) with z AWM

each causes the evaluation of x ∗ y ∗ z bindings. The effectively selected bindings

will evidently be, in the best case, y (being y the number of applications to sched-

ule). In the quite frequent case where the first AWM occurrence for each applica-

tion is selected (earlier AWMs, in reality, may be skipped due to full resources),

x ∗ z bindings are useless.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

24 The BarbequeRTRM Framework

Figure 2.6: YaMS scheduler behaviour

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

2.4 Our proposal 25

2.4 Our proposal

In this chapter we have outlined the strong points of the BarbequeRTRM frame-

work and of YaMS, its multi-objective modMain featuresular scheduler. Results

show that this resource manager is indeed valid and innovative [6]. Unfortunately,

we have seen how resource-aware co-scheduling is only partially taken into ac-

count in the scheduling of application. To prove our thesis, that is, the fact that

resource utilization aware co-scheduling is needed in these systems to further im-

prove performance and energy efficiency, our goal will be to design and imple-

ment an extension of YaMS to give a resource-aware flavour able to bring benefits

in terms of performance and energy efficiency in the execution of parallel appli-

cations on multi-core processors. We refer to this policy with the acronym CoWs,

which stands for CO-scheduling WorkloadS. At this point, however, an actual imple-

mentation seems not to be enough. These managed devices are often exploited,

especially but not only in the case of many-core devices, to run specific jobs with

specific quality, time and many other requirements. While best effort applications

can be run with relatively little concern of their requirements, critical applications

have typically strict requirements but, most of all, are known. So, we can manage

to perform a training phase time during which extracting resource usage and other

useful information from the applications to be run. The design and implementation

of CoWs will come along the description of an entire flow that consists of:

o Application creation, as described in Sec. 2.2 on page 15

o Design space exploration:

– Resource utilization statistics extraction

– Best configurations computing - AWM creation

o Scheduler parameters calibration with the desired workloads

o Evaluation of execution time and energy efficiency

Most of these activities will exploit the BarbequeRTRM framework even to col-

lect statistics. Others will make use of external tools, which be introduced in Ap-

pendix A on page 81. Before the introduction to these tools, Chap. 3 on page 27

will present a study on what resource utilization statistics were chosen to represent

application characteristics, and why.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

Chapter 3
CoWs: Co-scheduling Workloads

In the first part of this chapter a theoretic study of the effects of co-scheduling

choices on performance will be presented. After that, we will focus on determin-

ing which statistics are best suited to effectively characterize resource utilization

of an application. In the second part of the chapter, CoWs scheduler will be de-

signed along with the flow which guides the application developer from design

space exploration to EDP evaluation. The design of the policy will be delineated.

We will describe how to choose the best binding domain for an application with a

set of associated statistics. We will describe how YaMS scheduler will be extended

to support resource-aware co-scheduling.

3.1 Resource-aware co-scheduling

Let us redefine the concept of binding domain (BD). It should be considered as a

group of processing elements that share one or more levels of the memory cache

hierarchy. For example the Intel i7 processor, that is one of the processors we tested

the scheduler on, has four cores. Each core executes two threads (hyper-threading)

and features private L1 and L2 caches. The L3 cache is shared among all the cores

(see Fig. 3.1). A natural choice, here, is to select the single group [double-threaded

core, L1, L2] as a binding domain. So, this group of resources consists in a core

which can provide up to 200% CPU usage and a double-level cache hierarchy dis-

tinct from the other BDs. This lead to a new concept, as the reader may have just

guessed: the concept of relative last level cache (R-LLC). In fact, choosing BDs such

as these, each core sees its L2 cache as last level cache. From now on, when talk-

ing about LLC information of a BD, we will refer to its R-LLC. In the case of Intel

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

28 CoWs: Co-scheduling Workloads

i7 processor, so, we have a total of four BDs. However, only three of them are

really available. The reader should take in mind that the BarbequeRTRM is a re-

source manager. Generally, the framework is executed on the system processor

and manages a set of external resources such as hardware accelerators or general

purpose GPUs. In our case, the system is partitioned so that BarbequeRTRM runs

on the first two hardware threads, actually managing the remaining three bind-

ing domains (see Fig. 3.2). To be more clear the BarbequeRTRM framework, in

this configuration, operates so that the first BD is reserved for the execution of the

framework itself and the unmanaged applications. Reconfigurable applications, that is,

the ones we need to manage in a very efficient way, are scheduled on the three-BDs

managed device.

Figure 3.1: Intel i7 processor socket graphical representation

Once partitioned our managed device as a union of independent binding do-

mains, two goals to achieve:

o Minimization of performance losses due to co-scheduling applications on the

same BD.

o Allocation of expected functional units utilization so that the device is ex-

ploited in a fair way.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.1 Resource-aware co-scheduling 29

Figure 3.2: Intel i7 processor viewed as combination of a unmanaged device and a three-

BDs managed device

3.1.1 Performance counters exploitation

As mentioned in Sec. 1.2.2 on page 6, applications’ resource utilization statistics are

sampled with the aid of performance counters, which are a set of special-purpose

registers built into modern microprocessors to store the counts of hardware-related

activities within computer systems. In order to extract information from an ap-

plication execution we must select a number of performance counters to sample.

For reader’s sake, a few words about the aim of this phase must be spent. We are

not trying to understand what type of application configuration (memory and CPU

quota available to the application, parallelism level and so on) guarantees the best

performance. By extending YaMS scheduler adding resource-utilization compu-

tation, it must be understood that we will have at disposal a list of user-defined

AWMs, and or goal will be the computation of the best co-scheduling in terms of

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

30 CoWs: Co-scheduling Workloads

energy efficiency and minimal performance loss. So, we are not checking whether

a certain resource utilization ratio has impacts on the best execution time of an ap-

plication, but to find out if a certain resource utilization ratio could be related to

energy consumption (in order to characterize energy efficiency) and performance

degradation of applications co-scheduled on the same BD. The real effort will be

put on the former problem. In fact, the latter is an already known and resolved

one. As shown in [13] and [14], performance degradation is highly correlated to

the number of last level cache misses (LLCM) of an application. In fact, LLCM penal-

ties are very long and cause heavy performance losses, especially in the case of

multiple memory-bound applications seeing the same cache hierarchy. The reader

could wonder if the number of misses on the smallest cache in the hierarchy, the L1

cache, could be as informative as LLCM. This is another already-known question.

In fact, [8] demonstrates that L1 cache misses are an inconsistent metric if used

to make co-scheduling decisions. So, chosen LLCM metric for performance losses

evaluation, we will now concentrate on the energy consumption issue.

The first step to determine the best performance counters to sample during an

application execution to characterize power consumption and/or functional units

utilization (the most important aspects from our point of view) is to compile a list

of suitable - and available - counters. Thus, our primary goal is to compute the

correlation between these counters and the power consumption of our applications.

Additionally, we ask that these counters cover a large amount of resources. In

fact, we want at least a counter for memory utilization, one for the stalls, one for

instructions, and one specific counter for floating point operations (see Tab. 3.1).

The test is performed on a 2nd Generation Intel Core i7 Quad-core Processor

(eight cores with hyper-treading). According to this processor developer’s manual

[1] and to [10], a list of suitable performance counters to evaluate was selected (see

Tab. 3.2 to Tab. 3.5).

At this point, we chose the most representative performance counters among

the ones listed above. The aim, here, is to maximize the coverage of the perfor-

mance counters. We certainly can not afford to keep track, at runtime, of high

numbers of counters; so, we elected to chose a limited set of counters able to char-

acterize as much resources and founts of contention as possible. In the Memory

operations group, we selected last level cache misses, which we need to characterize

the memory boundedness of the applications. For the Stalls group, resources stalls is

evidently the most suited counter to represent wide amounts of stalls (and resource

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.1 Resource-aware co-scheduling 31

Group Related information

Memory

utilization

Represents memory bottlenecks, number of

transitions from and to memory, memory

boundedness of an application

Stalls Performance bottlenecks covering various

resources, e.g. OOO buffer, physical registers

stalls, RAT stalls ecc.

Instructions Retired/issued instructions and

micro-operations, to characterize the real

frequency of an application, its length in

terms of executed instructions, the percentage

of "heavy" instructions

Floating point

operations

Floating point operations are among the most

slow and energy consuming ALU operations.

Table 3.1: Candidate performance counters groups

Counter Description

MEM UOPS RET Qualify any retired memory uops.

LLCM Last level cache misses.

MEM LOADS RET Counts the number of instructions with an

architecturally visible load retired on the

architected path.

MEM STORES RET Counts the number of instructions with an

architecturally visible store retired on the

architected path.

Table 3.2: Candidate memory related counters

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

32 CoWs: Co-scheduling Workloads

Counter Description

ILS STALLS Instruction Length Decoder is stalled.

RES STALLS It counts the number of Allocator resource

related stalls. For example, stalls from

register renaming buffer entries, memory buffer

entries.

In addition to resource related stalls, this

event counts some other events. Includes

stalls arising during branch misprediction

recovery, such as if retirement of the

mispredicted branch is delayed and stalls

arising while store buffer is draining from

synchronizing operations.

RAT STALLS Counts all Register Allocation Table stall

cycles due to: Cycles when ROB read port

stalls occurred, which did not allow new

micro-ops to enter the execution pipe. Cycles

when partial register stalls occurred Cycles

when flag stalls occurred Cycles floating-point

unit (FPU) status word stalls occurred.

UOPS STALLS DEC Counts the cycles of decoder stalls.

Table 3.3: Candidate stalls related counters

Counter Description

UOPS ISD Issued micro-operations.

UOPS RET Retired micro-operations.

INSTR RET Retired instructions.

Table 3.4: Candidate instructions related counters

Counter Description

FP EXE SSE Counts number of SSE FP packed uops executed.

FP EXE X87 Counts number of X87 uops executed.

Table 3.5: Candidate floating point operations related counters

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.1 Resource-aware co-scheduling 33

utilization) sources. In the Floating operations group, we chose fp exe x87, that is, the

number of x87 floating point operations executed. In fact, SSE operations counter is

architecture-specific (SSE is a SIMD instruction set extension to the x86 architecture,

exploited in Intel CPUs). The Instructions group does not contain counters that can

be immediately chosen, so we will chose them after the correlation computation.

Retired instructions would be surely preferable, being it architectural-independent,

but we need to evaluate the difference with the other Instructions group counters

in terms of correlation with power consumption. In fact, it is not easy to say a pri-

ori if the number of micro-operations is more or less expressive than the number

of operations alone. Preferring instructions count statistics over micro-operations

statistics could lead to possible losses in terms of accuracy. From the results of the

computation we will also discover if the already selected counters are well fit to

characterize our application’s power consumption.

Performance counters are measured with the aid of Likwid (see Sec. A.3 on

page 86) and perf [21], running all the ten PARSEC benchmark applications (see fig

Fig. 3.3). This is important, because one can not afford to perform a study centred

only on the benchmarks that will be tested during validation phase. During this

study, we need to characterize the correlation between counters and power con-

sumption for a wide range of applications, each radically different from the others.

Here follow the list of the applications, along with a brief explanation of the type

of operations they perform.

o Blackscholes - Option pricing with Black-Scholes Partial Differential Equation

(PDE).

o Bodytrack - Body tracking of a person.

o Facesim - Simulates the motions of a human face.

o Ferret - Content similarity search server.

o Fluidanimate - Fluid dynamics for animation purposes with Smoothed.

o Freqmine - Frequent itemset mining.

o Raytrace - Real-time raytracing.

o Swaptions - Pricing of a portfolio of swaptions.

o Vips - Image processing.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

34 CoWs: Co-scheduling Workloads

o X264 - H.264 video encoding.

Figure 3.3: Sampled performance counters and power consumption for PARSEC

benchmark applications. Values are normalized to 1.

Correlations, computed for each 10-sized vector using Spearman’s rank corre-

lation method, are shown in Tab. 3.6. Take in mind that highly correlated metrics

are characterized by ρ value tending to 1, while highly uncorrelated one are char-

acterized by ρ value tending to −1.

The results show that the selected counters are correlated with power consump-

tion, and so are exploitable to achieve our goals. As expected, the best counters

in terms of correlation are the ones from Instructions group. We decided to chose

retired instructions counter for two reasons: first of all, the number of retired instruc-

tions can give us a hint on the real frequency at which an application is running,

and various useful derived statistics for performance evaluation (e.g. CPI). Second,

retired instructions - like fp exe x87 - is not architecture dependant. Being it similar

to the other instructions counters in terms of correlation, it has to be preferred over

the others.

One could wonder why, among the counters we analysed, we did not include

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.1 Resource-aware co-scheduling 35

Counter ρ[−1; 1]

llcm ∼ 0.3

res stalls ∼ 0.6

instr ret > 0.9

uops issued > 0.9

uops ret > 0.9

fp exe x87 ∼ 0.4

Table 3.6: Correlation between selected counters and power consumption

the ones directly related to communication congestion. The answer is simple: being

this aspect widely covered by the counters of Memory and Stalls groups, we elected

not to include it in our study.

Performing this study, we have pointed out how the total number of stalls, re-

tired instructions, x87 floating point operations and last level cache misses are able

to:

o Characterize application profile (i.e. CPU-bound or memory-bound).

o Cover a great part of performance/energy related resources, having us cho-

sen coverage as a main metric to determine which counters to select.

o Characterize energy efficiency due to good degrees of correlation with energy

consumption.

The selected performance counters will be exploited to represent the fu unbalance

of the system functional units and, in the case of last level cache misses, the bound mix

of a scheduling.

3.1.2 Application profile: CPU-bound versus memory-bound

To minimize performance losses induced by co-scheduling, we must choose the

right applications to co-schedule on a BD. Thus, this particular goal is a BD-local

one. Performance degradation caused by the execution of two application on the

same BD can be formalized - in any case, from our purposes - as stated in equation

Eq. (3.1) on page 35 where a1 and a2 are two applications, maxruntime(a1, a2) is the

execution time of the longest application.

Degra1∧a2 = runtime(a1 ∧ a2)−maxruntime(a1, a2) (3.1)

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

36 CoWs: Co-scheduling Workloads

Note that, obviously, if we eliminate the losses the runtime we expect is the run-

time of the longest application. Being losses mainly caused by memory contention

(and being such contention unavoidable) we need to try masking a1 stalls with a2

execution, and vice-versa. The problem is that we can not effectively know when,

during the execution of a generic workload, an application will be characterized by

high (or low) amounts of memory stalls; co-scheduling applications with the same

stalls ratio wishing that they stall at different times is unthinkable. So, we decided

to operate a one-way masking: let a1 be an application characterized by high mem-

ory stalls average ratio (and so referred to as memory-bound application). To mask its

memory stalls, what we want is to schedule an application a2 that, conversely, is

characterized by low memory stalls ratio. The application a2 will fully benefit from

this configuration, because it will exploit almost all the time while a1 is stalled,

being a2 not to often stalled itself. One can not always provide two ready applica-

tions, one being heavily memory bound and the other being not memory bound, to

be co-scheduled on a BD. However, what we can do is to chose the best couple a1, a2

so that the memory boundedness difference between them is the maximum avail-

able among the ready applications. In this way, BDs will contain, at the same time,

the lowest performance-degradation-inducing application couple. Following the

above mentioned line of thought and generalizing it with arbitrary amounts of ap-

plications, our proposal to evaluate the bound mix - in terms of performance losses

mitigation - of the co-scheduling of n applications on the same binding domain is

represented in Eq. (3.2) on page 36, where the constant mem bound(ai) represents

the memory stalls ratio of application i, expressed as number of R-LLC misses per

cycle.

bound mix(a1 ∧ ...∧ an−1) = var(mem bound(a1), ..., mem bound(an−1)) (3.2)

High variances means high differences between the boundedness values of the

applications co-scheduled on the same binding domain.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.2 Extending YaMS with CoWs support 37

3.1.3 Functional units balance

Achieving energy efficiency is also a matter of resource balancing and bottlenecks

avoidance. The practice formalized in Par. 3.1.2 on page 35 may certainly be enough

to reduce energy consumption, but what about inducing a fair functional units uti-

lization? This has a number of well-known effects; for example, spreading func-

tional units utilization evenly through the entire system leads to energy consump-

tion and wearing effects balancing among the cores, reduces temperature hotspots

with positive effects to mean time to failure [18], and helps avoiding other minor

causes of stalls further reducing - in our opinion - performance losses in the case

of co-scheduled workloads. In this case, the goal evidently refers to a system-wide

view of the allocated usage of the functional units; our aim should be to spread

all utilization ratios evenly among the BDs. Thus, the ideal case would be the one

where every BD of the managed device ”receives” the same retired instructions, float-

ing operations, stalls ratios. As above, this is generally not possible. However, we

can try to schedule our applications so that the usage ratios allocated on each BD

are reasonably even with the ones allocated on the other BDs. The functional units

unbalance of a co-scheduling choice regarding a workload to be allocated on a de-

vice composed of n BDs is definable as shown in Eq. (3.3) on page 37, where s is

the current scheduling choice, f u is the functional unit under analysis, avg(i, BDj)

is the average resource ratio for unit i allocated on BD j.

f u unbalance(s, f u) = var(avg(f u, BD1), ..., avg(f u, BDn−1)) (3.3)

Here, conversely to the previous case, the goal is to achieve low variances. Uti-

lization ratios have to be always as close to the global average value as possible.

3.2 Extending YaMS with CoWs support

Our proposal, explained in detail in the next section, is the partition of the policy in

two parts: in the former, a computation to select the best AWMs evaluated in them-

selves is performed. In the latter, the best binding for every item of the ordered list

is computed. In this manner, for example, if an AWM needs to be skipped because

the related application has already been scheduled, no time is spent to evaluate

its bindings. Moreover, from the first step we receive a list of the best perform-

ing AWMs. It is our duty, in the second phase, to chose how to co-schedule these

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

38 CoWs: Co-scheduling Workloads

applications, according to the chosen binding, in order to achieve minimal perfor-

mance loss and energy consumption. Thus, the goodness of an AWM is no more

related to his placement; an AWM, under this perspective, is to be preferred for its

low execution time, its fair CPU demand and so on; where to place it, conversely,

is only a matter of resource usage optimization. The importance of the AWM in

itself is shown also in the scheduling application phase which will be performed

not at the end of the list analysis, but whenever a single AWM is analysed: if an

application cannot be scheduled on the best computed BD, maybe because that BD

has not any more sufficient available resources to serve the AWM, the second best

BD is selected and so on; the AMW had been evaluated to be better than the others,

and so must and will be scheduled even if not in its ideal BD.

Please note that, to calculate bound mix and fu unbalance for a certain AWM on

the possible BDs, system information regarding resource allocation means and vari-

ances both system-wide and per BD is needed. In fact, to compute the effect of the

scheduling of an AWM on a binding domain, we must know which AWMs had

already been chosen, bound and scheduled on the system. In this case, querying

continuously system information from the resource manager is not a wise choice. A

cleverer method is to keep a simple and lightweight internal system representation

to keep track of the current co-scheduling statistical information.

The entire process, which is shown in Fig. 3.4, is is summarized as follows:

o For each priority level, a list of the pairs [Application, AWM] related to the

currently ready applications is created. Here the unit under evaluation is cou-

ple [Application, AWM], not the binding. The choice to decouple AWM and

BD evaluation comes from the need to move toward an approach that sees

the spatial aspect of the co-scheduling problem as a co-scheduling optimiza-

tion one. In other words, when analysing an application we need to select the

best AWM in itself, postponing the problem of where to schedule the related

application on to reduce performance degradations induced by the other run-

ning applications.

o AWM evaluation starts. Every pair [Application, AWM] is evaluated through

a multi-objective computation taking into account:

– AWM base value.

– Reconfiguration overheads due to an AWM change.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.2 Extending YaMS with CoWs support 39

– Fairness index of the assignment of AWM requested resources taking

into account current system load.

Here, congestion and migration contributions from YaMS have not been taken

into account. The reason is that congestion contribution will be represented

during the BD evaluation phase by means of functional unit balance, while

migration contribution, which is evidently binding dependant, will be exploited

during BD evaluation.

o Beginning by the head of the ordered [Application, AWM] list, for each el-

ement which has not to be skipped, a list of ordered BDs - from the best

to the worst candidate - is created. At this point, scheduling of the current

application (configured as imposed by the current AWM) on the best BD is

attempted. If failed, the next BD is selected and so on. BDs are ordered taking

into account:

– bound mix, as defined above, with respect of the AWMs already sched-

uled on this BD.

– Retired instructions, stalls and floating operation fu unbalance, as de-

fined above, with respect of the pairs [Application, AWM] already sched-

uled on the managed device.

– Overhead in migrating the application among BDs.

Another interesting feature added by the CoWs extension is that the impor-

tance of the resource-aware goals is tunable at runtime. This allows more flexi-

bility, more control given to the system user (that is, the ability to correct how the

scheduler chooses the BDs during runtime, without modifying the scheduler code)

and, above all, easy integration with design space exploration tools to chose the

right weights to apply to these goals by means of automatic training on desired

workloads.

These are the main features of our proposal. Now we will follow the design

process step by step explaining our choices.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

40 CoWs: Co-scheduling Workloads

Figure 3.4: CoWs scheduler behaviour

3.2.1 Resource binding algorithm

The BarbequeRTRM framework and the concept of BDs, AWMs, YaMS multi-ob-

jective bindings evaluation may be a little confusing to the reader, being maybe the

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.2 Extending YaMS with CoWs support 41

first time he faces this framework. In this section, a step by step explanation of

CoWs centred on simpleness and clarity is provided. Some concepts will be reintro-

duced, to make sure the reader has understood them and can effectively get to the

end of CoWS design description.

In BarbequeRTRM, scheduling is primarily triggered by events, like an appli-

cation starting, ending or demanding more resources. The motive is obvious: a

scheduler execution is needed only when the system changes, acquiring more or

less free resources, or needing to adjust QoS for any application. When this trig-

ger happens, there is a short time while all the applications prepare to be safely

interrupted. As mentioned in Chap. 2 on page 13, every application comes with

the onRun method, which has to contain the implementation organized, possibly,

in light looped code. Usually, every time the application finishes this method, it is

ready (if a trigger has happened) to be interrupted for the schedule phase. Now, as

already mentioned, every application has a certain number of execution configu-

rations. Every configuration is characterized by different theoretical performances,

quality of service, required resources and so on. As already discussed, these are

what we call AWMs (application working modes), and are collected in the appli-

cation recipe, that is, an XML file describing the AWMs. Every application has its

recipe, which also specifies the priority of the application.

How to decide which AWM is to be chosen from the recipe and what BD is to

be chosen to bind the application with? YaMS, as explained in previous sections,

selects all the ready applications at a given level of priority and creates a list of

bindings. The evaluation of the bindings is a multi-objective one taking into account

AWM general characteristics, current system status, possible effects of the bindings

(time that would be spent to reconfigure and migrate is the binding is selected, and

so on). After the evaluation phase, the list has already been reordered from the best

binding to the worst. The list of AWMs is read from the start, and every binding is

analysed; if the AWM refers to an already chosen application - that is, a binding

referring to the same application has already been found in the list and had not

been skipped - the couple is skipped. If the BD is full, the couple is also skipped.

Else, scheduling happens: the application is configured as indicated in the AWM,

and migrated on the BD.

In the case of CoWs support, YaMS behaves in a quite different way: no binding

is required because, as already mentioned, from our point of view each AWM is to

be evaluated in itself. The evaluation of the AWMs is a multi-objective one taking

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

42 CoWs: Co-scheduling Workloads

into account only AWM general characteristics and current system status. After the

AWM evaluation, the BD evaluation is to be performed. The list, that during the

previous phase has been reordered from the best AWM to the worst, is read from

the start, and for each element its possible bindings are analysed; bindings analysis

consists in a multi-objective evaluation performed to create a list of BDs ordered

from the best to the worst, where the application could run. The metrics taken into

account, this time, are:

o R LLCM/cycle (needed for bound mix computation)

o RETIRED INSTR/cycle (needed for fu unbalance computation)

o STALLS ANY/cycle (needed for fu unbalance computation)

o FP OPERATIONS/cycle (needed for fu unbalance computation)

o MIGRATION PENALY (to this BD).

Application resource utilization statistics are now a collection of data that en-

rich the pair [Application, AWM]. In other words, in the XML application recipe

every AWM description contains a section storing any number of additional re-

source utilization information. In our case, every AWM description contains last

level cache misses, retired instructions, stalls, floating point operations per cycle

of the AWM. The reader could wonder if is there a significant difference in terms

of functional units utilization and execution profile (CPU or memory-bound) from

an AWM to another one referring to the same application; the answer, indeed, is

definitely yes. In Sec. 4.2.2 on page 62, these differences will be explained in detail,

with real applications statistics.

How to evaluate a binding? The reader may have understood, from the earlier

brief explanation, that our approach is in a cerFlowtain way very different from the

one used in YaMS; here, to evaluate a binding, we need to exactly know what bind-

ings had already been selected and scheduled. In fact, during a binding evaluation:

o How choosing this binding would affect the current average functional unit

utilization is computed. This is needed to compute fu unbalance indices of

stalls, retired instructions and floating operations.

o An analysis of the BDs is performed, to calculate the current degree of bound mix

of the combination of applications scheduled on each BD. This information

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.2 Extending YaMS with CoWs support 43

is exploited to understand if the binding under analysis would improve or

worsen the bound mix of the related BD.

So, while in YaMS scheduling requests are performed after the evaluation pro-

cess, here we have a scheduling request after each AWM bindings ordering; once

created the list of best BDs, the scheduling is performed using the first element of

this list. If impossible, the second is picked and so on. After a successful schedule

system information, contained in an internal structure initialized at the beginning

of schedule phase, is updated. It will be exploited during the binding evaluation of

the next AWM in list.

The metric exploited to order the BDs is introduced in Eq. (3.7) on page 43,

where AWMi and BDj are the current binding to evaluate, s is the system infor-

mation, F the functional unit related metrics (retired instructions, stalls, floating

operations), [α, β, γ] the objectives values weights summing to 1, [B, F, M] are the

variations of bound mix, fu unbalance and migration penalty as defined in Eq. 3.4 to

3.6.

B = bound mix(AWMi ∧ awms(BDj, s))− bound mix(awms(BDj, s)) (3.4)

B is the difference between the bound mix achieved by adding this AWM to the

BD, and the bound mix of the mix of applications currently scheduled in it.

F = ∑
f∈F

f u unbalance(s, f) (3.5)

F is the total fu unbalance for the processor resources representative metrics we

chose to exploit during scheduling phase. How retired instruction, stalls, floating

operation average system ratio would be affected by the scheduling of this binding?

The higher is this value, the worse is the choice.

M = migration penalties(BDj) (3.6)

M is the migration penalty related to previous system configuration. In other

words, if before the scheduling phase an application was already running and it

was on a certain BD, re-scheduling it on the same BD would avoid to spend time

migrating the application.

cows metrics(AWMi, BDj, s) = α ∗ B− β ∗ F− γ ∗M (3.7)

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

44 CoWs: Co-scheduling Workloads

The system information structure contains the following elements:

o average bound mix and quadratic bound mix, per BD.

o average fu unbalance for the elements of F, per BD and system-wide.

o system load, that is, the number of applications scheduled on each BD.

o [α, β, γ] values. This element contains the weights, that can be accessed and

modified at runtime from a fifo queue for design space exploration and test-

ing purpose.

If the AWM refers to an already scheduled application, it is skipped even before

evaluating its bindings. Else, the above process takes place and the best bindings

list is created, then schedule is immediately attempted: if the schedule results pos-

sible, the application is configured as indicated in the AWM, and migrated on the

BD. Otherwise the next BDs will be tried following the order imposed by the list

and, upon a successful schedule, system information will be updated. Only then

the next pair [Application, AWM] will be analysed.

Note that all possible bindings can be rejected; if the AWM has heavy resource

requirements and the system is already quite loaded, a schedule could be not pos-

sible on any BD. That is not a problem, since further in the list there will be other

AWMs related to the same application, probably requesting fewer resources (in

fact, AWMs further in the list are the less performing ones).

3.3 Methodology

In this section, we introduce a standard and semi-automatic flow to create appli-

cations integrated with BarbequeRTRM which can exploit CoWs support. First of

all, training phase methodology is presented. The BarbequeRTRM integration has

been briefly explained in Sec. 2.2 on page 15. Once having at disposal a few inte-

grated applications, a training phase is needed. Statistic collection takes place with

the aid of MOST tool (see Sec. A.2 on page 83), which gives us a mean to perform

automatic tests on our applications, identifying the best configurations of inputs

that minimize an arbitrary set of objectives. Energy consumption information, con-

versely, is extracted exploiting monitoring tools. In the case of Intel processor fam-

ily, we made use of Likwid tool (see Sec. A.3 on page 86), while in the case of the

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.3 Methodology 45

AMD NUMA platform IPMItool, an utility for managing and configuring devices

that permits system information monitoring, is exploited (see [20]).

These tools, along with the RTLib provided by the BarbequeRTRM, form a pow-

erful infrastructure to sample and collect resource usage, performance and energy

profile of any application, following the flow shown in Fig. 3.5.

Figure 3.5: Application development, integration and evaluation flow.

The RTLib metrics collector is exploited to collect information about the appli-

cations during MOST exploration. This information will aid the applications de-

veloper to better understand his application characteristics, and so to optimize the

code and choose the best suited AWMs to insert in the recipe. The role of MOST,

who is needed for almost all the phases of the flow, is to provide automatic explo-

ration of the possible configurations, and the creation of databases containing the

collected information. Exploiting MOST optimization algorithms, the developer

have no longer the need to manually analyse the whole space of configurations.

Clustering and filtering reduce the possible points so that only the best configura-

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

46 CoWs: Co-scheduling Workloads

tions remain in the database. Once the training phase is performed for the desired

applications, the developer is able to identify a number of possible - or, in any

case, interesting - workloads, composed of the applications. These workloads will

serve to train the scheduler and tune it with a combination of weights such that

the average EDP among the selected workloads is minimized. To compute the EDP

metric, a script that collects energy consumption information during the execution

of the workload is needed. Hence the creation of the energy wrapper described in

Par. 3.3.3 on page 49.

3.3.1 Application working modes (AWMs) characterization

In the first phase we use, as inputs, a range of possible CPU and memory quotas

along with any desired user-defined inputs of the application. Fig. 3.6 shows, from

an abstract point of view, the interaction between the tools; MOST, which needs to

receive user-created files containing the description of the application (inputs and

outputs and their domain) and of the tests to be performed (design of experiments,

goals, optimizations) runs on the unmanaged device, while the application runs on

the managed device, launched and monitored by the MOST wrapper. The results are

stored, at the end of the execution and after a series of optimization steps defined

by the developer, in a database (or, if desired, in a report complete with graphs and

other useful statistics) with the statistical information about all the tested configu-

rations.

The developer, analysing the results, is able to understand several important

characteristics of his application. Most of all, he will be able to tell how the inputs

influence the performance of the application according to the given configuration

explored. For example, the results could show that performance does not benefit

from configurations requesting more a certain number of threads. In other cases,

one would even discover that an application performance does not scale properly

by increasing the amount of assigned resources, so creating AWMs with resource

request greater than that would be useless.

The reader must take in mind that this first test has not the aim to find out

what configurations are the most performing in general. It serves to understand, at

each level of desired performance and QoS, which are the locally more performing

ones. So, wanting to create an AWM which requests a minimal CPU quota and

very low memory - a typical configuration to be selected when the system is too

heavy loaded - we can find out which value of the other inputs is the best to im-

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.3 Methodology 47

Figure 3.6: MOST - BarbequeRTRM integration schema.

pose to this configuration to maximize performance, energy efficiency or whatever

the developer needs to maximize. These tests also aid the developer to discover

the upper bound of the resources to allocate to an application at runtime or of the

ideal parallelism level to exploit during the execution. Once mastered the usage of

MOST, with a little inventiveness almost any type of test can be done; this is one of

the characteristics that make of MOST a very powerful tool.

At the end of these tests, what goes in the recipes is a small set of AWMs rep-

resenting resource requests and qualities of service as much varying as possible, so

that the resource manager can find the most suitable AWM for each possible load

of the managed device.

For each test, we collect information regarding a single AWM. So, to test an ap-

plication which we plan to provide with n AWMs, we have to run the test n times.

In the case of huge sets of inputs, a lot of tests would be performed; an applica-

tion with n AWMs, number of threads in [1; m] and, for example, another custom

input in [1; p] would need n tests, each test running the application m ∗ p times.

An huge number of results is not a problem during database evaluation, because

MOST gives the possibility to operate clustering on the points and to remove dom-

inated points with the aid of Pareto curves. In fact, the output consist usually of

few points, leading to fast and easy analysis by the developer, who makes the final

choice over the configurations to insert in the recipe. Regarding test duration, con-

versely, MOST give us the possibility to indicate which type of exploration we want

to exploit during the tests, in order to reduce significantly the exploration time. For

more information, please refer to Sec. A.3 on page 86.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

48 CoWs: Co-scheduling Workloads

3.3.2 Performance counters statistics

The goal of these tests is to collect information that will later be exploited by CoWs.

The general schema of the test is the same of the previous phase, shown in Fig. 3.6.

For each AWM we want to insert into the recipe, we run a MOST test to collect

resource usage information, with the aid of the performance counters selected in

Sec. 3.1.1 on page 29. The inputs will be the desired inputs for the application,

for example the quality of a video encoding, or parallelism level. The outputs, as

briefly mentioned above, are:

o last level cache misses.

o resource stalls.

o retired instructions.

o x87 floating point operations.

o number of cycles, needed to normalize the above mentioned statistics.

o variance of the above mentioned statistics, to aid the developer during com-

parison phase.

o execution time

In this case, few minimization objectives are mandatory; we focus on finding

out what configurations are the fastest, but trying also to reduce any type of stall,

to achieve energy efficiency improvements. Here are the goals we selected during

our own tests:

o stalls/cycle

o R− LLCM/cycle

o CPI

o executiontime

Conversely to the previous phase, here we do not need any optimization algo-

rithm to be exploited by MOST. This is a test to be run one time per AWM, simply

to collect the desired information. Done this, the obtained values are to be inserted

into the application recipe, as will be shown in detail in the next chapter.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.3 Methodology 49

Note that, as we did for our own tests, to speed up this phase of the flow the

developer can merge this test into the one performed in the previous phase; in fact,

if there are no other inputs to evaluate other than the ones studied in the previous

phase - that is, if we already decided how the application will be executed and our

only goal is to collect its resource utilization information - we can add the metrics to

collect to the ones to be collected in the first phase. Once chosen an AWM to insert

in the recipe, all related information is already available in the MOST database.

3.3.3 Scheduler training

CoWs comes with predefined standard values for the weights used to differenti-

ate bound mix, fu unbalance, and migration penalties importance during the multi-

objective optimization performed to evaluate bindings. Optionally, to further im-

prove performance, another type of test can be performed: the scheduler training

test. This test has the aim, once the developer has individuated a certain num-

ber of representative or critical workloads, to find out which combination of the

weights exploited during the BD multi-objective computation performed by CoWs

guarantees the best results in terms of energy-delay product during the execution of

the selected workloads. This test is very simple even if, from a theoretical point

of view, it is considerably more complicated than the previous ones. Its schema is

shown in Fig. 3.7; MOST runs, as always, on the unmanaged device while the en-

ergy consumption sampling script - which will be referred to as energy wrapper -

is executed on the managed device to be able to see the correct partition. This time,

the application - which, in reality, is a script capable to invoke whole workloads

comprehending the applications which had been analysed in the previous phases -

is started by the energy wrapper, which is invoked by MOST wrapper. Doing this,

the following flow of data is generated:

o MOST communicates the current design point to his wrapper.

o MOST wrapper:

– Communicates with the RTLib to set the weights as commanded by the

design point.

– Communicates with energy wrapper to execute the application.

o The energy wrapper executes the application, so that:

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

50 CoWs: Co-scheduling Workloads

– RTLib samples and computes any desired useful statistics, yielding them

as an output for MOST wrapper.

– The energy wrapper samples and computes energy statistics, yielding

them as an output for MOST wrapper.

o MOST wrapper saves all the received results in a database point, as done

during previous tests, for later optimization.

Figure 3.7: Interaction between the tools during weights training.

The energy wrapper is a simple script that starts the execution of the workload,

sampling in the meanwhile energy consumption and execution time. When the

workload finishes to execute, it yields such information to the MOST wrapper. The

algorithm can be viewed, in a simplified version, as follows:

begin;

start_time = start_timer();

launch_workload_script();

while(workload_active) sampling.sample_energy();

end_time = stop_timer();

exec_time = end_time - start_time;

energy_consumption = sampling.average_energy();

return [exec_time, energy_consumption];

end;

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

3.3 Methodology 51

The output of the scheduler workload training will be a database containing the

vectors [α, β, γ] inducing best performances and energy efficiency.

3.3.4 Workload results evaluation

This test is the simplest among the ones described in this chapter; the developer

needs only to exploit the energy wrapper to run:

o a basic version of the application or workload.

o the BarbequeRTRM-integrated version of the application or workload.

o the BarbequeRTRM-integrated version of the application or workload, ex-

ploiting CoWs support.

Analysing the outputs, the developer will be able to compare execution time,

energy consumed per core, and EDP of the three different types of execution.

This flow has been followed using two applications from PARSEC benchmark

suite - bodytrack and ferret - on an Intel quad-core processor and on a NUMA AMD

processor. In the next chapter, after a complete description of the experimental

setup, results and outputs will be shown for every distinct phase regarding the

tests on the Intel processor, thus showing a complete use case scenario. Then, the

performance results showing EDP comparisons between the three cases (Barbe-

queRTRM with and without CoWs support, and the no-BarbequeRTRM case) will

be presented and commented for both the platforms.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

Chapter 4
Experimental Results

In this chapter the experimental setup will be described, focusing on the two plat-

forms exploited to validate our thesis. The results will then be introduced and

commented.

4.1 Analysed multi-core based systems

In Chap. 1 on page 3 we talked about two different types of devices: multi-core and

many-core processors. The BarbequeRTRM resource manager addresses both these

types of devices; in fact, it keeps a part of the resources to execute itself along with

the unmanaged applications and exploits the remaining resources to execute managed

applications, and this can be done in both multi and many-core devices. The best

scenario, in any case, would be the one where a host device manage an external

accelerator, such as a generic GPU. For the validation we chose two very different

devices. The first, a quad-core Intel processor, has not a huge amount of resources

to exploit. Here a resource utilization aware approach becomes interesting to un-

derstand how a workload can be managed in a ”constrained” device, where the

applications have an high probability to be subject to performance degradations

due to resource contention. The second device under testing is a NUMA platform,

which consists of four nodes each exploiting a quad-core AMD processor. This

device is interesting to analyse because:

o There are lots of resources to manage, with respect of the Intel case. This

causes the managing of resources to become a very important aspect during

the execution of our workloads, and should show the real BarbequeRTRM

contribution in terms of performances and energy efficiency with respect to

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

54 Experimental Results

the Linux case. CoWs results will be compared to the BarbequeRTRM results

in an environment that greatly benefits from BarbequeRTRM support.

o Keeping each node as a BD, we can manage to exploit three 4-PEs BDs, with

potential higher speed-ups with respect of the Intel case, where we had three

single core (double-threaded) BDs.

o The nodes share only the main memory: every node has its independent

cache hierarchy, and this should permit more contention avoidance than in

the Intel case.

Before describing the two systems we exploited during the validation, another clar-

ification is needed. As mentioned in Sec. 1.2.2 on page 6, in [14] frequency scaling

was exploited to reduce contention when suitable combination of applications were

not found. In our case, we let Linux manage the frequencies. We selected the on

demand kernel governor, that scales the CPU frequencies according to the CPU us-

age. In this way, we aim to achieve good performances, having in the meanwhile

the assurance that energy consumption will benefit from frequency scaling when

possible. Here follows a detailed description of the two devices, along with the

needed information about operative system and resource partitioning.

4.1.1 Single multi-core processor

The multi-core case exploits a system featuring an Intel Core i7-2670QM processor

running up to 2.20GHz (see Tab. 4.1). Each core has independent L1 and L2 caches,

while the L3 is shared between all the cores. Hyper-threading permits each core

to run two threads. So, from our point of view, the set of resources consists in

8 PEs. This device does not offer many resource partitioning choices; in fact, as

mentioned in Par. 3.1 on page 27, we need BDs that share the smallest possible

part of the cache hierarchy. Being the L3 a resource shared among all the cores,

we already know that our BDs can not be totally independent. We also know that

the two PEs featured by a core have to belong to the same BD; in fact, those PEs

share L1 and L2 caches. Being the single core - due to the problem just introduced

- the minimal possible BD, we chose to partition the processor in three BDs, so that

the device is seen as a single-BD unmanaged device and a three-BDs managed device

(see Fig. 4.1). The system under analysis features 8GB of RAM and exploits Linux

kernel 3.5. The memory has been fairly divided among the BDs, so each BD can

exploit a 2GB memory partition.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4.1 Analysed multi-core based systems 55

Figure 4.1: Intel i7 resource partition

4.1.2 Multiple multi-core processors

In this case, we exploited a NUMA device consisting in four quad-core nodes. each

node features a AMD Opteron 8378 Quad-core processor running up to 2.80GHz

(see Tab. 4.2). In the single node, each core has independent L1 and L2 caches,

while the L3 is shared between all the cores. The set of resources, having as men-

tioned above four nodes at disposal, consists in 16 PEs. This device offers many

resource partitioning choices; however, as mentioned in Par. 3.1 on page 27, we

Microarchitecture Sandy Bridge

Processor Core Sandy Bridge

Data width 64 bit

Number of cores 4

Number of threads 8

Floating Point Unit Integrated

Level 1 cache size 4 x 32 KB instruction caches

4 x 32 KB data caches

Level 2 cache size 4 x 256 KB

Level 3 cache size 6 MB

Table 4.1: Intel Core i7-2670QM CPU information

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

56 Experimental Results

need BDs that share the least possible part of the cache hierarchy. Being the L3 a re-

source shared among all the cores of a node, the choice had been driven toward the

partitioning of the system into four BDs, each containing a node. The single node

doesn’t share any part of the cache hierarchy with the other nodes, and this means

that choosing the single node as a BD, as shown in Fig. 4.2, we have at disposal 4-

PEs BDs (granting good performances) with the least possible memory contention

issues between each other (granting less contention-related performance losses).

The system under analysis exploits Linux kernel 3.9. The memory has been fairly

divided among the BDs, so each BD can exploit a 6GB memory partition.

Figure 4.2: AMD NUMA resource partition

4.2 Methodology exploitation

In this section, the entire methodology flow described in Chap. 4 on page 53 is fol-

lowed. The applications under analysis are, as already mentioned, bodytrack and

ferret from PARSEC benchmark suite. Bodytrack performs the body track of a per-

son. This computer vision application is an Intel RMS workload which tracks a

human body with multiple cameras through an image sequence. This benchmark

was included due to the increasing significance of computer vision algorithms in

areas such as video surveillance, character animation and computer interfaces. Fer-

ret implements a context similarity search server. This application is based on the

Ferret toolkit which is used for content-based similarity search. It was developed

by Princeton University. The reason for the inclusion in the benchmark suite is that

it represents emerging next-generation search engines for non-text document data

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4.2 Methodology exploitation 57

Microarchitecture K10

Processor Core Shanghai

Data width 64 bit

Number of cores 4

Number of threads 4

Floating Point Unit Integrated

Level 1 cache size 4 x 64 KB 2-way associative

instruction caches

4 x 64 KB 2-way associative

data caches

Level 2 cache size 4 x 512 KB 16-way associative

caches

Level 3 cache size 6 MB 48-way associative shared

cache

Table 4.2: AMD Opteron 8378 CPU information

types. In the benchmark, they have configured the Ferret toolkit for image similar-

ity search. Ferret parallelism is performed exploiting the pipeline model, conversely

to the bodytrack case.

In the next section, the final results will be shown for both the processors we

elected to use for the evaluation. The use case presented here, conversely, refers

only to the Intel processor. This processor is an Intel Core i7-2670QM exploiting 4

CPUs at 2.20GHz (maximum), hyper threading, 6144 KB Intel smart cache. The OS

is Ubuntu Linux 12.04 ”Precise Pangolin”, kernel version 3.5.

4.2.1 Application working modes characterization

In the preliminary application study, the goal is to understand which AWMs to in-

sert in the recipes, and what is the best value of any other execution parameter to

maximize performance. For the purpose of this study, the recurrent parameter of

all tests is the parallelism level exploited by the application. The need to smartly

evaluate the number of threads is obvious: trading more memory and communi-

cation/synchronization overhead with increased parallelism is a common choice,

but finding out the correct balance is not always easy. The second parameter is the

amount of resources BarbequeRTRM will assign to the application. This is not an

implicit parameter; in fact, we do not give it as an input to MOST. It is an input, spe-

cific for every set of tests, which has to be given to the BarbequeRTRM framework

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

58 Experimental Results

itself. This means that, as already mentioned, for every AWM of a design space

exploration will be run, each design point characterized by a different number of

threads.

Tests had been performed using MOST. Being the design space (the number of

possible input combinations) quite small, we elected to perform a full search design

of experiments, with the aid of Pareto curves optimization but without clustering

the results. In Fig. 4.3 to Fig. 4.3 the results for bodytrack application are shown,

for an exploration with number of threads ranging from 1 to 5. As can be immedi-

ately seen, there is not so much difference between the results. Even if MOST has

removed some points during optimization phase, the user can immediately notice

that, probably, the removed points suffered due to little fluctuations caused by the

limited accuracy of the sampling. The reason of these uniform results, as antici-

pated in the previous chapter, is the fact that in this case the BDs feature only a

two-threaded core, making this processor not well suited for massive parallelism.

Figure 4.3: Bodytrack: DSE for 50% CPU usage case

Results from ferret (see Fig. 4.7 to Fig. 4.10) are analogous to the ones just men-

tioned. Take in mind that the parallelism exploited in ferret is obtained due to

pipeline parallelism. So, each loop iteration is split into stages and threads oper-

ate on different stages from different iterations concurrently. It is understandable

that, in cores exploiting only two threads, this technique can not reach its full po-

tential. Results show that the best number of threads to assign to each stage is,

unsurprisingly, 1.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4.2 Methodology exploitation 59

Figure 4.4: Bodytrack: DSE for 100% CPU usage case

Figure 4.5: Bodytrack: DSE for 150% CPU usage case

Chosen the number of threads, we analysed the impacts of CPU quota on per-

formance. This could be done also for memory utilization, but in this case we al-

ready know that the applications do not suffer from memory limitations; in fact, in

this configuration up to 2000 MB of memory can be reserved to each BD, so memory

is evidently not a problem. CPU quota, conversely, is a good parameter to analyse.

In fact, what we want to is to discover how, increasing the CPU quota granted to the

execution of the application, the performance scales. This information permits us

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

60 Experimental Results

Figure 4.6: Bodytrack: DSE for 200% CPU usage case

Figure 4.7: Ferret: DSE for 50% CPU usage case

to set an upper bound to the maximum CPU quota available to the application, and

to calculate the value metric, the one exploited during AWM evaluation to represent

the importance of each AWM among the others of the same recipe.

The results, that can be seen in Fig. 4.11 are very interesting and show that:

o Both the applications are not so memory-bound that they cannot effectively

exploit a full BD; the full BD AWM, meaning 200% CPU quota in this case, is

always the most performing AWM.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4.2 Methodology exploitation 61

Figure 4.8: Ferret: DSE for 100% CPU usage case

Figure 4.9: Ferret: DSE for 150% CPU usage case

o In both the applications, AWM with 150% CPU quota are not better than the

ones requesting 100% CPU quota. Bodytrack application even executes faster

if requiring 100% CPU quota instead of 150%.

o The two applications are characterized by a different degree of boundedness.

In fact, ferret results to be more affected by CPU quota increments, with a

speed-up of∼ 3.45 between 50% and 200% CPU quota case, versus the∼ 2.63

speed-up value achieved by bodytrack.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

62 Experimental Results

Figure 4.10: Ferret: DSE for 200% CPU usage case

Figure 4.11: Influence of CPU quotas on bodytrack and ferret execution time

4.2.2 Performance counters statistics

Once created the recipes, resource utilization information has to be collected as

defined in Par. 3.3.2 on page 48. The information collection can be performed with

the sole aid of RTLib, or exploiting MOST to further study the application and

make the final choice regarding the AWM to chose or else - as we did - exploiting

the information already collected during the previous phase. In fact, during the

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4.2 Methodology exploitation 63

preventive study we extracted all the needed information from this test. So, once

chosen a running configuration and a set of inputs, we already had all the needed

information stored in the database. This could happen since our input consisted

only in the number of threads, an input whose value had already been decided

studying the outputs of the first phase.

Now the recipes are filled and ready to be exploited by the resource manager.

Before describing the compiled recipes, two interesting aspects of this study have

to be shown; first of all, we chose to insert 150%-CPU-utilization AWMs even if

we demonstrated, in the first phase, that they are not performing with respect of

less resource-requesting AWMs. As described in previous chapters, the scheduler

- having the recipes at its disposal and knowing that these AWMs are not much

more performing than the ones characterized by less resource utilization - will not

ever chose them, confirming its multi-objective nature that make it able to evalu-

ate both performances and quota fairness of the AWMs. Gaining the slightest of

speed-ups or even no speed-ups at all at the cost of 50% more CPU usage is ev-

idently not a wise choice, and choosing a 150% CPU quota AWM leaves the BD

with only 50% of free resources for other applications. As shown during the AWM

study, AWM exploiting this minimal quota should be chosen only if really neces-

sary, being notably less performing than the others. The second interesting aspect

is that, as mentioned in the previous chapter, having at disposal two full recipes

with 4 AMWs each we can evaluate how the CPU quota utilization of an applica-

tion can influence its resource utilization statistics. Is it really useful to characterize

each AWM with resource utilization statistics, or is it purely application dependant

information? As shown in Fig. 4.12, resource utilizations statistics can grow even

fourfold with increasing CPU quota utilization. This is not a strange fact, because

increasing CPU quota means that more resources are exploited. Exploiting more

resources and executing an application in less time than the normal, the density

of stalls, cache misses and the other statistics increases dramatically. This confirms

the need of collecting statistics about not the single application, but all the possible

running configurations of an application.

Let us give a closer look to what a recipe look like; Fig. 4.13 shows ferret recipe,

focusing on a single AWM. The xml file features a container named awms contain-

ing the description of our AMWs. Each AWM description contains two sections:

the former is the required resources descriptor, the latter is the resource utilization

statistics container. For more eye clarity, the statistics had been multiplied by 1000.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

64 Experimental Results

Figure 4.12: Normalized resource utilization statistics versus CPU quota

4.2.3 Scheduler training

Once ready to start executing our applications, a final process of optimization can

be performed: the scheduler training. Aim of this phase is to chose the best weights

to be used to characterize the importance of bound mix, fu unbalance and migra-

tion penalty during the multi-objective evaluation of the bindings. Running sev-

eral workloads exploiting BarbequeRTRM and its RTLib to manage the resources

and schedule the applications, MOST to automatically run the tests and compute

the desired objectives, and Likwid to calculate energy consumption and runtime -

which will be exploited to calculate the EDP of the executions - we are able to evalu-

ate the different weights combinations. The interaction between the tools is the one

already presented during the design of the tests in Fig. 3.7. The weights represent

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4.2 Methodology exploitation 65

Figure 4.13: Ferret recipe, showing the 200% CPU quota AWM

the degree of importance of a term with respect of the others so, as already said, the

three weights should sum up to 1. So, we evaluated the different combinations of

weights, with each of them being an integer ranging from 1 to 8, setting constraints

in MOST design space to impose that the sum of the three weights would amount

to 10. This is another interesting feature of MOST tool: setting constraints helps the

tool to reduce considerably the number of design points.

This test, in the same manner of the final evaluation tests, uses EDP as a metric

to represent both energy efficiency and runtime improvements of the configura-

tions. We configured a set of three scenarios to evaluate the weights:

o LIGHT LOAD: two instances of ferret, two instances of bodytrack.

o MEDIUM LOAD: three instances of ferret, three instances of bodytrack.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

66 Experimental Results

o HEAVY LOAD: four instances of ferret, six instances of bodytrack.

The test has been performed in two steps; the first one was performed with

MOST applying clustering and Pareto optimization to remove dominated points.

The results shown that the best combinations, in all the cases, were characterized

by the template [bound mix, f u unbalance, migration] = [X, 1, Y], so demonstrating

that our considerations about memory stalls avoiding was a good one, and that

bound mix and migration penalties are to be preferred over fu unbalance. The sec-

ond step, having understood that, has been to perform a test in which fu unbalance

weight was set to 1, and only the other weights changed. Having reduced a lot

the design space (having lost an input and being compliant to the constraints, eight

combinations of weights were possible instead of thirty-six), a concrete and manual

analysis of the results was possible. The results, shown in Fig. 4.14 and Fig. 4.15,

are very interesting.

Configurations where bound mix received the maximum possible weight had

the best EDP rating in all the tested workloads. So, we chose the combination

[B, F, M] = [8, 1, 1] to calibrate the multi-objective evaluation. Note that this is

a strong indication that our considerations on cache hierarchy sharing were valid:

from the results we can evince that bound mix, that is, the degree of latency masking

between running application that share a part of the cache hierarchy, is really the

most important metric to consider during a co-scheduling choice. If an AWM is

best suited - in terms of bound mix - to run on a certain BD, the best choice is to

migrate the application to that BD without worrying about the relative migration

penalties.

4.3 Run-time scenarios

The final test is needed to evaluate the scheduler. We can run our workload sce-

narios, where the allocations of resources from the managed device partition is con-

trolled by: in three different environments:

o The Linux scheduler and memory management system.

o The BarbequeRTRM exploiting YaMS scheduler.

o The BarbequeRTRM exploiting YaMS scheduler with CoWs support.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4.3 Run-time scenarios 67

Figure 4.14: EDP results for the three workloads

Figure 4.15: Average EDP results for the weights test

For these tests, we added a fourth workload scenario composed of six ferret and

four bodytrack applications, meant to cause a congestion on the system so that, in

all the three cases, the scheduling had to work under stress and with a very low

degree of freedom.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

68 Experimental Results

4.3.1 Single multi-core processor

The results demonstrate that a managed device managed by BarbequeRTRM with

CoWs support achieves significant improvements not only in EDP, but also in both

execution time and energy consumption in all the tests. As shown in Fig. 4.16, when

treating with light loads CoWs leads to EDP improvements with respect to YaMS

alone greater than 30%, speeding up execution where even BarbequeRTRM alone

can not rival with the Linux manager. Tests running medium, heavy and conges-

tion workloads shown that both BarbequeRTRM cases improve significantly exe-

cution time and energy efficiency with regard to the Linux case, with CoWs support

always leading to improvements with respect with YaMS scheduler alone. EDP, in

fact, is improved compared to YaMS case by 27% with the medium load, 9% and

3% with heavy and congestion loads.

The congestion scenario is probably the most significant for the purpose of our

study. Note that running the congestion load, a level of congestion is reached such

that the system is completely full. In other words, using or not using CoWs is irrel-

evant during much of the execution, because a situation is soon reached when only

6 instances of ferret will be executing (average execution time of ferret is five time

longer the execution time of bodytrack). In this case, there is only one optimal way to

schedule the applications, with or without CoWs support: two instances of ferret on

each binding domain. The fact that CoWs succeeds in achieving best performances

leading to the above mentioned 3% improvement is a very important indicator

of the validity of our thesis: with or without CoWs support, we have that in the

first part of the workload execution all the applications are executing, while in the

second part only ferret instances are executing, two instances per BD. This means

that in the first part of the workload execution, the only one where co-scheduling

choices of the two versions of YaMs differ, CoWs co-schedule the applications so

that performance degradation due to contention is minimized.

Now, one could wonder what are the effects on system temperature. Barbe-

queRTRM allow us, as proved, to run applications notably reducing execution

time. Do these speed-ups have negative effects on temperature? Or conversely,

do achieved energy efficiency improvement and resource utilization balancing suc-

ceed in avoiding hotspots and/or reducing the average device temperature?

Fig. 4.17 show how BarbequeRTRM succeeds, even with the congestion load,

to decrease the maximum and average temperature of the managed device with

respect to the Linux case. In three out of four tests, YaMS case is slightly better

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4.3 Run-time scenarios 69

Figure 4.16: Intel case: Gains with respect to Linux case, with and without CoWs sup-

port

than CoWs case; however both of them are better than the Linux case, and CoWs

improvements in both execution time and energy consumption is enough to never-

theless guarantee the goodness of this resource-aware policy.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

70 Experimental Results

Figure 4.17: Intel case: Managed device temperature with and without CoWs support,

with respect to Linux case

4.3.2 Multiple multi-core processors

The flow was followed also for the AMD NUMA device. Again, we found out that

bound mix metric is essential during co-scheduling choice to minimize contention-

related performance degradation. Another interesting discovery has been the fact

that, in this case, all the best weight configurations featured a very low migration

value. As shown in Fig. 4.18, this time a configuration with fu unbalance value

greater than 1 was present among the best configurations. However, it lead to the

worst EDP result among the best three configurations in all the workloads. Even

this time, the configuration [B, F, M] = [8, 1, 1] was chosen as the best possible

combination. Having noted that bound mix metric tends to be, as in the Intel case, a

dominant metric, we decided to grant to all the metrics the possibility to assume a

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

4.3 Run-time scenarios 71

null value. The fact that combinations with fu unbalance or migration amounting to

zero are not present among the best ones is a strong indicator that all these metrics,

even if exploited using low weights, are nevertheless useful to choose the best co-

scheduling.

Figure 4.18: AMD NUMA: average EDP results for the weights test

The results demonstrate, as in the Intel case, that a managed device managed

by BarbequeRTRM with CoWs support achieves significant improvements not only

in EDP, but also in both execution time and energy consumption in almost all the

scenarios. As shown in Fig. 4.19, having more resources at this disposal and so

operating in a system where resource managing is essential, the BarbequeRTRM

succeeds in achieving improvements in both performance and energy efficiency

with respect to the Linux case in all the scenarios while, as shown in Sec. 4.3.1

on page 68, in the Intel case BarbequeRTRM without CoWs support was not very

effective in the case of light loads. CoWs, with the exception of the congestion case

where EDP is the same of YaMS alone, succeeds in achieving further improvements:

when treating with light loads CoWs leads to EDP improvements with respect to

YaMS alone amounting to 30%. Tests running heavy and congestion workloads

shown that both BarbequeRTRM cases improve significantly execution time and

energy efficiency with regard to the Linux case, with CoWs support always leading

to further improvements with respect with YaMS scheduler alone. EDP, in fact, is

improved compared to YaMS case by 30% and 3% with medium and high loads.

This time, conversely to the Intel case, we can see that CoWs support leads to great

improvements only with light and medium loads while in the case of heavy loads,

where in any case the behaviour of the two schedulers tents to be the same, little

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

72 Experimental Results

improvements with respect to YaMS alone are achieved. In the case of congestion

load, the EDP is the same: in fact, BarbequeRTRM with CoWs support achieves

a slight improvement in performances (2% circa), but has slightly higher values

regarding consumed energy (again, 2% circa).

Figure 4.19: AMD NUMA case: Gains with respect to Linux case, with and without

CoWs support

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

Chapter 5
Conclusions

In this chapter the conclusions are drawn, pointing out what we did and how it

was done. Every phase of the work will be outlined and described, and possible

future developments are proposed.

5.1 Achieved results

The main contribution of this work is to prove that a smart resource-aware co-

scheduling policy can lead to a wide variety of benefits, such as performance speed-

ups, energy efficiency improvements, reduction of thermal hotspots. To do this, a

policy had been designed and implemented as an extension of the multi-objective

modular scheduler YaMS, from the BarbequeRTRM resource manager. This was

done because the BarbequeRTRM resource manager is portable, features a ”for

free” profiling support for the applications and is characterized by energy effi-

ciency and performance improvements with respect to the standard Linux man-

ager. We proved that, focusing not only on which are the best tasks to schedule

but also on where to schedule them, further improvements in performance and en-

ergy efficiency can be achieved with respect to the current results. We validated the

policy, codename CoWs (CO-scheduling Workloads), on two different platforms:

the first one featuring a 2nd Generation Intel Core i7 Quad-core Processor (eight

cores with hyper-treading), the second a NUMA device featuring four AMD 10h

Family Opteron 8378 Quad-core processors with distinct cache hierarchies. The

validation had been based on the comparison of energy-delay product of different

workload scenarios in Linux, the resources being managed by Linux standard man-

ager, BarbequeRTRM framework, BarbequeRTRM framework with CoWS support.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

74 Conclusions

Contribution BarbequeRTRM

(CoWs

support)

BarbequeRTRM

(YaMS

support)

State of art

Scheduler portability yes yes no

Support to any

type of multi-core

platform

yes yes no

Explicit performance

counters analysis

yes no no

Multiple resources

taken into account

yes no yes

Tunable weight of

each metric by means

of scheduler training

yes no no

Energy efficiency

emphasis

yes yes yes

Integrated statistics

collection support

yes yes no

Design, integration

and validation flow

yes no no

Design space

exploration support

yes yes no

QoS monitoring

support

yes yes no

Table 5.1: Our contributions

In addition to the above mentioned contribution, a flow spanning from application

analysis and integration with CoWs to EDP evaluation of the workload has been

proposed, to guide the users through development and scheduling of his applica-

tions. Our contribution is summarized in Tab. 5.1.

5.1.1 Co-scheduling workloads in a resource-aware perspective

Our approach had been based on the idea that characterizing resource utilization

of applications and scheduling them in ways that minimize memory contention

and spread other resource utilization ratio over the system could lead to notable

improvements in performance and energy efficiency. This procedure was greatly

aided by the idea of partitioning the managed resources in resource groups that:

o Comprehend at least one core, that is, can execute applications.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

5.1 Achieved results 75

o Have distinct cache hierarchies. Cache levels shared between multiple groups

are not to be considered as resources, but as a part of the infrastructure linking

the resources.

o Do not share any other resource, thus resulting virtually isolated from the

other groups.

This kind of partitioning had been greatly aided by BarbequeRTRM resource

manager, which provides easy ways to divide the resources in arbitrary ways, just

writing the desired resource partitioning in a configuration file.

We introduced the concept of bound mix of a co-scheduling choice, that is, the

degree of efficiency of the applications comprehended in the chosen resource-group

local co-scheduling to mask each other their memory misses latencies. Along with

this concept, we introduced the one of unbalance, that is, the degree of unfairness re-

garding system-wide resource utilization allocation of a co-scheduling choice. Re-

source utilization statistics had been computed by means of performance counters

sampling. We supported the counters choice with a rigorous study centred on the

maximization of system resource coverage and energy consumption correlation.

We proved that, co-scheduling applications on the resource groups trying to

maximize bound mix and minimize fu unbalance and migration penalties to different

groups, a scheduling choice can be computed such that execution time and energy

consumption of either light, medium, and heavy load workloads are considerably

reduced. To aid the user in the case of generically known workloads, which is

quite frequent in the case of sets of managed resources exploited to accelerate the

execution of critical applications, we provide means to train the scheduler so that

the average EDP improvement is maximized among the most critical workloads,

or in any case a number of expected workloads. This training phase has the goal to

tune bound mix, fu unbalance and migration importance during the multi-objective

co-scheduling computation.

We selected energy delay product (EDP) as the main evaluation metric of Bar-

bequeRTRM applications performance, instead of execution time alone. This is

very important because, given the upcoming importance of energy consumption

in current devices, a metric representing both performance and energy efficiency is

necessary.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

76 Conclusions

5.1.2 CoWs integration application flow

We provided a flow which, exploiting the BarbequeRTRM resource manager whose

scheduler had been extended with CoWs support and several tools created to aid

the user in design space exploration and performance analysis, partners the user

trough application development, resource usage statistics sampling, scheduler

training based on expected workloads, workloads evaluation.

Developing an application exploiting CoWs support is not different from de-

veloping a BarbequeRTRM integrated application. In fact, all the applications al-

ready modified to exploit BarbequeRTRM can benefit from CoWs extension. This is

very important because, provided that resource-utilization information collection

is performed, an application integrated with BarbequeRTRM gains resource aware

scheduling support for free. Moreover, before collecting resource usage information

the user can test his applications exploiting MOST-BarbequeRTRM integration to

perform optimizations, chose the best inputs and configurations to execute the ap-

plication and gain a great aid - currently not provided by BarbequeRTRM - to cre-

ate application recipes, understanding which working modes are unavailing and

which, conversely, have to be valued more than the others.

Scheduler training phase has proved to be an important mean to further im-

prove performance and energy efficiency, aiding to chose the weights configuration

that minimize mean energy consumption and execution time while running the

desired workloads. During the experiments we also shown that, in certain cases,

weights combinations can be found such that the objectives are minimized in all the

possible workloads, providing a degree of optimization very difficultly reachable

without automatic testing tools.

5.2 Future developments

Our proposal threw a new light on how resource managers for multi-core and,

most of all, many-core devices exploited to execute critical applications can com-

pute how to co-scheduling applications. This is a first step towards a better charac-

terization of applications in a resource-aware point of view, open to optimizations

and extensions.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

5.2 Future developments 77

5.2.1 Migration and reconfiguration vs optimal co-scheduling

One of the possible developments is the investigation on the trade-off between mi-

gration and reconfigurations penalties and performance improvements - viewed

as both execution time and energy efficiency - due to effective co-scheduling op-

tions. This is very interesting, especially in the case of many-core devices exploited

to execute a critical set of known applications. In this case, given the relative low

number of scheduling calls, these penalties are minimal with respect of applications

runtime, during which resource-aware co-scheduling cause considerable benefits.

In fact, taking as an example the BarbequeRTRM case, scheduling is needed only

when specific events happen, and not at close and defined times. So, we can run a

huge number of applications having only a few scheduler calls.

CoWs scheduling policy has been proved to be faster and more energy efficient

than YaMS policy alone. One could wonder if he could afford to encourage migra-

tion and reconfiguration of applications when the evaluation shows that an appli-

cation should be executed in ways that can lead to better resource utilization. Could

the time gains achieved by CoWs succeed in masking both their correlated penal-

ties? This is not a totally unmotivated idea; in Sec. 4.2.3 on page 64 and Par. 4.3.2

on page 70 we shown that the importance of bound mix overshadows the one of

migration during the binding evaluation. Mind that this is not a trivial study but,

just to answer to our question, we tried setting to zero the reconfiguration weight

exploited by YaMS and the migration one exploited by CoWS. We performed the

tests on the Intel processor; we already knew from the previous tests that the op-

timal migration weight for our workloads is M = 1, but setting these metrics to

zero gave us an idea of how a co-scheduling policy totally neglecting the above

mentioned aspects would perform. The results in Fig. 5.1 show that this could be

a valid idea, electable to be investigated further in the future. EDP improvements

amount to 59% and 52% with light and medium loads respectively, 5% and 7% with

heavy and congestion loads with respect of CoWs scheduler, hinting that, probably,

even reconfiguration metric from YaMS should be evaluated with more attention.

Obviously, migration and reconfiguration metrics cannot be discarded a priori; it

all depends on the type of applications composing the workload and on the device

where it is executed. A serious study of this aspect is certainly needed in future

works.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

78 Conclusions

Figure 5.1: Results of CoWs support with or without migration and reconfiguration

encouraging, with respect to the Linux case

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

5.2 Future developments 79

5.2.2 From training to learning

The training phase of the applications, that is, the test during which an application

is executed to extract resource-utilization information, has to be performed before

fully exploiting the system. Unfortunately, this can’t be changed because, as men-

tioned, the application has to be analysed when executing alone on the system. The

third phase of the flow described in Par. 3.3.3 on page 49 - the scheduler training -

could be, conversely, be transparent to the user. A very interesting idea is the one to

exploit a learning approach instead of a static training. During execution time, the

system could learn and compute how different sets of applications are to be exe-

cuted to minimize execution time and energy consumption, changing dynamically

the weights exploited during the multi-objective computation of the bindings.

What can be done during the training phase of the application, on the other

hand, is a further optimization of the first phase of the flow, that is, the preliminary

study of the application. We already noted that BarbequeRTRM doesn’t provide

means to aid the user during the recipe creation; what could be developed is a

service, provided by the framework, to automatize the execution of an applica-

tion with increasing resource utilization which yields to the user the best possible

AWMs, based on the user-provided goals, already containing resource utilization

information. This could definitely lead the user to a higher level of experience

because, if integrated with the learning feature mentioned above, this could pro-

vide the user for free recipe creation and CoWs support exploitation. What the user

would have to do is to integrate the application with BarbequeRTRM as without

CoWs usage.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

Appendix A
Tools

This appendix will introduce the tools which had been exploited during informa-

tion extraction and analysis. After a brief explanation of the BarbequeRTRM ca-

pabilities in terms of performance counters extraction and aggregation, two tools

will be introduced: the first tool is MOST (Multi-Objective System Tuner), a tool for

architectural design space exploration developed at DEI - Politecnico di Milano. It

aided us to automatize the tests, collect and analyse information in order to find

the best configurations for our application (ideal number of threads, best resource-

efficiency/performance compromises, most energy-saving configurations and so

on). The second is Likwid, a collection of easy to use but yet powerful performance

tools for the GNU Linux operating system. It provides a wrapper able to extract

numerous statistics from an application execution (energy and power divided per

core or per core-group, IPC an many others) on Intel architectures.

A.1 Performance counters sampling with RTLib

The RTLib is a component which define the interface and the services exported by

the Barbeque Run-Time library. As breefly shown in Chap. 2 on page 13, this library

needs to be linked by application that needs to interact with the Barbeque Run-Time

Resource Manager (BarbequeRTRM). Additionally. it masks the platform specific

communication channel between controlled applications and the run-time man-

ager. The RTLib offers also a set of utility services which can be used alone or com-

bined to develop easily more advanced run-time management strategies. Among

them, the one we are going to use, is the metrics collector. During the execution

of an application, this component collects various metrics and returns them to the

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

82 Tools

user. Among them hardware, software and cache related events are present. Un-

fortunately, the common usage of this component expects a metrics group to be

selected. Done this, all the metrics in the group are sampled. Sampling too much

metrics can lead to accuracy issues. To be more clear, sampling too much counters

impose some registers to operate multiplexing and sample multiple counters at the

same time, so reducing sampling accuracy. Here comes in aid a helpful feature of

the collector: the sampling by means of raw hardware event specification. This fea-

ture, which exploits perf tool, consists in specifying the raw event code as specified

by the processor developer manual. This lead to two advantages: first of all, even

when an event is not available in a symbolic form it can be encoded and sampled.

Second, if an user needs only a little set of counter, he can specify them one by

one, avoiding the performance losses mentioned above. Having implemented and

testing the scheduler and the design flow components on an Intel 2nd generation

i7 processor and on a device consisting of AMD Opteron 10h family processors, to

find out which event codes where needed to extract the counters selected in the

previous chapter we referred to [1] and [3] . Here follows a sampling example for

the execution of bodytrack application from PARSEC benchmark, executed on 260

frames.

[BOSPShell] \> bosp-parsec21-bodytrack

PARSEC Benchmark Suite Version 2.1

[...]

Processing frame 0

[...]

Processing frame 259

.:: MOST statistics for AWM [ps21_btrack:01]:

@ps21_btrack:01:perf:cycles_cnt=260@

@ps21_btrack:01:perf:cycles_min_ms=67.421@

@ps21_btrack:01:perf:cycles_max_ms=594.123@

@ps21_btrack:01:perf:cycles_avg_ms=154.101@

@ps21_btrack:01:perf:cycles_std_ms=69.442@

@ps21_btrack:01:perf:task-clock=74.990661@

@ps21_btrack:01:perf:cpu_utiliz=0.487@

[...]

@ps21_btrack:01:perf:ipc=2.12@

@ps21_btrack:01:perf:stall_cycles_per_inst=372651735@

@ps21_btrack:01:perf:instructions_pct=7.91@

@ps21_btrack:01:perf:instructions_pcu=84.56@

@ps21_btrack:01:perf:branches=45334701@

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

A.2 MOST: a tool for design space exploration 83

@ps21_btrack:01:perf:branches_pct=7.59@

@ps21_btrack:01:perf:branches_pcu=83.47@

@ps21_btrack:01:perf:branch-misses=78498@

@ps21_btrack:01:perf:branch-misses_pct=14.02@

@ps21_btrack:01:perf:branch-misses_pcu=83.21@

@ps21_btrack:01:memory:cache=260333568@

@ps21_btrack:01:memory:rss=73728@

@ps21_btrack:01:memory:mapped_file=0@

@ps21_btrack:01:memory:pgpgin=521103@

@ps21_btrack:01:memory:pgpgout=457527@

@ps21_btrack:01:memory:pgfault=306739@

@ps21_btrack:01:memory:pgmajfault=22@

[...]

A.2 MOST: a tool for design space exploration

MOST (Multi-Objective System Optimizer) is mainly a tool for architectural design

space exploration. It lets the designer explore a design space of configurations for

a particular system, provided that a simulator of that system is available. How-

ever, it can be used in general even for software design space exploration, testing

and validation. In fact, every piece of code able to receive inputs and save a log

containing outputs can be viewed as a simulator. MOST can be extended by intro-

ducing new optimization algorithms such as Monte Carlo optimization, sensitivity

based optimization and, as an example, Taguchi design of experiments. All of this

by using an appropriate API. The aim of this framework is to drive the designer

towards near-optimal solutions to the architectural exploration problem, with the

given multiple constraints. The final product of the framework is a Pareto curve

of configurations within the design evaluation space of the given architecture. The

proposed DSE framework is flexible and modular in terms of: target architecture,

system-level models and simulator, optimization algorithms and system-level met-

rics.

The framework architecture, showed in fig Fig. A.1 , is fairly complex. How-

ever, from our point of view, the framework behaviour can be simplified and de-

scribed as follows (see Fig. A.2): a wrapper provides inputs and extracts outputs

from the simulator. The input range and the outputs which will be extracted are to

be indicated in an user-defined xml file. Input range can be also modified defining

constraints, and various methods of exploration are available. For example, one

can decide to test every possible input in the range, that is, performing a full explo-

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

84 Tools

ration (very long if the input range is huge), or to perform a random exploration

choosing an arbitrary number of input values to be tested, or to use algorithms

specialized in choosing which input values are to be tested and which are to be

skipped. The final product is defined in a script or inserted during the process on

MOST shell: a database of points - one for every execution of the simulator - is cre-

ated. This database can be optimized, for example performing clustering, defining

minimization objectives and exploiting Pareto optimization to remove dominated

points, and so on. This lead the designer to find out which input combination (for

architectural exploration, this corresponds to an architecture definition) is the best

in order to achieve the defined goals.

As the reader may have probably already guessed, this tool will take the main

role during the training phase of the resource-aware co-scheduling work. Treating

BarbequeRTRM as a simulator, an application can be executed multiple times with

different running configurations (for example, CPU quota at disposal and number

of threads), trying to minimize performance and other desired objectives. The de-

sired outputs, obviously, are the collected metrics for every execution. For more

details, see Chap. 4 on page 53 .

Regarding the design space exploration, that is, the way all possible combinations

of inputs are explored, MOST features a number of exploration methods. A full

search is not always possible, because executing the simulator taking into all the

possible combinations can require huge amounts of time. So, the user can choose

to explore only a part of the possible designs. Here follow the exploration methods

featured by MOST.

o Full search: MOST generates all the designs of the design space.

o Neighbourhood: MOST generates all the designs in the neighbourhood of a

design point.

o Random: MOST generates a set of random design points.

o Replica: MOST generates a set of design points that replicate those existing

in a database.

o Scrambled: MOST generates Full Factorial-like designs of experiments for

masks and permutations.

o Full factorial: MOST generates Full Factorial design of experiments.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

A.2 MOST: a tool for design space exploration 85

Figure A.1: MOST architecture

o Full factorial extended: similar to the plain Full factorial design but with a dif-

ferent twist on the generation of opposite values for permutations and masks.

o Central composite: MOST generates design by using the Central Composite

Design technique.

o Box Behnken: MOST generates design by using the Box Behnken technique.

Our tests exploited the full search design of experiments, because using only

parallelism level as an input, it took no huge amounts of time to run exhaustive

tests. For detailed information regarding the design of experiments, refer to MOST

manual [2].

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

86 Tools

Figure A.2: MOST simplified behaviour

A.3 LIKWID: Lightweight performance tools

Likwid stands for Like I knew what I am doing. The project gives us easy to use com-

mand line tools for Linux to support programmers in developing high performance

multi threaded programs. No kernel patching is required, any vanilla linux 2.6 or

newer kernel works. Additionally, the tools are lightweight, easy to use, simple to

build, and there is no need to touch application code code. In the same manner as

with the RTLib we can find, among the tools, an useful one to extract information

from application execution.

For completeness sake, here is the list of the tools featured by Likwid:

o likwid-topology: Show the thread and cache topology.

o likwid-perfctr: Measure hardware performance counters on Intel and AMD

processors.

o likwid-features: Show and Toggle hardware prefetch control bits on Intel

Core 2 processors.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

A.3 LIKWID: Lightweight performance tools 87

o likwid-pin: Pin your threaded application without touching your code (sup-

ports pthreads, Intel OpenMP and gcc OpenMP).

o likwid-bench: Benchmarking framework allowing rapid prototyping of

threaded assembly kernels.

o likwid-mpirun: Script enabling simple and flexible pinning of MPI and

MPI/threaded hybrid applications.

o likwid-perfscope: Frontend for likwid-perfctr timeline mode. Allows live

plotting of performance metrics.

o likwid-powermeter: Tool for accessing RAPL counters and query Turbo mode

steps on Intel processor.

o likwid-memsweeper: Tool to cleanup ccNUMA memory domains.

The tool we are going to exploit in our work is likwid-perfctr. This tool features

a wrapper which can extract and compute information about:

o Retired instructions

o Unhalted core and reference cycles

o Runtime

o CPI

o Muops and MFLops/s

o Branch prediction miss rate/ratio

o Load to store ratio

o Power and Energy consumption

o L2 cache bandwidth in MBytes/s

o L2 cache miss rate/ratio

o L3 cache bandwidth in MBytes/s

o Main memory bandwidth in MBytes/s

o TLB miss rate/ratio

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

88 Tools

The goal of our work is to show that running several applications at the same

time choosing their binding in a resource-aware perspective can lead to enhanced

performance (reduces the loss of performance due to simultaneous applications

run) and energy efficiency (less hotspots, less stalls, less bottlenecks). This tool

give us access on all the information we need. This information can be sampled

on custom partitions of the resources, and the statistics are provided with total and

per-core values.

Here follows, as an example, the sampled information about cores 0 and 3, dur-

ing the execution of BarbequeRTRM makefile.

[BOSPShell BOSP] \> sudo likwid-perfctr -g ENERGY -c 0,3 make

CPU type: Intel Core SandyBridge processor

CPU clock: 2.20 GHz

Measuring group ENERGY

make

==== Checking BOSP build configuration ====

BOSP configured for a Generic-Linux platform

SUCCESS: all required tools are available.

==== Checking building system dependencies ===

Checking for git.......... /usr/bin/git

Checking for cmake........ /usr/bin/cmake

Checking for configure.... /usr/bin/autoconf

Checking for autoreconf... /usr/bin/autoreconf

Checking for libtoolize... /usr/bin/libtoolize

Checking for make......... /usr/bin/make

Checking for doxygen...... /usr/bin/doxygen

Checking for gcc.......... 4.6

==== Setup build directory [/home/stryke/BOSP/out] ====

[...]

==== Installing PARSEC Benchmark Suite (v2.1) ====

Target folder: /home/stryke/BOSP/out/usr/bin/parsec

+-----------------------+-------------+-------------+

| Event | core 0 | core 3 |

+-----------------------+-------------+-------------+

| INSTR_RETIRED_ANY | 1.3631e+11 | 1.21141e+11 |

| CPU_CLK_UNHALTED_CORE | 1.81368e+11 | 1.64499e+11 |

| CPU_CLK_UNHALTED_REF | 1.46496e+11 | 1.33399e+11 |

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

A.3 LIKWID: Lightweight performance tools 89

| PWR_PKG_ENERGY | 4303 | 0 |

+-----------------------+-------------+-------------+

+----------------------------+-------------+...+-------------+

| Event | Sum |...| Avg |

+----------------------------+-------------+...+-------------+

| INSTR_RETIRED_ANY STAT | 2.57451e+11 |...| 1.28726e+11 |

| CPU_CLK_UNHALTED_CORE STAT | 3.45868e+11 |...| 1.72934e+11 |

| CPU_CLK_UNHALTED_REF STAT | 2.79895e+11 |...| 1.39948e+11 |

| PWR_PKG_ENERGY STAT | 4303 |...| 2151.5 |

+----------------------------+-------------+...+-------------+

+----------------------+---------+---------+

| Metric | core 0 | core 3 |

+----------------------+---------+---------+

| Runtime (RDTSC) [s] | 171.895 | 171.895 |

| Runtime unhalted [s] | 82.6277 | 74.9427 |

| Clock [MHz] | 2717.51 | 2706.74 |

| CPI | 1.33055 | 1.35792 |

| Energy [J] | 4303 | 0 |

| Power [W] | 25.0327 | 0 |

+----------------------+---------+---------+

+---------------------------+---------+...+---------+

| Metric | Sum |...| Avg |

+---------------------------+---------+...+---------+

| Runtime (RDTSC) [s] STAT | 343.79 |...| 171.895 |

| Runtime unhalted [s] STAT | 157.57 |...| 78.7852 |

| Clock [MHz] STAT | 5424.25 |...| 2712.12 |

| CPI STAT | 2.68847 |...| 1.34424 |

| Energy [J] STAT | 4303 |...| 2151.5 |

| Power [W] STAT | 25.0327 |...| 12.5163 |

+---------------------------+---------+...+---------+

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

Chapter 6
Estratto in lingua italiana

Oggi la maggior parte dei sistemi digitali in commercio fa uso di processori multi-

core. Il concetto è oramai consolidato; basti pensare che più di dieci anni fa, nel

2001, è stato messo in commercio il primo processore general purpose con più di

un core sulla stessa basetta di silicio: il processore POWER4 della IBM [12]. Tale

processore sfruttava due core, il che non si era mai visto se non in sistemi em-

bedded. Da allora, i processori multi-core hanno velocemente sostituito quelli a

singolo core sul mercato. Il fatto non è particolarmente sorprendente, dato che

sfruttare core multipli è diventato uno dei pochi metodi efficaci per raggiungere

buoni speed-up, dato che la riduzione del tempo di clock ha sofferto una notevole

frenata dopo decenni di aggressivi miglioramenti [4].

6.1 Da core singolo a multi-core

Sfruttare più core sulla stessa basetta porta a numerosi vantaggi. Ad esempio, la

condivisione di parte delle risorse e della circuiteria porta ad un buon risparmio

in termini di area e permette alle aziende di creare prodotti con minor rischio di

errori di progettazione rispetto a quelli dovuti alla creazione di core indipendenti.

Inoltre, evitare ai segnali di viaggiare fuori dal chip diminuisce la degradazione dei

segnali, consente alla circuiteria di cache-coherency di operare a frequenze più alte

(la circuiteria di snooping, ad esempio, può funzionare molto più velocemente), e

riduce i consumi di potenza. Infatti, sia evitando ai segnali di viaggiare off-chip

sia sfruttando una serie di piccoli core invece di un core grande e monolitico porta

ad un consumo energetico notevolmente inferiore [15], e questa è una caratteris-

tica molto importante visto il recente trend verso telefonia mobile ed embedded

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

92 Estratto in lingua italiana

computing.

Il crescente numero di core, purtroppo, ha portato a gravi problemi. Come per il

tempo di clock delle CPU a processori a core singolo, il numero di core nei proces-

sori multi-core non può raggiungere valori arbitrariamente elevati. Ad esempio,

sfruttando troppi core sulla stessa basetta porta a congestioni di comunicazione

ed elevati consumi di energia. Negli ultimi anni, la tendenza si sta muovendo da

multi-core a many-core. L’idea è quella di sfruttare un numero elevato di elementi

di elaborazione performanti ed a bassa potenza (PEs) connessi da una network-

on-chip (NoC). Quest’ultima fornisce un’infrastruttura che garantisce modularità,

scalabilità, tolleranza ai guasti, e maggiore larghezza di banda rispetto alle infras-

trutture tradizionali. Da ora in poi, con il termine processore si farà riferimento ad

un processore multi-core o many-core, che quindi sfrutti più di un PE.

6.2 Co-scheduling di applicazioni su processori multi-core

Gli avanzamenti tecnologici nell’ambito dei processori hanno aperto nuovi ed in-

teressanti scenari; uno di questi è lo studio del concetto di co-scheduling, introdotto

per la prima volta nel 1982 da J. K. Ousterhout [16], e ora più attuale che mai.

Avendo a disposizione due, quattro, dodici PE (o anche di più, nel caso di proces-

sori many-core), il concetto di scheduling è evoluto nel concetto di co-scheduling.

Mentre l’obiettivo principale di uno scheduler è quello di effettuare multitasking

(eseguire più processi in un breve lasso di tempo) e multiplexing (trasmettere più

flussi di dati contemporaneamente), un co-scheduler mira a schedulare in parallelo

differenti tasks su un dato set di risorse. Mentre molti sforzi sono stati compiuti

nella ricerca in ambito di programmazione parallela e gestione delle risorse, poche

soluzioni originali sono state introdotte per quanto riguarda euristiche e algoritmi

di co-scheduling. Che co-schedulare le applicazioni in modo aleatorio sulle risorse

non sia la soluzione ottimale è sicuramente ovvio; ogni applicazione ha caratter-

istiche differenti specie per quanto riguarda lo stress a cui sottoporrà le risorse

del sistema e il degrado di performance che causerà alle altre applicazioni in exe-

cuzione su un dato PE. Quindi, co-schedulare due applicazioni sullo stesso PE non

può essere considerato una buona scelta a priori. Tutto dipende, banalmente, da

quali applicazioni voglio eseguire e dal tipo di sistema che sto utilizzando. Sfortu-

natamente, ad ogni modo, determinare quali applicazioni debbano o non debbano

essere eseguite sullo stesso PE non è l’unico problema che ci si para davanti; la

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

6.2 Co-scheduling di applicazioni su processori multi-core 93

maggior parte degli scheduler dei sistemi operativi odierni vede ogni PE come un

processore singolo e isolato dal resto del sistema. Questo non è necessariamente

vero, dato che ci sono molte interdipendenze tra i PE. Ad esempio, si potrebbe pen-

sare che due applicazioni caratterizzate da un notevole utilizzo di dati non deb-

bano venire eseguite dullo stesso PE, dato che ambedue saranno spesso in stallo

aspettando i dati e creeranno contention sulle cache del PE. Ma se eseguissi tali

applicazioni su due PE differenti, che però condividono una buona parte della ger-

archia di cache? Questo porterebbe comunque a contention e causerebbe rallen-

tamenti nell’esecuzione delle applicazioni e un utilizzo non efficiente dell’energia,

dato che i core in stallo a causa della contention sprecano cicli di clock senza man-

dare avanti il loro lavoro. Si noti che, in alcuni sistemi, le gerarchie di cache non

sono condivise tra tutti i core. Pensiamo alle architetture NUMA (accesso a memo-

ria non uniforme), dove i core sono raggruppati in nodi e ogni nodo ha la sua

gerachia di cache: qui, effettivamente, eseguire applicazioni in modo tale che quasi

non vi sia contention è possibile. Tuttavia, il problema persiste; essendo il nu-

mero di nodi limitato da tecnologia e problemi di scalabilità, anche nel caso di

carichi di lavoro piuttosto leggeri non è possibile eseguire un’applicazione per

ogni nodo. Quello che possiamo fare, piuttosto, è sincerarci che le nostre scelte

di co-scheduling causino degradi di performance il meno pesanti possibile. La

contention sulla memoria è sicuramente la causa fondamentale dei degradi. Tut-

tavia, ne potremmo trovare molte altre minori; in un certo senso, ciò che un co-

scheduler dovrebbe fare non è cercare una allocazione fair delle applicazioni sui

PE, ma distribuire in modo fair l’utilizzo di risorse e i possibili degradi di perfor-

mance sull’intero sistema.

6.2.1 Co-scheduling basato sull’utilizzo di risorse

Come già menzionato, il problema del co-scheduling riguarda la scelta di come es-

eguire m applicazioni su n PE, con m maggiore di n. Dal nostro punto di vista,

ogni PE non è totalmente isolato; ognuno di essi condivide un certo set di risorse

con alcuni degli altri. Certamente la prima risorsa da analizzare è la gerarchia di

cache. Lo scenario più banale potrebbe essere quello in cui n applicazioni, carat-

terizzate dallo stesso tempo di esecuzione, eseguono in modo parallelo su n PE. In

questo caso, si potrebbe pensare che il possibile speed-up, rispetto al caso seriale,

sia n. Essendo però i PE non indipendenti, specie per quanto riguarda le gerar-

chie di cache, abbiamo livelli di cache dove più applicazioni leggono e scrivono

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

94 Estratto in lingua italiana

dati in modo concorrente. Utilizzare una cache condivisa è una notevole fonte di

degrado di performance. Pensiamo al caso in cui tutte le applicazioni sfruttino la

cache in modo fair: ipotizzando che ogni PE non possa leggere e scrivere su aree di

memoria utilizzate dagli altri PE, se tale cache è condivisa tra n PE ogni PE ”vede”

solo 1/n della cache. Questa riduzione virtuale delle dimensioni della cache porta

- come il lettore certamente già immagina - a un innalzamento massivo del cache

miss ratio, ovvero della percentuale di accessi in cache falliti sul totale delle richi-

este. E per quanto riguarda il co-scheduling di più applicazioni sul medesimo PE?

Qui la situazione è ancora più critica; in fatti, potremmo arrivare a scanari dove

tutte le applicazioni vanno in stallo aspettando dati, a causa dei degradi appena

menzionati. In questo caso, il PE starebbe sprencando cicli, non essendo in grado

di eseguire alcuna applicazione. Il problema è complesso e, sopratutto, grave: può

infatti portare a situazioni dove l’esecuzione parallela andrebbe addirittura evitata,

dato che lo speed-up ottenuto è cosı̀ basso da non essere vantaggioso rispetto alle

spese sostenute per acquisire un dispositivo ad elevato numero di core.

Come possiamo ridurre i degradi di performance dovuti alla condivisione delle

risorse? Tipicamente, questi degradi dipendono dal carico di lavoro da eseguire,

ovvero dalle caratteristiche delle singole applicazioni che verranno eseguite sul sis-

tema. Negli ultimi anni, un cospicuo numero di soluzioni è stato proposto. Quasi

tutte queste soluzioni hanno bisogno di una fase di apprendimento, ovvero di una fase

in cui le applicazioni vengono eseguite una ad una sul sistema, per monitorare il

loro comportamento e il loro effettivo utilizzo di risorse a prescindere da eventuali

altre applicazioni in esecuzione sul sistema. Le informazioni raccolte vengono poi

utilizzate dalle politiche di scheduling per scegliere, a run-time, il co-scheduling

ottimo delle applicazioni che sta eseguendo.

6.2.2 Co-scheduler basati sull’utilizzo di risorse negli ultimi anni

In [9], un articolo datato ma nondimeno interessante, è proposto un approccio che

non richiede fase di apprendimento. Il concetto è l’identificazione, a run-time, di

gruppi di attività caratterizzate da un alto grado di mutua interazione. L’idea è

quella che applicazioni che accedono spesso alle stesse aree di memoria - condivi-

dendo quindi tali dati - sono probabilmente caratterizzate da un’interazione forte.

Si noti che il set di risorse, qui, ammonta a un singolo core. Tuttavia l’articolo

mostra come, anche vent’anni fa, l’idea di prestare attenzione a quali gruppi di ap-

plicazioni dovessero venir eseguite sul medesimo PE era presente nella letteratura.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

6.2 Co-scheduling di applicazioni su processori multi-core 95

Un altro lavoro interessante si concentra sull’utilizzo del bus in sistemi a multi-

processori simmetrici (SMP) 1. Questo approccio, proposto in [5], mira a ridurre i

colli di bottiglia dovuti alla congestione del bus di sistema. Dimostrano che, sfrut-

tando la richiesta di banda dei thread raccolta durante la fase di apprendimento

per oprerare le propre scelte, lo scheduler è in grado di evitare sovra e sotto-utilizzi

del bus, riducendo quindi i degradi di performance durante l’esecuzione di carichi

pesanti. Lo scheduler è validato eseguendo due diversi benchmarks: il primo è

caratterizzato da un intenso utilizzo del bus, il secondo da un utilizzo leggero. La

piattaforma sperimentale è un SMP composto da quatto processori Intel Xeon, con

hyperthreading e clock a 1.4 GHz. È dotato di 1 GB di memoria principale, e ogni

processore dispone di 256 KB di cache L2. Il bus di sistema della macchina ha una

frequenza di 400MHz. Il sistema operativo è Linux, versione del kernel 2.4.20. Il

loro approccio porta ad incrementi nella velocità massima di esecuzione del 26 %

rispetto allo scheduler di Linux.

Durante la fase di apprendimento, le informazioni relative all’utilizzo del bus

vengono raccolte tramite performance counters, metodo principale in tutti questi

lavori. Ci si potrebbe chiedere quali contatori siano più adatti ad essere sfruttati

durante la fase di apprendimento; in [8] vengono analizzati diversi contatori, cer-

cando di rispondere appunto a questa domanda. Il loro studio, effettuato su un sis-

tema che sfrutta due processori dual-threaded, è incentrato sul confronto tra cinque

scheduler: RFU scheduler (incentrato sull’utilizzo del register file), FRCA sched-

uler (incentrato sui conflitti nel register file), DCCS scheduler (incentrato sui con-

flitti nella L1 data cache), IPCS scheduler (incentrato sulle istruzioni per secondo),

e RIRS scheduler (incentrato sulle operazioni pronte ed in esecuzione simultanea-

mente). Ognuno di questi scheduler sfrutta differenti contatori per caratterizzare

le applicazioni e calcolare il co-scheduling ottimale. Eseguendo carichi di lavoro

eterogenei, dimostrano che i degradi massimi di prestazione di RIR sono pari al 2

%, mentre raggiungono il 10 %, 13 %, 11 % e il 14 % con DCCS, RFU, RFC, IPCS

rispettivamente. Cosı̀, informazioni generali come il numero di istruzioni pronte e

in volo permettono di effettuare decisioni di co-scheduling molto più consistenti di

quelle basate su cache di primo livello e register file.

In [13], l’attenzione si è spostata verso l’utilizzo della memoria. Qui due impor-

tanti concetti vengono introdotti: prima di tutto, eseguendo diversi benchmarks da

1Qui ci riferiamo ad architetture composte da due o più processori identici connessi a un’unica

memoria condivisa. La comunicazione è basata su bus o crossbar.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

96 Estratto in lingua italiana

SPEC CPU 2006 con uno scheduler di Linux modificato (kernel 2.6.16), mostrano

che decisioni di co-scheduling basate sull’uso della memoria possono portare a

prestazioni e miglioramenti dell’efficienza energetica. In secondo luogo, scelgono

il prodotto energia-tempo di esecuzione (EDP) come metrica di valutazione per le

loro scelte di co-scheduling. Il loro scheduler permette riduzioni massime di EDP

pari al 10% rispetto allo scheduler standard di Linux, i test eseguiti utilizzando un

sistema multiprocessore IBM xSeries 445 composto da otto processori Pentium 4

Xeon Gallatin a 2.2 GHz. Il sistema è costituito da due nodi NUMA con quattro pro-

cessori multi-threaded a due vie su ciascun nodo. La scelta dello EDP come metrica

per valutare la bontà di una scelta di co-scheduling è importante; [11] mostra che

lo EDP è una metrica relativamente neutra rispetto all’implementazione e riesce a

mettere in luce in modo chiaro i miglioramenti che portano beneficio sia alle perfor-

mance, sia all’efficienza energetica. In altre parole, utilizzando lo EDP abbiamo a

disposizione una singola metrica, che però ci aiuta a caratterizzare contemporanea-

mente prestazioni ed efficienza energetica.

Le opere di cui sopra mirano a dimostrare che alcune statistiche di utilizzo delle

risorse sono particolarmente adatte ad essere prese in considerazione durante la

fase di co-scheduling. Il principale punto debole di queste opere è che prendono in

considerazione un solo tipo di risorsa; ogni lavoro dimostra che gli altri non ten-

gono conto di risorse il cui uso eccessivo è stato dimostrato essere causa di degrado

di prestazioni e maggiore consumo di energia. Per rispondere a questo problema,

in [14] viene introdotto il concetto di vettore di attività. Un vettore di attività descrive

in che misura un’applicazione utilizzi varie risorse legate al processore, e la dimen-

sione di questo vettore è pari al numero di risorse vogliamo considerare. Ciascun

componente del vettore denota il grado di utilizzo della risorsa corrispondente.

L’obiettivo della loro politica è quello di co-schedulare le applicazioni in modo che

ogni risorsa nel sistema venga utilizzata da applicazioni che hanno un grado di uti-

lizzo di tale risorsa molto differente tra loro, in modo da evitare degradi di perfor-

mance dovuti a colli di bottiglia e stalli. Per studiare gli effetti della contention sulle

risorse e della selezione delle ottimali frequenze di funzionamento dei processori,

scelgono un Processore Intel Core 2 Quad Q6600 a 2.4GHz. Quando non possono

essere trovate combinazioni di applicazioni vantaggiose, la contention è mitigata

dal frequency scaling. Questo permette di ottenere fino al 21% di risparmio in EDP

relativamente all’esecuzione di varie applicazioni dal benchmark SPEC CPU 2006.

Negli ultimi anni sono stati proposti molti approcci al problema del co-scheduling

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

6.2 Co-scheduling di applicazioni su processori multi-core 97

orientato all’utilizzo ottimale delle risorse per la riduzione di consumo energetico

e degradi di performance. Tuttavia, molti problemi devono ancora essere risolti:

o Implementazioni reali non vengono spesso presentate. Infatti, spesso i sistemi

vengono validati attraverso simulatori.

o Nessuno dei sistemi realmente implementati risulta portabile; gli scheduler

sono spesso creati modificando il kernel di Linux.

o L’unico lavoro che presta attenzione a set ordinariamente grandi di risorse,

non offre un metodo per comprendere quali risorse del sistema siano davvero

interessanti dal punto di vista della riduzione dei degradi di performance.

Peraltro, non vi è modo di calcolare quali siano le risorse più importanti, ad

esempio la gerarchia di cache, e quali invece debbano assumere un’importanza

minore durante la scelta del co-scheduling ottimale.

o Spesso, le informazioni raccolte durante la fase di apprendimento sono dipen-

denti dall’architettura (ad esempio, il floorplan del processore).

o Un flusso standard e completo che guidi l’utente del sistema dalla creazione

di un’applicazione (e raccolta dei dati necessari allo scheduling) alla valu-

tazione dell’efficienza dello scheduler non è stato ancora proposto.

A nostro parere, ciò di cui abbiamo bisogno è il design di una politica di schedul-

ing che tenga in considerazione un set di risorse che sia stato provato essere stret-

tamente correlato a degradi di performance e consumo di potenza. Questo ap-

proccio dovrebbe essere caratterizzato da portabilità e adattabilità a qualsiasi pi-

attaforma multi-core. Inoltre, deve essere introdotto un flusso completo che aiuti

l’utente a compiere tutti i passi che lo porteranno verso un co-scheduling carat-

terizzato da bassi consumi di potenza e degradi di performance minimi, a partire

dalla creazione e ottimizazione dell’applicazione arrivando al testing delle proprie

applicazioni su sistemi reali.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

98 Estratto in lingua italiana

6.3 Obiettivi del lavoro di tesi

L’obiettivo di questo lavoro è quello di dimostrare che una politica di co-scheduling

che tenga conto dell’utilizzo di risorse delle applicazioni può portare a una vasta

gamma di vantaggi, come ad esempio incrementi di prestazioni, miglioramento

dell’efficienza energetica, riduzione delle temperature. La politica sarà progettata e

implementata come estensione di una delle politiche di co-scheduling sfruttate da

BarbequeRTRM [7], un resouce manager altamente modulare, estensibile e porta-

bile sviluppato presso il DEIB - Politecnico di Milano - nell’ambito del Progetto Eu-

ropeo 2PARMA [17] che fornisce il supporto per la gestione di più applicazioni in

competizione per’uso di uno (o più) dispositivi multi-core. Dimostreremo che con-

centrandosi non solo su quali siano le migliori applicazioni da schedulare ma anche

su come co-schedularle, le prestazioni e l’efficienza energetica di tale resource man-

ager, già migliori rispetto a quelle del resource manager di Linux, possono essere

portate a livelli ancora più alti. Valideremo la politica, che chiameremo COWs (CO-

scheduling WorkloadS), su due diverse piattaforme: la prima sfrutta un processore

Intel Core i7 quad-core con hyperthreading, la seconda è un dispositivo NUMA

con quattro nodi, ognuno dotato di un processore AMD 10h Opteron 8378 quad-

core con gerarchie di cache distinte per ogni nodo. La validazione si basa sul con-

fronto dello EDP per diversi carichi di lavoro composti da applicazioni del bench-

mark PARSEC v.2.1 dell’università di Princeton, per i quali BarbequeRTRM ha di-

mostrato di essere in grado di migliorare notevolmente prestazioni ed efficienza

energetica rispetto al caso Linux. Durante i test, quindi, le risorse verranno gestite

da Linux, da BarbequeRTRM e da BarbequeRTRM con il supporto di COWs. Oltre

a ciò progetteremo un flusso standard che guidi l’utente attraverso la creazione di

un’applicazione che possa interagire con BarbequeRTRM, la fase di addestramento

necessaria all’utilizzo di COWs, l’ottimizzazione dell’applicazione e dello sched-

uler stesso attraverso un’esplorazione del design space e dei possibili carichi di

lavoro, e la valutazione dello EDP.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

6.4 Organizzazione della tesi 99

6.4 Organizzazione della tesi

Nel capitolo 2 verrà introdotto il framework BarbequeRTRM. Una vista di alto

livello di questo framework aiuterà il lettore a comprendere i vantaggi offerti da

BarbequeRTRM e le motivazioni che ci hanno portato a ritenerlo un eccellente

punto di partenza per il nostro lavoro. Dunque, uno degli attuali scheduler di

BarbequeRTRM, chiamato YaMS, verrà introdotto. Alla spiegazione del suo fun-

zionamento e dell’idea che sta dietro alla scelta del co-scheduling ottimale seguirà

una analisi dei suoi punti deboli in termini di sfruttamento delle caratteristiche di

utilizzo di risorse delle applicazioni, e i primi concetti su come tale scheduler possa

essere esteso grazie alla nostra politica verranno introdotti.

Nel capitolo 3 verrà definito il concetto di co-scheuduling basato sull’utilizzo di

risorse, concentrandosi su quali contatori possano essere i più utili durante la fase

di scelta del co-scheduling. Quindi seguirà la progettazione dello scheduler COWs,

definendo le metriche a cui farà riferimento durante la scelta del co-scheduling ot-

timale e descrivendo la sua interazione con BarbequeRTRM. Il flusso che porterà

dalla creazione dell’applicazione alla valutazione dello EDP verrà dunque introdotto.

Nel capitolo 4 l’implementazione verrà validata, concentrandosi su ogni passo

del flusso e spiegando l’interazione tra i vari tools utilizzati. Dunque, i risultati

verranno discussi. Vedremo come BarbequeRTRM riesca a garantire prestazioni e

consumi di potenza migliori rispetto al caso Linux, e come il supporto di COWs

riesca a migliorare ulteriormente questi risultati.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

100 Estratto in lingua italiana

Nel capitolo 5 trarremo le conlusioni sul lavoro, spiegando brevemente cosa ab-

biamo fatto e come abbiamo raggiunto tali risultati. Le possibili applicazioni future

verranno quindi discusse.

L’appendice A introdurrà i maggiori tools utilizzati durante il lavoro, spiegando

il loro funzionamento e il vantaggio da loro offerto al nostro lavoro.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

Bibliography

[1] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3B: System

Programming Guide, Part 2.

[2] Multi-Objective System Tuner - Design Of Experiments Modules Manual.

[3] Software Optimization Guide for AMD Family 10h and 12h Processors.

[4] CMOS VLSI Design: A Circuits and Systems Perspective. Addison-Wesley, 2005.

[5] C. Antonopoulos, D. Nikonopoulos, and D. Papatheodorou. Scheduling algo-

rithms with bus bandwidth considerations for smps. In Conference on Parallel

Processing.

[6] P. Bellasi, G. Massari, and W. Fornaciari. A rtrm proposal for multi/many-

core platforms and reconfigurable applications. In 7th International Workshop

on Reconfigurable Communication-centric Systems-on-Chip.

[7] DEI. Barbequertrm framework. http://bosp.dei.polimi.it/.

[8] A. El-Moursy, R. Garg, and S. Dwarkadas. Compatible phase co-scheduling

on a cmp of multi-threaded processors. In Parallel and Distributed Processing

Symposium.

[9] D. G. Feitelson and L. Rudolph. Co-scheduling based on run-time identifi-

cation of activity working sets. International Journal of Parallel Programming,

1995.

[10] B. Goel, M. Själander, and S. A. McKee. Per-core power estimation for cmps.

Chalmers University of Technology, SE.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

102 BIBLIOGRAPHY

[11] R. Gonzales and M Horowitz. Energy dissipation in general purpose micro-

processors. IEEE Journal of Solid-State Circuits, 1996.

[12] IBM. Power4. http://www.research.ibm.com/power4.

[13] A. Merkel and F. Bellosa. Memory-aware scheduling for energy efficiency on

multicore processors. In Proceedings of the Workshop on Power Aware Computing

and Systems.

[14] A. Merkel, J. Stoess, and F. Bellosa. Resource-conscious scheduling for energy

efficiency on multicore processors. In Fifth ACM SIGOPS EuroSys Conference.

[15] P. et Al. Muthana. Packaging of multi-core microprocessors: tradeoffs and

potential solutions. In Electronic Components and Technology Conference.

[16] J. K. Ousterhout. Scheduling techniques for concurrent systems. In IEEE Con-

ference on Distributed Computing Systems.

[17] 2PARMA Project. Parallel paradigms and run-time management techniques

for many-core architectures. http://www.2parma.eu/.

[18] O. Semenov, A. Vassighi, and M. Sachdev. Impact of self-heating effect on

long-term reliability and performance degradation in cmos circuits. In IEEE

transactions on device and materials reliability.

[19] Princeton University. Parsec benchmark. http://parsec.cs.princeton.edu/.

[20] Website. Ipmitool. http://ipmitool.sourceforge.net/.

[21] Website. Perf linux tool. https://perf.wiki.kernel.org/index.php/Main Page.

An approach for energy efficient co-scheduling of parallel applications on multi-core platforms

	Introduction
	From single to multiple cores
	Applications co-scheduling on multi-core processors
	Resource utilization aware co-scheduling
	Prior art

	Objectives of this thesis work
	Organization of the thesis

	The BarbequeRTRM Framework
	Overview
	Reconfigurable applications
	YaMS: a multi-objective scheduler
	Resource binding domains
	Scheduling contributions
	The algorithm

	Our proposal

	CoWs: Co-scheduling Workloads
	Resource-aware co-scheduling
	Performance counters exploitation
	Application profile: CPU-bound versus memory-bound
	Functional units balance

	Extending YaMS with CoWs support
	Resource binding algorithm

	Methodology
	Application working modes (AWMs) characterization
	Performance counters statistics
	Scheduler training
	Workload results evaluation

	Experimental Results
	Analysed multi-core based systems
	Single multi-core processor
	Multiple multi-core processors

	Methodology exploitation
	Application working modes characterization
	Performance counters statistics
	Scheduler training

	Run-time scenarios
	Single multi-core processor
	Multiple multi-core processors

	Conclusions
	Achieved results
	Co-scheduling workloads in a resource-aware perspective
	CoWs integration application flow

	Future developments
	Migration and reconfiguration vs optimal co-scheduling
	From training to learning

	Tools
	Performance counters sampling with RTLib
	MOST: a tool for design space exploration
	LIKWID: Lightweight performance tools

	Estratto in lingua italiana
	Da core singolo a multi-core
	Co-scheduling di applicazioni su processori multi-core
	Co-scheduling basato sull'utilizzo di risorse
	Co-scheduler basati sull'utilizzo di risorse negli ultimi anni

	Obiettivi del lavoro di tesi
	Organizzazione della tesi

